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FIGAROH: a Python toolbox for dynamic identification and geometric
calibration of robots and humans

Thanh D. V. Nguyen1,2, Vincent Bonnet1,∗, Maxime Sabbah1, Maxime Gautier3, Pierre Fernbach2, Florent Lamiraux1

Abstract— The accuracy of the geometric and dynamic mod-
els for robots and humans is crucial for simulation, control, and
motion analysis. For example, joint torque, which is a function
of geometric and dynamic parameters, is a critical variable that
heavily impacts the performance of model-based control, or that
can motivate a clinical decision after a biomechanical analysis.
Fortunately, these models can be identified using extensive
works from literature. However, for a non-expert, building an
identification model and designing an experimentation plan,
which should not require long hours and/or lead to poor results,
is not a trivial task, especially for anthropometric structures
such as humanoids or humans that need frequent update.
In this work, we propose a unified framework for geometric
calibration and dynamic identification in the form of a Python
open-source toolbox. Besides identification model building and
data processing, the toolbox can automatically generate exciting
postures and motions to minimize the experimental burden
from the robot, measurements, and environment description.
The possibilities of this toolbox are exemplified with several
datasets of human, humanoid, and serial robots.

I. INTRODUCTION

Robot unit specific geometric and dynamic parameters can
be provided by robot manufacturer or accounted for in the
controller, but often they use simplistic models while request-
ing extra fees. Geometric parameters refer to the 3D slight
position and orientation offsets of each joint, while dynamic
parameters refer to the Segment Inertial Parameters (SIP),
joint and drive chain parameters. SIP are often provided by
manufacturer. However, joint and drive chain parameters are
usually unknown despite they can have a dramatic effect on
the joint torque estimate. For example, the current gain drive
provided by a robot motor manufacturer is known to have
an inaccuracy of 10 to 15% [1]. In human motion analysis,
it is necessary to perform a geometric calibration as the
location of motion sensors changes at each new experiment.
The human SIP can be estimated from population-averaged
Anthropometric Tables (AT) [2], but they are notoriously
inaccurate for people with atypical mass distribution, such
as infants, obese individuals, or athletes.

Fortunately, all these parameters can be identified, as iden-
tification of rigid multi-body systems is a mature research
field that has been used with numerous robots [3], [4] and
in biomechanics to analyse human motion [5]. Although
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few recent toolboxes were proposed [6], [7], [8], [9], there
is still no unified framework for geometric and dynamic
identification. Pybotics [6] and the Robot Calibration pack-
age for ROS [9] are specifically designed for geometric
calibration of robots, including 6D robot frame offsets and
camera parameters using 3D pose provided by an external
device or a closed-loop constraint, respectively. The toolbox
Multirobot-calibration [7] provides different frameworks for
robot geometric calibration including self-contained, self-
touch methods. The BIRDy software [8], on the other hand,
presents an exhaustive benchmark of different robot dynamic
identification algorithms. However, no toolbox has handled
the automatic generation of exciting data depending on
specific robot structure, measurement type and location and
environment.

A geometrical calibration process requires the measure-
ment of kinematic data collected over calibration postures.
For robots, kinematic measurements refer to encoder data
and external pose measurements coming from a Laser tracker
for instance [10], or using closed-loop constraints [11]. For
human, they can be collected from a Stereophotogrammetric
System (SS) for example. Dynamic identification process
requires the measurement of kinematic and dynamometric
quantities. The type and accuracy of dynamometric quantities
vary from one system to another. They can be the motor
torques or currents of a robot, the joint torques or the external
wrench applied to the system measured with a force sensor
or a force-plate at different locations [5]. Depending on the
type of dynamometric inputs, different parameter sets can
be identified, and thus different identification model should
be devised. Once data are collected, they can be inputted
into a Least-Square (LS) optimization problem minimizing
the difference between measured and estimated entities, and
the kinematic and/or dynamic parameters to be identified can
be then retrieved. Kinematic and dynamometric data should
be collected over exciting static postures for geometrical
calibration and exciting motions for dynamic identification.
Generally, exciting postures and motions are generated man-
ually in a sequential way or even randomly [12]. This is
acceptable for simple serial chains in unconstrained envi-
ronment. However, for complex robots such as humanoids
due to their kinematic complexity, intrinsic instability, and
self-collision risks such methods cannot be used. Also, if
the postures/motions are randomly designed, then the time
required to perform the system identification will be longer.
In this case, it is better to use a set of Optimal Exciting



Calibration Postures (OEP) and Optimal Exciting Motions
(OEM) specifically designed to excite the parameters to be
identified while taking into account mechanical constraints.
Literature regarding serial manipulators proposes to generate
OEP and OEM using optimization approaches based on the
minimization of a criterion related to the condition number
or the determinant of the so-called regressor matrix [13], [4],
[14], which relates parameters to be identified and measure-
ments. Finally, since regressor matrices are not full-rank due
to the fact that some parameters are not identifiable, only the
so-called Base Parameters (BP) [15] can be identified with a
classical LS approach. However, most of the newly designed
robots and simulators are based on the URDF modelling
convention that requires each individual parameter. Recently,
several studies have proposed solutions to obtain physically
consistent SIP using constrained optimization [16]. By do-
ing so, each individual parameter to be identified can be
retrieved.

In this context, the paper introduces a practical open-
source Python toolbox for the Free Identification of Geo-
metrical and dynAmic parameters of RObots and Humans
(FIGAROH). FIGAROH is the first comprehensive toolbox
for modeling of identification models, generating OEP and
OEM automatically, and processing data of rigid multi-
body systems. Several example datasets are described in
section V, including the geometric calibration and dynamic
identification of a TIAGo collaborative robot, a TALOS
humanoid robot, a human, a Staubli TX40 and a UR10 robot.

II. MAIN FEATURES OF FIGAROH
FIGAROH is written in Python for easy data processing

and fast prototyping. Geometric and dynamic computations
mainly rely on Pinocchio robot modeling library, one of the
most efficient libraries for this purpose [17]. Fig. 1 shows an
overview of FIGAROH main features. The toolbox takes as
input the multi-modal measurements, their type and location
on the model, the nominal mechanical model described with
a URDF file, and elements of the robot environment such
as the location of possible obstacles. The outputs are the
identified geometric and/or dynamic parameters, a statistical
analysis of the identified parameters, and an updated URDF
file of the robot.
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Fig. 1. Overview of FIGAROH main features and organization.

A. Robot modelling

A robot model is composed of one or more kinematic
chains with NL links and NJ joints. The absolute pose Y
of any frame on the robot can be calculated as a function of
the joint configuration vector q and of the local joint pose
parameter vector p using the forward kinematic model:

P = f(q,p,Φg) =
base T1 ∗1 T2 ∗ ... ∗n Tend (1)

where p =
[
p1 · · · pNJ

]
are vectors of the nominal

values of local joint poses in parent frames with pj =[
pxj pyj pzj ϕxj ϕyj ϕzj

]
; and Φg =

[
Φg 1 · · · Φg NJ

]
are vectors of the local joint pose variations that are to be
identified, with Φg j=

[
δpx j δpy j δpz j δϕx j δϕy j δϕz j

]
.

Dynamic identification in robots refers to the identification
of:

• 10 Segment Inertial Parameters (SIP) for each seg-
ment j that are expressed in the joint frame Φd j =[
Mj MSj TIj

]
, where Mj is the mass, MSj =[

MSXj MSYj MSZj

]
is the 3-dimensional vector

of the first moment of inertia, and the 6-dimensional
vector TIj =

[
XXj Y Yj ZZj XYj XZj Y Zj

]
gathers the components of the 3× 3 tensor of inertia.

• Joint parameters for each segment j the static Fsj and
viscous Fvj friction parameters and the joint torque
sensor offset offj .

• Drive chain parameters including for each joint j, gτj
the motor’s input of the current control loop to torque
conversion gain, Imj the rotor inertia of the motor, Fvmj

and Fsmj the motor viscous and dry frictions.
• Gain Kj associated to joint torque sensors or force

plate.
In the general case of a floating base multi-body system,

the inverse dynamic model can be calculated using the
recursive Newton-Euler method as follows [18], [19]:[

Hww Hwc

Hcw Hcc

] [
q̈w

q̈

]
+

[
bw

bc

]
=

[
0
τ

]
+

Nc∑
k=1

[
JT
wk

JT
ck

]
Fk (2)

where the upper part of the equation represents the root-link
dynamics, and the lower part accounts for the other chain
segment dynamics.

• Hww ∈ R6×6 and Hwc ∈ R6×NJ are the root-link
inertia matrices; Hcw ∈ RNJ×6, Hcc ∈ RNJ×NJ are
the chains segments inertia matrices;

• q̈w ∈ R6 denotes the linear and angular acceleration
vector of the root-link in the global system of reference;

• q̈ ∈ RNJ and τ ∈ RNJ are the joint accelerations and
torques vectors, respectively;

• bw ∈ R6 and bc ∈ RNJ are the bias force vectors
describing centrifugal, Coriolis, and gravity forces of
the root-link and of the chain segments, respectively;

• Nc is the number of contact points;
• Jwk

and Jck are the Jacobian matrices expressed at
contact point k that map external wrenches Fk =[
FXk

FYk
FZk

MXk
MYk

MZk

]T
to the base-link

and chains segments, respectively.



The drive chain model between the motor torques τmj and
the joint torque τj is as follows:

τmj = Imj q̈j +Hccj q̈j + bcj + τfmj + τfj

τmj = gτjIj

τmj − τj = Imj q̈j + τfmj

with : τfmj = Fvmq̇j + Fsmsign(q̇j) + offmj

τfj = Fvj q̇j + Fsjsign(q̇j) + offj

(3)

Using the difference between τmj and τj , it is possible to
identify the drive chain parameters specifically.

B. Identification models

Both kinematic and dynamic models can be approximated
in linear form to relate measurements and parameters that
need to be identified using their regressor matrix. In the case
of the geometric parameters, this can be achieved by using
the first-order Taylor development of Eq. 1:

∆P = Rg(q,p)Φg (4)

where Rg ∈ RNm×Np is the geometric regressor matrix cor-
responding to the Jacobian matrix relating the Np parameters
to be identified with the Nm measurements.

The dynamic regressor Rd ∈ RNm×Np is directly obtained
thanks to the fact that Eq. 2 and Eq. 3 are linear with respect
to the inertial parameters:

D = Rd(q, q̇, q̈)Φd (5)

where D ∈ RNm represents any dynamometric measure-
ments.

The regressors are rank-deficient as some parameters can-
not be estimated separately in an LS sense. For the geometric
calibration, the maximum number of identifiable parameters
is at most 4 out of 6 geometric parameters for a revolute
joint, and 2 out 6 geometric parameters for a prismatic
joint [20]. Furthermore, the identifiability of these parameters
is influenced by the placement of joints in the kinematic
tree. For example, if two consecutive joints are co-linear,
it is impossible for both joint axis offsets parameters to be
identified separately as they are linearly dependent [20]. In
this case, a so-called Base Parameter (BP) is created as a
linear combination of the two or more co-linear parameters.

Similarly, for dynamic identification, if two segments are
linked by a single hinge following z axis, the position of the
centers of mass along x and y axes cannot be dissociated.
Thus, a BP is created as a linear combination of the centers
of mass along x and y axes.

To cope with these dependency issues, it is necessary to
ensure that the regressor matrix is full rank. To do so, there
are two common approaches, namely symbolic and numeric
calculation, to correct for rank-deficient matrix by identifying
a set of BPs [15]. The calculation of the BP involves finding
the equivalent regressor Rb ∈ RNm×NB that is a full column
rank matrix by combining the columns that are not linearly
independent. This results in the elimination and regrouping
of the parameters to form the vector of base parameters Φb ∈
RNB .

In FIGAROH, the numerical approach based on QR de-
composition is chosen for its robustness and ability to easily
sort parameters, and thus determine linear expression of
grouped parameters [21]. These expressions obtained through
this approach can be used to verify the physical meaning
of the identification model and understand parameter identi-
fiability. The numerical approach is also well-suited when
different static or dynamic BP sets need to be selected.
For example, when working in static, the velocities and
accelerations are set to 0, therefore the obtained BP are solely
functions of the masses and of the center of masses. The
remaining static parameters are then regrouped depending
on the kinematics of the system. Static RS

b and dynamic
RD

b sub-regressor matrices can be created from the BP for
the mass, center of mass and inertia tensor, respectively. As
listed in Table I, FIGAROH builds the identification models
depending on the available measurements to identify all or
some of the parameters [22].

TABLE I
LIST OF PARAMETERS THAT CAN BE IDENTIFIED FROM MEASUREMENTS.

Measurements Identifiable parameters
Joint torques SIP and joint parameters
External wrench SIP
Joint torques, external wrench SIP, joint parameters
Joint torques, motor current SIP, joint and drive chain parameters
External wrench, motor current SIP and drive chain
Full pose Kinematic parameters
Position Kinematic parameters
Orientation Joint angle offsets
Kinematics, joint torques Kinematic parameters, joint elasticity

C. Parameters determination

Numerous least-square methods exist in the literature,
which can be used to solve the parameter estimation problem.
FIGAROH re-implements or uses the following approaches:

• Ordinary Least-Square (OLS).
• Weighted Least-Square (WLS).
• Total Least-Square (TLS) [23].
• Quadratic Constrained Programming (QCP) [16].
• Iterative Least-Square (ILS) [15].
• Levenberg-Marquardt (LM) from SciPy [24].

OLS can be used to solve the following problem with Y ∈
RNm referring to the measurement vector:

Φ∗
b = (RT

b Rb)
−1RT

b Y (6)

When dealing with elements of Y with different units and
order of magnitude, it is preferable to use a WLS method:

Φ∗
b = (RT

b WRb)
−1YRT

b Y (7)

where W is a weight matrix based on the calculation of the
relative standard deviation of the identified parameters for
each element of Y [1], [22].

For dynamic identification, if the dynamometric sensor
such as the joint torque sensors or a force-plate needs to



be calibrated and/or the drive chain parameters need to be
identified, then a TLS approach [23], [1] can be used. It will
require to provide data of two experiments, one with the
nominal system and one with an additionnal mass. The data
is then gathered into unloaded Rdu and loaded Rdl regressor
matrices and Eq. 3 is reformulated as:


−Rdu im 0 0 0
−Rdu 0 τj 0 0
−Rdl im 0 −Rdup −Rdkp

−Rdl 0 τj −Rdup −Rdkp




ϕ
gτ
Kj

ϕup

ϕkp

 = 0 (8)

RdtotΦtot = 0 (9)

where Rdup and Rdkp are the observation matrices corre-
sponding respectively to the unknown and known payload
inertial parameters.

As noted by Gautier et al. [22], Rdtot is a full rank
matrix because of the measurement perturbations. Therefore,
the system described in Eq. 9 is modified to the closest
compatible one with respect to the Frobenius norm:

R̂dtotΦ̂tot = 0 (10)

where R̂dtot is the closest rank deficient matrix from Rdtot

and is calculated using the singular value decomposition of
Rdtot = USV T .

The solution Φ̂tot of Eq. 10 is given by the last column
of V . However, V must be scaled. Thus, it is required to use
a known mass value and the corresponding measurements in
the TLS to scale the solution vector Φ̂tot [22].

The QCP algorithm allows for the separate retrieval of
the value of each individual parameter using physical con-
sistency constraints at contrary to the BP. The following
QCP problem aims to determine the inertial parameters
that are physically plausible while fitting the dynamometric
measurements and not deviating too much from their nominal
value:

Find Φ∗ solution of min
Φ

∥D−RdΦ∥2 + α∥Φr −Φ∥2

st. Mj > 0
NL∑
j=1

Mj = Mtot

0 ≤ MSj −MjCoMj
−

MSj −MjCoMj
+ ≤ 0

for v ̸= 0, vTTIjv > ϵ
(11)

where Φr is the nominal vector of inertial parameters either
given by anthropomorphic tables for human [2] or by CAD
data for robot. Mtot is the total system mass that is easily
identifiable. CoM+

j and CoM−
j are respectively the 3D

upper and lower boundaries on the 3D position of the center
of mass for link j. v ∈ R2000×3 is a set of 2000 non
zero vectors uniformly distributed over the unit sphere used

to constrain the inertia matrix to be positive defined [16],
ϵ = 10−3 is a tolerance parameter.

For geometrical calibration, the kinematic equations are
non-linear. The two common approaches to solve the LS
problem are linearizing the kinematic model and solving Eq.
4 using an ILS method or using the LM algorithm. ILS
updates the parameters based on the gradient of the error
function until the estimation converges to a stable solution
with a specified tolerance. The LM algorithm combines
features of the Gauss-Newton algorithm and of the gradient
descent method. The solution of parameters is found by iter-
atively updating the estimates of parameters via the dynamic
adjustment of two damping coefficients that controls the
influence of the two methods until convergence is reached.

Regardless of the LS method chosen, the relative standard
deviation σ% [1], [22] of identified parameters can be used to
give an image of the accuracy of the identified base parameter
values.

D. Generation of optimal postures and motions

Extensive studies on criterion and methods to generate
OEP and OEM in order to avoid an ill-conditioned regressor
matrix are provided in robotics literature [13]. FIGAROH
uses some of the most popular criteria from the literature. In
the following, Ψ() denotes one of the criteria defined in Table
II. [σ1, σ2, ..., σNp ] are the singular values of the regressor
matrix.

TABLE II
EXCITATION CRITERIA USED FOR OEP AND OEM GENERATION [4] .

Index Expression

O1

Np√σ1σ2...σNp√
Nm

O2
σmax

σmin

O3 σmin

However, setting up an optimization problem to generate
dataset of hundreds of samples while ensuring the respect
of mechanical constraints and avoiding convergence issues
requires expert skills. FIGAROH proposes to automatically
generate this dataset from the robot, measurement types
and environment description. To reduce calculation time
and avoid convergence issues, several smaller optimization
problems are solved iteratively. If the system has a tree-
structured kinematics, separate optimization problems are
solved for each kinematic chain.

The first step is to solve the optimization problem aimed
at determining the postures that excite the static parameters.
Although the implementation of the method for generating
OEP for geometric calibration and for the identification of
mass and center of mass are conceptually similar, they are
different due to the availability of measurements. Geometric
calibration has fewer measurements for a given posture



compared to dynamic identification, which typically relies
on joint torque measurements. For geometric calibration, a
recent algorithm [25], based on evaluating and ranking the
informativeness of each posture available in a large pool of N
feasible candidate postures, is re-implemented in FIGAROH.
Determining the most informative postures is often regarded
as solving a combinatorial optimization problem in the exper-
imental design field [26]. FIGAROH proposes to transform
this combinatorial problem in a continuous one by assigning
for each candidate posture i, an information matrix Σi and
a weight ωi. The algorithm seeks the best weighting vector
ω ∈ RN to optimize an excitation criterion as follows:

Find ω∗ solution of max
ω

Ψ(

N∑
i=1

ωiΣi))

st.
N∑
i=1

ωi = 1

(12)

Finally, after a simple ranking of the weights in ω, it is
possible to determine the minimal number of required OEP
q∗
S . In fact, the criterion value will augment with the number

of postures until it reaches a plateau or a peak, depending
of the retained cost function, that is easily detectable. Fig.
2 exemplifies the evolution of O1 criterion when postures
are classified using Eq. 12. A clear peak is observable at
40 exciting postures. This is a real novelty as the number
of calibration postures is usually set prior to the calibration
process by the user.
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Fig. 2. Representative evolution of the criterion 01 when classifying
exciting postures using Eq. 12.

OEP related to the mass and center of mass are determined
iteratively by block of Np postures that ensure mechanical
constraints. Np is set as the minimal number of postures
required to have at least a determined system of equations.
The first Np OEP are determined thanks to Eq. 13. Then, the
following Np OEP take into account the previous postures
by including them in the optimization process through the
stacking of the static BP regressor (increasing the number
of rows). Np OEP are iteratively calculated and RS

b is
augmented until variation of the criterion is below a given

threshold [19], [27].

Find q∗
S solution of min

qS

Ψ(RS
b )

st. q−j ≤ qjS ≤ q+j

|τj | ≤ τ+j

P−
E ≤ PE(q) ≤ P+

E

0 ≤ d

(13)

where q−i and q+i are the joint boundaries, τ+j is the maximal
joint torque. P−

E and P+
E constrain the end-effector position

and orientation to remain in a subset of their workspace
to avoid collision with the environment. d is the vector of
distances between the different vertices of robot that should
be kept positive to avoid auto-collision. It is calculated using
hpp-fcl library [17].

Once feasible OEP are obtained, a new optimization pro-
cess is used to determine the OEM qD ∈ RNJ×Ns that excite
the inertia parameters. Ns is the arbitrarily set number of
time samples between two consecutive OEP p and p+1. Eq.
14 is solved separately between each consecutive OEP, and
previous calculated trajectories are taken into account in the
optimization process by stacking the dynamic BP regressor
RD

b . Cubic spline functions CS() [28] are used to interpolate
the trajectory. Thus, the problem of determining OEM boils
down to determining the Nw ∈ RNJ×Nk waypoints of cubic
spline functions, with Nk = 5 set by default, as follows [19]:

Find q∗
D solution of min

Nw

Ψ(RD
b )

st. CS(0, qjD) = q∗
Sj(p)

CS(Nsts, qjD) = q∗
Sj(p+ 1)

ĊS(0, qjD) = ĊS(Nsts, qjD) = 0

q−j ≤ CS(kts, qjD) ≤ q+j∣∣∣ĊS(kts, qjD)
∣∣∣ ≤ q̇+j

|τj | ≤ τ+j

P−
E ≤ PE(q) ≤ P+

E

0 ≤ d

with k = 1, ..., (Ns − 1)

(14)

where ts is the sampling time.
Even though using several iterative optimization processes

is sub-optimal, it has the advantage of considerably reducing
calculation time and convergence issues, while globally
converging toward a global minimum [27], [19]. All the
optimization processes are implemented using IPOPT solver,
and numerical gradients are used as analytical gradients of
the cost functions listed in Table II are not obtainable.

III. TOOLBOX DETAILS
The toolbox FIGAROH is made open source and now ac-

cessible at https://gitlab.laas.fr/gepetto/figaroh. As described
in Fig. 1, the main functional tools of FIGAROH are located
in /src/figaroh which can be installed from the source
code, and it includes a models folder containing 3D and
URDF models of considered systems and an examples
folder containing projects in separate sub-folders.

https://github.com/humanoid-path-planner/hpp-fcl
https://gitlab.laas.fr/gepetto/figaroh/-/tree/devel


Fig. 3. Experimental setup of the datasets used in FIGAROH. (a) TIAGo geometric calibration using a SS, (b) TALOS geometric calibration using a 3
points planar contact, (c) human dynamic identification, (d) UR10 geometric calibration using an embedded camera and a chessboard.

A. Project configuration and data preparation

1) Project configuration: Each project requires a project
configuration file in yaml file format that specifies the
requirements for the calibration or identification procedure.
For geometric calibration, the required configurations should
contain the level of calibration (either only joint offset
or full-set kinematic parameters), as well as the inclusion
of non-geometric parameters (such as joint elasticity) in
the geometric model. The starting and ending frames of
calibrated kinematic chains, the usage of a floating base,
and the parent joint frame closest to where measurements
are taken, should also be declared in this configuration file.
Additionally, a list of 6 boolean elements can be set to
indicate the location and number of observable Degrees of
Freedom (DoF) of the measurements. An example of such
a file is provided here. For dynamic identification, notional
values of additional parameters for the considered robot
that are not specified in URDF file should be added in
robot params field such as friction parameters, actuator
gear ratio. In problem params field, several options of
dynamic effects, such as joint frictions, actuator inertias, joint
effort offsets can be chosen to be included in the dynamic
model. Furthermore, the type of effort measurements (joint
torque sensor or external wrench measurements), must also
be specified here. Lastly, data pre-processing and LS method-
related parameters can be specified.

2) Data preparation: The input data for geometric cal-
ibration consists of a set of static postures obtained from
encoder readings, along with the corresponding complete
or partial pose measurements. These measurements can be
obtained either from external sensors or from geometrically
constrained postures. The user can provide the static pos-
tures, or FIGAROH can generate OEP launching a dedicated
script optimal config.py.

Similarly, exciting motions for dynamic identification can
be provided by the user or automatically generated by FI-
GAROH from the script optimal trajectory.py. For
dynamic identification, if only joint configurations are made
available, joint velocities and accelerations are numerically
calculated, which may introduce some noise. FIGAROH
has re-implemented all the numerical recipes spread across
numerous reference papers related to dynamic identification
published by Gautier et al. [21], [1], [22], [29]. For example,

dedicated Butterworth filtering and decimating methods or
automatic removal of near-zero velocity data for friction
coefficients can be applied using the functions implemented
in low pass filter data.

B. Parameters identification

After gathering necessary input data and defining project
configurations, both geometric calibration and dynamic iden-
tification procedures share a similar scheme including 3 main
steps:

• 1/ Load robot model and initialize a config parameter
dictionary object: The class Robot() inherits
all attributes and functions from robot object
in Pinocchio library. It plays an essential role
throughout the procedure in storing data and using
computing algorithms provided by Pinocchio such
as rnea, computeJointTorqueRegressor,
forwardKinematics,
computeFrameKinematicRegressor [17].
A function get param from yaml retrieves
information in project config file and creates a
dictionary that can be accessed at any point of the
procedure.

• 2/ Determine the BP and construct correspond-
ing base regressor matrix automatically: Expressions
of BP and column-specified structure of BP can
be numerically identified using regressor and
qrdecomposition tools, (see section II.B).

• 3/ Perform the estimation with one of the LS techniques
available in FIGAROH (see Section II.C).

More details of these steps are shown in the following section
with usecases.

C. Results and analysis

After determining the identified parameters, statistical
analysis such as relative standard deviation [30] of identi-
fied parameters and Root-Mean-Square Errors (RMSE) are
computed for statistical evaluations and visualization. These
evaluations are critical to assess the quality of parameter
identification. Besides, if cross validation is requested, addi-
tional calculation and plotting are also provided. Finally, the
identified parameters can separately be saved into a xacro
or yaml file which can be used to update the robot model.

https://gitlab.laas.fr/gepetto/figaroh/-/blob/devel/examples/ur10/config/ur10_config.yaml


IV. USECASES WITH DATASET

A. Human model dynamic identification

Dataset for human calibration and identification was col-
lected with one healthy subject (male, 26 years old, 97kg)
using a 20 cameras SS and a forceplate (Vero v2.2 Vicon ,
AMTI OR6 Series) sampled at 100Hz. The popular plug-in
gait-template [31] based on 35 markers was used to estimate
human motion. Human geometric calibration uses markers
positions gathered from a static ”T-pose”. Using the Vicon
chord function [31] re-implemented in FIGAROH, joint
center positions were computed from the marker measure-
ments and fitted for static calibration purposes. After human
geometric calibration was performed, inverse kinematics of
a 43 DoF human model was performed. This model follows
the joint axes definition proposed by the International Society
of Biomechanics [32], [33]. The nominal inertial parameters
were based on an AT [2]. For dynamic identification, the
subject was asked to perform several movements such as
squats, or arms and legs rapid flexion/extensions as shown
in Fig. 3.c. Fig. 4 shows a comparison between the measured
external wrench and its estimate when using a model based
on the AT and the identified one. The corresponding averaged
RMSE were 19.47N and 33.22N.m for the model based on
AT and 16.84N and 16.77N.m for the identified model.
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Fig. 4. Human external wrench comparison between measurements (red)
and its estimation using AT model (blue) and the identified model (green).

B. Floating base robots

1) TALOS and TIAGo geometric calibration: Floating
base robots have a large workspace, and the motion of
their base should be monitored. Thus, a SS appears as
a good choice for their geometric calibration [27]. The
experimental setup for the torso-arm chain geometric cali-
bration of TALOS humanoid robot and of TIAGo mobile
collaborative arm can be seen in Fig. 3.a. Two clusters of
three markers attached to the base and to the end-effector
were monitored using a 20 cameras SS (Miqus M3 cameras,
Qualisys). The measurements included synchronized robot

joint configurations and absolute marker coordinates taken
at designed static OEP. FIGAROH then calculated numeri-
cally BP and identified geometric parameters. Using cross
validation postures shown in Fig. 5, when comparing to
the absolute position measurement of the end-effector, the
calibrated models showed an RMSE of 0.3mm for TALOS
torso-arm chain and of 1.5mm for TIAGo arm. It was
14.1mm and 16.9mm for the uncalibrated models of the
TALOS torso-arm chain and of the TIAGo arm, respectively.

Fig. 5. Residual errors of the absolute position of end-effector before and
after calibration of the right arm and torso of TALOS with motion capture.

2) TALOS whole-body calibration using planar con-
straints: Fig. 3.b shows how geometric parameters of the
TALOS humanoid robot can be used using 3-point con-
tacts with a single plane. The TALOS was modeled with
two kinematic chains of 15 DoF from foot to hand on
the same side. Measurements of joint configurations were
recorded for 31 OEP, which were automatically generated
using FIGAROH to maximize the O1 criterion. During cross
validation postures, the RMSE was reduced from 10.4mm to
3.3mm when using the calibrated model.

3) TIAGo torso-arm dynamic identification: This dataset
presents the dynamic identification, including drive chain
parameters of the TIAGo robot and its differential trans-
mission at the wrist level. It is composed of the joint
configurations and motor currents collected during OEM that
were calculated by FIGAROH as described in section II.D.
The identified model was capable of estimating measured
motor currents with only 1% of difference.

C. Serial manipulators

1) Stäubli TX40 dynamic identification: The Stäubli
TX40 is a 6 DoF industrial serial manipulator. Thanks to
Gautier et al. [1], FIGAROH dataset includes the previously
published data used for the dynamic identification of the
TX40. Exciting motions and motor currents are provided.
Using the same input data FIGAROH builds the identi-
fication model, reproduces the data elaboration pipeline,
implements a WLS and finally identifies successfully the
published reference inertial parameters including drive chain
ones. Moreover, the so-called essential parameters [30], [1]
that are a subset of the actually identifiable BP, ie with a



relative standard deviation inferior to 5%, are also retrieved
automatically by FIGAROH.

2) Universal Robots UR10: Eye-in-hand calibration was
performed with a UR10 robot. As shown in Fig. 3.d, a
camera looking at a calibration chess board was located to
the gripper. The generation of OEP and transition motions
between two postures were done thanks to HPP software.
The camera was calibrated before carrying out the calibration
experimentation. The full-set of kinematic parameters was
identified. The absolute position of end-effector was then
estimated with a RMSE of 1.76mm.

V. CONCLUSIONS

FIGAROH is an open-source toolbox for unified geometric
calibration and dynamic identification of robots and humans
which is made accessible to non-experts with state-of-the-
art methods. Besides making modeling and data processing
simple, one of the key assets of FIGAROH is its ability
to automatically generate OEP and OEM. FIGAROH func-
tionalities were demonstrated over several dataset including
serial manipulators and anthropomorphic structures.

Future works will include kinodynamic identification, i.e
the identification of geometric and dynamic parameters in
one integrated procedure, and modelling of non linear flex-
ibilities that have preponderant influence in light weight
collaborative robots.
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