
HAL Id: hal-04238051
https://laas.hal.science/hal-04238051

Submitted on 11 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Partn: A Plugin Implementation of the Activation
Relaxation Technique Nouveau Hijacking a

Minimisation Algorithm
Matic Poberžnik, Miha Gunde, Nicolas Salles, Antoine Jay, Anne Hémeryck,

Nicolas Richard, Normand Mousseau, Layla Martin-Samos

To cite this version:
Matic Poberžnik, Miha Gunde, Nicolas Salles, Antoine Jay, Anne Hémeryck, et al.. Partn: A Plugin
Implementation of the Activation Relaxation Technique Nouveau Hijacking a Minimisation Algorithm.
Computer Physics Communications, In press, �10.2139/ssrn.4360939�. �hal-04238051�

https://laas.hal.science/hal-04238051
https://hal.archives-ouvertes.fr

pARTn: a plugin implementation of the Activation Relaxation Technique nouveau that
takes over the FIRE minimisation algorithm

M. Poberznika,, M. Gundee, N. Sallesa, A. Jayb, A. Hemeryckb, N. Richardc, N. Mousseaud, L. Martin-Samosa

aCNR-IOM/Democritos National Simulation Center, Istituto Officina dei Materiali, c/o SISSA, via Bonomea 265, IT-34136 Trieste, Italy
bLAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

cCEA, DAM, DIF, F-91297 Arpajon, France
dUniversité de Montréal, Canada

eInstitute Rud̄er Bošković, Bijenička 54, 10000 Zagreb, Croatia

Abstract

Nowadays, the interoperability and interfacing of codes and libraries have become crucial aspects of software development and
engineering, and the basis for enabling and simplifying the sharing of methods and tools, both within and among communities. One
of the most important bottlenecks that arises when developing and maintaining an interface of a library with an already existing
software, is to keep it aligned with the development route of the latter. This might include significant changes, such as changes in
the data structures used by the library, which are communicated through the interface.

In this paper, an approach for inserting a new algorithm into existing software is presented, through a minimally invasive interface,
that takes over an already present algorithm, and thus changes its original purpose. The approach is applied to the well-established
Activation-Relaxation Technique nouveau (ARTn) algorithm, that is revisited and re-engineered to bias and take over the FIRE
minimization algorithm, as presently implemented in two community codes for atomistic simulations, namely Quantum ESPRESSO
(PWscf) and LAMMPS. ARTn is a well established single-ended saddle-point search algorithm that allows for the exploration of
potential energy surfaces. The resulting algorithm acts as a plugin, and is distributed in the form of an external library (pARTn).

Keywords: saddle point, potential energy surface, transition state, chemical reaction

Program summary

Program Title: plugin Activation Relaxation Technique nouveau
(pARTn)
CPC Library link to program files: (to be added by Technical Editor)
Developer’s repository link: https://gitlab.com/mammasmias/artn-
plugin
Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions(please choose one): Apache-2.0/GPLv3
Programming language: Modern Fortran and C++

Supplementary material:
Journal reference of previous version:*
Does the new version supersede the previous version?:*
Reasons for the new version:*
Summary of revisions:*
Nature of problem(approx. 50-250 words): original ARTn implemen-
tation was difficult to interface, port and maintain.
Solution method(approx. 50-250 words): full refactoring and re-
engineering into a library, which utilizes and biases a minimization
algorithm already implemented in the engine, to make it behave as
ARTn. The biasing is done by reverse-engineering specific external
conditions that drive the displacement of atoms.
Additional comments including restrictions and unusual features
(approx. 50-250 words):

1. Introduction

Commonly used energy/force (E/F) engines in the field of
atomistic simulations generally implement some integration al-
gorithm (integrator) for solving the equations of motion (such
as Verlet [1]), or for constraining the movement toward energy
minimization (such as FIRE [2] and BFGS [3]). These algo-
rithms are implemented as a series of steps enclosed in a main
loop, which continues as long as an exit criterion is not met,
i.e., Algorithm 1. Each step of the main loop first computes
the instantaneous properties of the current configuration, such
as velocity or force, which are then used to generate the atomic
displacement. If these instantaneous properties are modified,
the resulting atomic displacement will be different. This is typ-
ically exploited for the application of external fields and con-
straints to the system of simulation. The same idea can however
be used with other intentions: by appropriate modification of
the instantaneous properties, a specifically desired atomic dis-
placement can be imposed on the system.

In this line of thought, any algorithm present in a software
could be biased by controlled modifications of the instanta-
neous properties, to the extent where the original purpose of the
algorithm gets effectively overwritten by a different purpose,
and thus the original algorithm gets taken over by another al-
gorithm. The modification of instantaneous properties can be
achieved through the application of external conditions on the
system, and since the functions implementing them are gener-

Preprint submitted to Computer Physics Communications October 11, 2023

ally not invasive to the native E/F engine, biasing and overwrit-
ing an algorithm in such a way is independent of the specific
details of the engine, such as parallelization strategies, or the
handling of charge densities. As a result, an implementation
of an algorithm following this paradigm is easier to port, as
well as maintain and align with respect to upgrades in E/F en-
gine versions. A similar idea has already been implemented by
PLUMED [4] for example, to steer metadynamics.

ARTn (Activation-Relaxation Technique nouveau [5, 6, 7,
8, 9]) is an open-ended saddle point search algorithm used in
many different fields, ranging from materials science to molec-
ular and biological science. Previous ARTn implementations
interacted with E/F engines – such as BigDFT [10], VASP [11],
Quantum ESPRESSO [9] and LAMMPS [12] – via subroutines
within the main ARTn program. This implementation route was
making it very difficult to handle the specifics of each E/F en-
gine within a standardised interface, which means that separate
ARTn versions had to be developed for each of the aforemen-
tioned E/F engines.

In the present work, we apply the biasing paradigm to the
FIRE algorithm [2, 13], to effectively re-purpose it and make it
behave as the ARTn algorithm.

To this end, the ARTn algorithm is rewritten as a library, that
can be used as a plugin for different E/F engines (pARTn).

The present paper is structured as follows. Sections 2 to 5
describe the biasing/re-purposing concept, the mathematical re-
lations, and their application to FIRE and ARTn. Section 6 de-
scribes the implementation details of the pARTn library. Sec-
tion 7 is devoted to APIs/interface routines and their description
for the particular case of biasing and taking over the FIRE rou-
tines in Quantum ESPRESSO [14] and LAMMPS [15]. Sec-
tion 8 provides a brief package description and a quick installa-
tion guide. Finally, sections 9 and 10 describe the input and out-
put parameters and show two working examples, respectively.

Algorithm 1: Generic integrator pseudo-algorithm.
The comment in the line 3 indicates the point of entry
of the re-purposing paradigm.

1 while continue do

2 calculate {q(i)}
3 apply external conditions /* bias */
4 compute ∆R({q(i)}), Eq. (2) /* apply F */
5 update R(i + 1) = R(i) + ∆R, Eq. (1)

6 if exit criterion then
7 exit
8 end
9 end

2. The concept

Integration algorithms are generally written in terms of the
positions R(i), and displacements ∆R. A generic pseudo-
algorithm is shown in Algorithm 1. The atomic positions R(i)

at step i are updated by the application of ∆R, as Eq. (1).

R(i + 1) = R(i) + ∆R (1)

Depending on the specific algorithm, the term ∆R is
some function of the set of instantaneous properties
{q(i)} = {q1(i), q2(i), ... , qn(i)}, e.g. the force F(i), veloc-
ity v(i), or possibly others (charge, polarization, etc), and the
timestep ∆t:

∆R = ∆R({q(i)}) = ∆R(F(i), v(i), ... , ∆t) (2)

A single iteration of the main integration loop consists of two
actions: first the evaluation of the properties {q(i)}, at line 2 of
Algorithm 1, and second the subsequent update of the atomic
positions R(i) to R(i + 1), at line 5 of Algorithm 1, via the ∆R
obtained by the integrator (prescribed by Eq. (2)). The form of
Eq. (2) is specific to the integrator algorithm used, and can be
seen as application of a function F, which returns a displace-
ment ∆R, from a set of given instantaneous properties {q(i)}.

F : {q(i)} → ∆R (3)

In order to bias an algorithm and take it over with another
algorithm, the re-purposing scheme needs at least two compo-
nents. Firstly, its own algorithm which prescribes a displace-
ment ∆Rp, and secondly, a way to constrain and take over the
host algorithm to perform the prescribed displacement ∆Rp in-
stead of ∆R, such that R(i + 1) = R(i) + ∆Rp.

The re-purposing scheme only enters the main loop of the
host algorithm once per iteration step (Algorithm 1 line 3), so
it needs to be written such that each time it is called, it only
prescribes one displacement ∆Rp, which is the displacement
following its own internal algorithm.

The imposition of a prescribed displacement ∆Rp on
the host algorithm is achieved by modifying the properties
{q(i)} → {qmod(i)}, such that the calculation of ∆R({qmod(i)})
in the host algorithm returns ∆Rp. In other words, the
properties {qmod(i)} need to be such that the application of
F (Algorithm 1 line 4) returns the prescribed displacement,
F({qmod(i)}) = ∆Rp. In order to obtain the proper {qmod(i)},
we define a function G, to be called before F, as:

G : ∆Rp → {qmod(i)}, (4)

which returns the set of modified properties {qmod(i)}, given
an input ∆Rp, such that the subsequent F({qmod(i)}) = ∆Rp.
Function G can be seen as an inverse of F, G ∼ F−1.

The function G is applied at the end of the re-purposing
scheme to convert a displacement ∆Rp prescribed by the in-
ternal algorithm into a set of instantaneous properties {qmod(i)},
such that the move performed by the host algorithm (application
of F) corresponds to ∆R({qmod(i)}) = ∆Rp. See also Figure 1
for a schematic representation. The instantaneous properties
{q(i)} can be modified in different ways:

a) trivially, no modification: {qmod(i)} = {q(i)}, the resulting
displacement will be done according to the host integrator
algorithm’s own logic;

2

b) complete overwrite: {qmod(i)} = {qu}, where {qu} are such
that F({qu}) = ∆Rp is a displacement prescribed by the
re-purposing function;

c) partial bias: {qmod(i)} = {qmod({q(i)})}, the modification
of the properties, and thus displacement, depends on the
current "state" of the properties {q(i)}.

The "bias and re-purpose" concept described above achieves
its goal by only modifying the instantaneous properties of the
system. As such, it is robust with respect to changes in the im-
plementation of the host algorithm. By carefully controlling a
series of such manoeuvres, the effect of the host algorithm/in-
tegrator can be completely overwritten by another algorithm,
without requiring extended knowledge on the specific E/F en-
gine implementation details.

3. Biasing the FIRE algorithm

The FIRE (Fast Inertial Relaxation Engine) algorithm [2, 13]
is an efficient relaxation algorithm (minimization of energy),
which is implemented in most of the E/F engines. It uses
the forces and velocities computed from a molecular dynam-
ics integration step, to constrain the update of the atomic posi-
tions and to steer the dynamics of the structure towards a mini-
mum. The molecular dynamics integration can follow different
schemes and in the case of FIRE, the semi-implicit Euler inte-
gration scheme has been shown to be one of the most robust
[13]. Hence, we chose to utilize the FIRE algorithm employing
that integration scheme, and in the following we discuss how
the corresponding implementation is biased and re-purposed.

The atomic positions in the FIRE scheme are updated in each
step with ∆R = veff(i)∆t:

R(i + 1) = R(i) + veff(i)∆t, (5)

where the effective velocities veff(i) are given by the modified
instantaneous velocities ṽ(i), and instantaneous forces F(i), as:

veff(i + 1) = ṽ(i) +
F(i)
m

∆t. (6)

and the ṽ(i) are computed in a mixing scheme of instantaneous
velocities v(i) and forces F(i), such that:

ṽ(i) = (1 − α)v(i) + αF(i)
||v(i)||
||F(i)||

, (7)

where α is a mixing factor. The specificity of FIRE is the use of
a dot product between the forces and velocities P = F ·v, which
determines the behaviour of the timestep ∆t, and the mixing
factor α. If P > 0 for a specified number of sequential steps,
then ∆t is increased, else ∆t is decreased and v are set to zero.
Conversely, if P > 0, then α is decreased by multiplying it with
a factor, else α is reset to its original value α0.

As it can be observed in Eq. (5), the effective ∆R of the FIRE
scheme is given by ∆R = veff(i)∆t, which is computed directly
from the instantaneous force F(i) (in Eq. (6) and (7)), instan-
taneous velocity v(i) (in Eq. (7)), and the mixing factor α (in

Eq. (7)). Additionally, the timestep ∆t is modified by FIRE
itself. In the spirit of the function F from Eq. (3), the FIRE
scheme can be written as

FFIRE : {qFIRE(t)} → ∆R (8)

where {qFIRE(i)} = {F(i), v(i), α,∆t}.
Thus, biasing the FIRE scheme is done by accessing and

modifying these four instantaneous properties through a call to
an external function, before inputting them to FIRE. This can
be seen as the application of function FFIRE with the properties
{qmod(i)} given from the re-purposing function (G).

If we set the function G such that the velocities v(i) = 0
and the mixing factor α = 0, the mixing scheme in Eq. (7)
vanishes, and the function FFIRE depends only on the force F(i),
and timestep ∆t.

FFIRE(F(i),∆t) = ∆R =
F(i)
m

∆t∆t (9)

From the expression of Eq. (9) we can construct the function G,
as follows. Given a prescribed displacement ∆Rp, the modified
instantaneous properties are set by:

G(∆Rp) = {qmod(i)} =

Fmod(i) = ∆Rpm/∆t2

vmod(i) = 0
∆tmod = ∆t
αmod = 0

(10)

The function G from Eq. (10) is executed in the function ap-
plying external conditions on the system, which modifies the
instantaneous properties. The displacement ∆R computed by
FIRE afterwards becomes equal to the prescribed displacement
∆Rp,

FFIRE({qmod(i)}) = ve f f (i)∆t =
Fmod(i)

m
∆t∆t = ∆Rp (11)

and the atomic positions in Eq. (1) are updated as desired, R(i+
1) = R(i) + ∆Rp.

In this way, the FIRE algorithm is successfully biased and
re-purposed by modifying the instantaneous properties, which
are all internal to the main integration algorithm itself, and can
thus be accessed and modified by an external function called
right after their computation.

4. The ARTn algorithm

The ARTn algorithm itself is organised into different stages.
It specifies a series of atomic displacements, or pushes, that
aim to bring the structure from a local minimum to a connected
saddle point of the potential energy surface (PES). Each dis-
placement of the atoms is followed by a (partial) minimization,
constrained into the hyperplane perpendicular to the displace-
ment of the atoms. ARTn can be described as a succession of
macro steps, each containing three internal actions:

1. choose the push direction;

3

2. push the system in that direction;

3. relax in the hyperplane perpendicular to the push direction.

Depending on which point of the PES the system is at, the
push direction can be either: (i) the direction of the eigenvector
corresponding to the lowest eigenvalue of the Hessian matrix or
(ii) a random vector chosen at the beginning of the exploration.
The exploration generally starts with the latter and the switch
to the eigenvector direction happens once the lowest eigenvalue
of the Hessian is negative, or lower than a prescribed threshold.

Each push is followed by relaxations in the perpendicular hy-
perplane. In the basin, this step prevents collisions after succes-
sive pushes, whereas outside it ensures convergence to a saddle
point.

When the structure has converged to a saddle point, which is
characterised by zero forces and a negative lowest eigenvalue, it
is pushed into the +/- directions of the corresponding eigenvec-
tor and allowed to relax without constraints. In this way, ARTn
finds a saddle point and the two minima connecting it. The low-
est eigenvalue, and the corresponding eigenvector of the Hes-
sian matrix, are computed by the Lanczos algorithm [16]. More
details on ARTn can be found in Refs. [5, 9, 17].

4.1. Lanczos applied to the Hessian matrix

The Lanczos diagonalization algorithm [16] is an iterative al-
gorithm that finds the extremum eigenvalues and eigenvectors
of some matrix A, by only knowing the matrix-vector products
A |xi〉, where |xi〉 are vectors generated by the Lanczos algo-
rithm. More complete details on the algorithm can be found in
the literature, see for example Appendix B in Ref. [17], or Sec-
tion IIA in Ref. [18]. Most importantly, each step i of the Lanc-
zos algorithm generates the next Lanczos vector |xi+1〉, which is
computed from the previous Lanczos vectors {|xi〉}, such that:

|xi+1〉 = A |xi〉 − αi |xi〉 − βi−1 |xi−1〉 −

i∑
j=0

〈xi+1|x j〉 |x j〉 (12)

The first term in Eq. (12) is the matrix-vector product A |xi〉,
while all the other terms are computed from the previous Lanc-
zos vectors {|x〉i}, as well as the coefficients αi and βi, which
are computed at each step of the iteration and stored in a spe-
cial tridiagonal matrix. The previous Lanczos vectors, and the
tridiagonal matrix of α and β coefficients, are internal to the
Lanczos procedure.

When the Lanczos algorithm is applied to the diagonalization
of the Hessian matrix (H), the products A |xi〉 can be thought of
as H(R0 + ∆Ri) = −Fi, which can be computed by the E/F
engine, without knowing any elements of the H matrix. Be-
fore entering the first step of the Lanczos procedure (Lanczos
step i = 0), the reference force F0 is calculated for the start-
ing positions R0 and kept in memory. The Lanczos vectors
generated by Eq. (12) are then made to correspond to displace-
ments |xi+1〉 = ∆Ri+1, and the matrix-vector products are then
A |xi+1〉 = H∆Ri+1 = −∆Fi+1. Because every ∆Ri uses the start-
ing positions R0 as the origin, the displacement vector which
we specify is modified by subtracting the current displacement

∆R′i+1 = ∆Ri+1 − ∆Ri, thereby ensuring the structure moves
from (R0 + ∆Ri) to (R0 + ∆Ri+1) in a single step. After the
Lanczos algorithm converges in n steps, the structure needs to
return to the starting position R0, which is achieved by setting
the displacement ∆Rn+1 = −∆Rn.

5. Repurposing FIRE to deliver ARTn

The taking over of the FIRE minimization algorithm by the
ARTn algorithm using the concepts described in Sec. 3 and
Sec. 4 is schematised in Figure 1. The contact point between
the two algorithms is in the call to the function applying the "ex-
ternal conditions". This function performs two actions. First,
it determines the stage of the ARTn algorithm, and computes
the displacement ∆Rp according to ARTn. Second, the dis-
placement ∆Rp is passed to the function G, which converts it
into a set of modified instantaneous properties {qmod(i)}. Af-
ter the call to the "external conditions" function, the properties
{q(i)} = {qmod(i)} are such that the subsequent displacement
performed by the host algorithm FIRE is exactly as the one pre-
scribed by the ARTn algorithm.

Depending on the current stage of the ARTn algorithm, there
are three types of displacements that can be done, which cor-
respond to the three ways that instantaneous properties {q(i)}
might be modified (see the list in Sec. 2). No modification
to {q(i)} from point a) is done when allowing the system to
relax from the identified saddle point. A complete overwrite
{q(i)} = {qu(i)} from point b) is done when the system needs to
be displaced with a specific known ∆Rp, which is the case when
pushing with a given vector, and during the Lanczos iterations.
Partial biasing of {q(i)} from point c) is done when the sys-
tem undergoes the perpendicular relaxation, since, in this case,
{q(i)} are modified by removing only the components parallel
to the push vector.

1 while continue do
2 calculate {q(i)}
3 apply external conditions
4 compute R({q(i)})
5 update R(i + 1) = R(i) + R
6 if exit criterion then
7 | exit
8 end
9 end

Δ
Δ

ARTn
{q(i)}

{qmod(i)}
G(ΔRp)

pARTn

ΔRp

Figure 1: Schematic representation of the interaction between the pARTn li-
brary and the host algorithm. The library receives the calculated properties
{q(i)}, and returns modified properties {qmod(i)} that depend on the current
stage/step of the ARTn saddle point search such that the computed ∆R is equal
to the wanted ∆Rp.

5.1. Achieving specific displacements for ARTn
Corresponding to the three types of displacements in ARTn,

we define three biasing functions, Gspec, Gperp, and Grlx. They
are as follows.

4

For the actions of pushing in a specific direction, and during
the Lanczos iterations, the specific ∆Rp are prescribed by ARTn
and Lanczos algorithms, respectively. We define the biasing
function Gspec(∆Rp), which returns the set {qmod(i)} as:

Gspec(∆Rp) =

Fmod(i) = ∆Rpm/∆t2

vmod(i) = 0
∆tmod = ∆t
αmod = 0

(13)

For the action of relaxation perpendicular to the push direc-
tion, the specific ∆R is a function of the instantaneous proper-
ties along that specific direction. We define Gperp which re-
moves the components of the force and velocity, and leaves
other properties unmodified.

Gperp =

Fmod(i) = F⊥(i)
vmod(i) = v⊥(i)
αmod = α

∆tmod = ∆t

(14)

At each first step of the perpendicular relaxation, we set v(i) = 0
and reset the values α = α0, and ∆t = ∆t0. For all further steps
of the perpendicular relaxation, Gperp is applied.

For the action of normal relaxation, the function Grlx has no
effect on any {q(i)}, except for the first step of the relaxation,
where we reset the values α = α0, and ∆t = ∆t0.

5.2. Algorithm control with flags and counters
The pARTn algorithm is thus composed of three biasing

functions G, as given in Sec. 5.1. In order to control exactly
which part of the ARTn algorithm is executed at each call to
the plugin function, and which of the G functions is used to
bias FIRE, we introduce counters and flags, which specify the
current stage of the ARTn algorithm. For a more precise con-
trol, each stage specified by a logical flag also has one or more
associated counters.

6. Implementation details

The plugin pARTn consists of three main subroutines,
artn(), move_mode(), and clean_artn() (see the three or-
ange blocks in Figure 2). The data received from the host
algorithm enter into artn(), which contains the ARTn algo-
rithm, and produce a displacement vector ∆Rp, in the variable
displ_vec. This displacement vector enters in the move_-
mode() subroutine, where the biasing functions G are imple-
mented, and data that get communicated back to the host algo-
rithm are generated. Finally, the clean_artn() subroutine is
there to cleanly stop the calculation by the engine.

In addition to the three main subroutines, the pARTn li-
brary also consists of two modules. The artn_params mod-
ule, which contains the global variables used by ARTn, such as
flags and counters, to keep track of the step/stage in the saddle
point search, and the units module which contains the units
employed by the different engines.

The rest of this section describes the three main subroutines
from Figure 2 in greater detail.

artn()

check_force()

step = 0 step > 0

setup_artn()

restart()
start_guess() check_force()

linit

lperp

leigen

llanczos

lpush_over

lrelax

lconv

m
o
v
e
_
m
o
d
e
(
F
I
R
E
)

clean_artn()

host algorithm

h
o
s
t

a
l
g
o
r
i
t
h
m

Figure 2: The organization of the three main subroutines of the pARTn library.
The artn() subroutine receives the instantaneous properties from the host,
checks convergence, determines the current stage, generates and communicates
the displacement ∆Rp to the move_mode() subroutine. The latter converts it
into a set of appropriately modified properties, and passes it back to the host.
The clean_artn() subroutine is responsible for stopping the calculation and
resetting the counters/flags.

6.1. The artn() routine
The ARTn algorithm is contained within this subroutine, re-

organized to fit the "bias and re-purpose" paradigm. This means
that the subroutine is designed to be called after each calcu-
lation of the instantaneous properties, made by the host al-
gorithm/engine, and to prescribe the subsequent ARTn step.
The stage of ARTn is thus incremented each time the routine
artn() is entered.

The core of the subroutine is divided into computational
blocks; each of them corresponding to a different stage of the
ARTn algorithm, and associated to a logical flag marked as
lblock, as summarised in Figure 2. Each block can perform
as a maximum number of iterations, nblock as controlled by
an iterator iblock.

The saddle point search is decomposed into four blocks:
linit, lperp, leigen, and llanczos. The linit and
leigen blocks are responsible for displacing the configuration
following either the initial push vector or the eigenvector, re-
spectively. They both produce a specific ∆Rp displacement
vector in accordance to the ARTn algorithm, such that the sub-
sequent configuration is precisely R(i + 1) = R(i) + ∆Rp. The
lperp block controls the relaxation in the hyperplane perpen-
dicular to the push direction, this block does not generate any
displacement vector, displ_vec, which is left to the FIRE re-
laxation scheme, but, rather, reduces the minimization space in
{q(i)} by removing one dimension, see Eq. (14). The llanczos
block controls the computation of the lowest eigenvalue and
eigenvector with the Lanczos algorithm. It produces a specific

5

displacement ∆Rp according to the Lanczos scheme (see Sec-
tion 4.1).

Upon first entering the artn() routine (step = 0, Figure 2
top left), the input parameters are read (setup_artn()), and
the initial displacement either read from a file, or generated on
the fly (start_guess()). If a restart was requested, the restart
file is read and the calculation parameters updated accordingly
(restart()). The appropriate block flags are switched on/off,
according to the updated parameters.

In the subsequent steps (step > 0, Figure 2 top right), the
artn() subroutine first checks whether the current stage has
reached convergence (check_force()), or if the maximum
number of iterations of the current block has been reached.
Depending on the outcome, the block flags linit, lperp,
leigen, and llanczos are switched on/off according to what
should happen next in the ARTn algorithm. When the total
force is lower than the target threshold (i.e. the saddle point
is reached), the saddle configuration is saved. Subsequently,
lpush_over is set to .true. and the corresponding block is
executed, displacing the atoms beyond the saddle point. Fol-
lowing this displacement, a simple relaxation (lrelax) is per-
formed to reach an adjacent minimum. The push_over and
relax blocks are repeated twice, once for each +/- sign of the
push vector to obtain two minima connected to the saddle point.

6.2. The move_mode() routine

The routine move_mode() is responsible for transforming
the displacement vector ∆Rp in variable displ_vec that is gen-
erated in the artn() routine, into appropriately modified data,
{q} → {qmod}, to be sent back to the host algorithm. Currently,
the routine is written specifically for the case of biasing and re-
purposing the FIRE minimization algorithm. Depending on the
stage of the ARTn algorithm, the data {qmod} that are sent from
move_mode() to the host algorithm correspond to one of the
actions described in Sec. 5.1.

The choice of which action must be performed, or which of
the biasing functions G must be applied (Gspec, Gperp, or Grlx),
is made based on the values of the block flags decided in the
artn() routine. The function Gspec (Eq. (13)) is applied when
either of the flags linit, leigen, llanczos, or lpush_over
are turned on. The function Gperp (Eq. (14)) is applied when
the flag lperp is turned on. And the function Grlx, which has
no action, is applied when the flag lrelax is turned on. The
resulting set of modified properties {qmod} is sent back to the
host algorithm.

If an alternative host algorithm to FIRE is to be overwritten
with pARTn, only the move_mode routine needs to be edited, in
accordance with the new host algorithm.

6.3. The clean_artn() routine

This procedure is called when the algorithm has converged
(lconv) or has been interrupted for any reason. It ensures that
all variables/parameters of ARTn are reset, and ready to start a
new saddle point search. All flags except linit are turned off,
and the iterators (iblock) are set to zero.

When performing a series of ARTn searches, the initial
atomic configuration is loaded in the actual engine position ar-
ray at the start of each new ARTn research by default.

7. API and engine-specific interface

Due to the fact that E/F engines can be written in different
programming languages, and because the specifics of the imple-
mentation of the host algorithm can depend on the E/F engine,
an interface specific to the engine is needed.

In general, the artn() subroutine requires the energy/force,
as well as atomic positions from the engine, and it needs to
be able to modify these parameters. It also requires the to-
tal number of atoms, the order of atomic indices – which can
vary among E/F engines, and the information on positional con-
straints specified by the user. The move_mode() subroutine
needs to be able to modify the parameters of the host algorithm,
which in the case of FIRE means having the knowledge of the
initial mixing parameter (α0) and of the initial time step (∆t0).
It also needs to be able to modify α and ∆t on the fly.

Apart from these considerations, it should be noted that en-
gines employ different units. To this end, a units module and
a variable engine_units have been defined, which ensure that
the units are converted to the internal units of the plugin upon
input, and converted back to the units of the engine upon output.
Therefore, to build an interface for the E/F engine of choice, one
needs to add a case for the specific engine and define the unit
conversions in this module.

This section explains how to construct an interface for two
engines: (i) the Quantum ESPRESSO package for electronic
structure calculations, which is based on Density Functional
Theory (DFT) employing a plane wave basis set and is writ-
ten in modern FORTRAN, and (ii) the LAMMPS package for
Molecular Dynamics simulations using empirical interatomic
potentials, which is written in C++. Integration into any other
engine woud follow similar steps.

7.1. Quantum ESPRESSO interface
QE [19] is written in Modern FORTRAN and consists of dif-

ferent packages. The main package is PWscf (executable called
pw.x) which computes the total energy and force of a given
configuration using a Density Functional Theory (DFT) based
self-consistent field (scf) approach. Since several years PWscf
includes an empty subroutine (plugin_ext_forces), which is
called after the energy/force calculation, that enables modifica-
tions of the instantaneous properties.

In order to utilize and re-purpose the integrator algorithm, the
interface subroutine of pARTn (artn_QE) is placed within this
empty QE subroutine (section 8.1), where it modifies the calcu-
lated properties of the current configuration in accordance with
the requirements of the ARTn algorithm. The general structure
of the QE interface subroutine is summarised in Algorithm 3.

QE implements several parallelisation and optimisation
strategies. Since the majority of the computational time is
spent for the calculation of the scf ground-state charge density,
the displacement of atoms (update of atomic positions) is per-
formed only by a single core. Similarly the pARTn routines are

6

Algorithm 3: Algorithm of pARTn interface with
Quantum ESPRESSO

1 SUBROUTINE artn_qe

Input: F, v, R, force_threshold, energy, fire_dt, fire_α,
alat, lattice, nat, type, step, if_pos, atm,
tmp_dir_qe, prefix_qe

Output: F, v, R, epsf_qe,lconv

2 !> Note: Convert QE Parameters
3 box← box* alat
4 R← R* alat
5 order = [1, 2, ..., Nat]

6 !> The artn subroutine outputs ∆Rp

7 CALL artn(F, v, R, box, type, order, ∆Rp, lconv)

8 !> Adjust QE threshold to ARTn one
9 if (epsf_qe , forc_thr) then

10 epsf_qe← forc_thr
11 end

12 !> Note: Unconvert the position
13 R← R/ alat
14 !> Note: Read FIRE Parameters
15 READ(FIREfile,*) Etot, nsteppos, dt_curr, α

16 !> The move_mode subroutine outputs G(∆Rp)
17 CALL move_mode(F, v, R, Etot, nsteppos, dt_curr, α ,

∆Rp)

18 if (lconv) then
19 CALL clean_artn()
20 end
21 !> Note: Write FIRE parameters
22 WRITE(FIREfile,*) Etot, nsteppos, dt_curr, α

meant to be called by a single mpi instance, i.e., pARTn rou-
tines do not contain any mpi/openmp instruction. The internal
units of QE are atomic units (Ry, bohr, a.u.t.). However, the
atomic positions and lattice parameters are internally stored in
atomic units scaled by a lattice parameter (alat). Therefore
the first step of the artn_QE() interface subroutine is to con-
vert the positions and lattice parameters back to atomic units,
and define the order of atomic indexes that follows the order in
the arrays, see Algorithm 3, lines 3, 4, and 5. After this pre-
processing, all parameters are given to the artn() subroutine
(Algorithm 3 line 7) which generates the displacement ∆Rp ac-
cording to ARTn algorithm. The displacement is then used as
input for the move_mode() subroutine (Algorithm 3 line 17)
which computes G(∆Rp) = {qmod(i)} for the current step, as de-
scribed in Section 5.1. The force threshold of QE, epsf_qe,
is modified to control the convergence of host algorithm. QE
keeps track of the FIRE parameters by writing them to a file at
each step, so that file is read before calling the move_mode()
subroutine, and the modifications are written to it afterwards
(Algorithm 3 lines 15 and 22).

Finally, the clean_artn() subroutine is called (Algorithm 3
line 19) when the lconv flag is activated by the artn() subrou-

tine, which resets all the parameters of the saddle point search
to their original values.

7.2. LAMMPS interface

LAMMPS (Large-scale Atomic/Molecular Massively Paral-
lel Simulator) [15] is a package that performs molecular dy-
namics using empirical interatomic potentials and is written in
C++. It contains an extensive library of different empirical
interatomic potentials and implements a variety of minimiza-
tion algorithms, including FIRE. Additionally it can easily be
customized through to the activation of classes under the label
Fix, which enable changing the rules of the simulated system,
or to add some external constraints. For instance the thermo-
dynamic ensemble of molecular dynamic can be changed by
employing child classes of Fix class (Class FixNVE, Class
FixNPT, ...). A Fix can be inserted in many places in the code,

Algorithm 4: Header declaration of the FixARTn class
in LAMMPS
class FixARTn : public Fix {

public:
FixARTn(class LAMMPS *, int, char **);
virtual ~FixARTn();
int setmask();
virtual void init();
void min_setup(int);
void min_post_force(int);
void post_run();
Protected:...

};

including just before the integration step. The pARTn interface
for LAMMPS is a child class of Fix, designed to be placed in
the “post force” position (FixARTn::setmask()). The FIRE
algorithm in LAMMPS is a child class of the min class.

The class FixARTn (see Algorithm 4 for the header
declaration) consists of three routines, (i) the routine
FixARTn::min_setup(), which is used to initialize the FIRE
parameters, and to modify the energy and force tolerance of the
minimization as required by the ARTn algorithm. (ii) the main
routine FixARTn::min_post_force(), in which the calls to
the artn_() and move_mode_() subroutines are placed, see
Algorithm 5; and (iii) the routine FixARTn::post_run(),
which is called after convergence of the min procedure, and
executes clean_artn_();

The routine FixARTn::min_post_force() is called each
time the energy and force are computed by the routine
MIN::energy_force(). The particularity of the implemen-
tation of the FIRE algorithm in LAMMPS [13] is that the
MIN::energy_force() can be called twice for one atomic po-
sition integration iteration, depending on the sign of the dot
product of the force and the velocity (parameter P = V.F of
FIRE). Due to this setup, the ARTn algorithm cannot be in-
cremented each time the MIN::energy_force() routine is
called. To manage and anticipate this behaviour, the scalar

7

Algorithm 5: Change the force post force calculation

1 void FixARTn::min_post_force(int*)

Input: vflag

2 !> Local reorder of Arrays
3 order_arrays(F, v, R, order, type);

4 Compute V.F ;
5 if (V.F ≤ 0 && step > 1 && nextblank) then
6 F← Fprev ;
7 nextblank = false;
8 return;

9 !> Note: Prepare Arrays
10 Collect_array(F, v, R, type, order);

11 artn_(F, v, R, box, type, order, DISP, ∆Rp, lconv) ;

12 move_mode_(F, v, R, Etot, nsteppos, dt_curr, α , ∆Rp);

13 !> Spread the Arrays
14 Spread_Arrays(F, v, R, type, order);

15 if (lconv) then
16 !> Note: initial LAMMPS force threshold

convergence
17 return;

18 !> Change FIRE parameters
19 if (DISP == ’perp’ && iperp == 1) OR
20 (DISP=’relx’ && irelx == 1) OR
21 (DISP!=’perp’ && DISP!=’relx’) then
22 min.modify_params();
23 min.init();
24 end

25 Compute V.F;
26 if (V.F ≤ 0) then
27 nextblank = true;
28 if (step == 0) then
29 nextblank = false;
30 Fprev ← F;
31 return

product P is explicitly calculated, the modified forces vector
F returned by ARTn is saved from one iteration/call to another
in Fprev, and re-loaded into F when P is negative. So at the
beginning of the routine FixARTn::min_post_force(), the
parameter P is explicitly computed (Algorithm 5 line 4), and
if P is negative, F = Fprev and returned to the calling func-
tion, otherwise it enters in the ARTn procedure. At the end of
the routine FixARTn::min_post_force() the returned force
is saved, Fprev = F. To work with both serial and parallel ap-
plications, the algorithm starts by collecting the data distributed
among processors, due to MPI paradigm, in arrays (Collect_-
array()), as well as the internal order of atoms in LAMMPS.
The order of atoms in LAMMPS arrays can change due to the
distribution of data over the processors in parallel execution,
however the pARTn library is executed serially. The forces
and velocities of all atoms, along with the order of indexes,

are collected and given to artn_(), followed by move_mode_-
(). Afterwards, the new vectors of force and velocity are
spread through all the processors (Spread_arrays()). If con-
vergence is reached (lconv) then the interface returns to the
calling function. Otherwise the FIRE parameters are updated
according to the specific step of ARTn described by variable
DISP.

7.3. Summary for the building of an interface

The two presented interface examples showcase the organ-
isation of calls to the three main routines of pARTn, i.e.,
artn(), move_mode(), and clean_artn(). In general, an
interface should contain a step in which the arrays that get
passed to artn() and move_mode() are organised in accor-
dance with their requirements. Originally these arrays can be
in any engine-specific format, which can be due to the distri-
bution of data between processors in MPI paradigm, or other
specific engine data management. After these arrays are used
by pARTn, an additional step is needed, where they are con-
verted back to the format required by the engine. A call to the
routine clean_artn() at the end ensures that the saddle point
search is stopped correctly, and the ARTn variables, flags, and
counters are reset for a new search.

8. Package description and documentation

The pARTn library package contains the following directo-
ries and building files:

• src/ (folder): containing the source code of the library;
• Files_LAMMPS/ (folder): containing the files and scripts

to interface ARTn with LAMMPS;
• Files_QE/ (folder): containing the files and script to in-

terface ARTn with Quantum ESPRESSO;
• examples/ (folder): examples of saddle point searches

using QE and LAMMPS;
• environment_variables (file): File defining the envi-

ronmental variables;
• Makefile (file): Contains compilation instructions using

the make command;
• README.md (file): Contain a description and compilation

instructions for both interfaces.
• TERMS_OF_USE (file)
• Textual copy of the License

The online documentation with further details is avail-
able at the link: https://mammasmias.gitlab.io/
artn-plugin/.

8.1. Quick Installation guide

8.1.1. Compile pARTn
The ARTn-plugin-v1.0.0.tar.gz package can be obtained ei-

ther from the journal repository, or from the pARTn git reposi-
tory1. To compile pARTn, specific variables must be configured

1https://gitlab.com/mammasmias/artn-plugin/-/releases

8

https://mammasmias.gitlab.io/artn-plugin/
https://mammasmias.gitlab.io/artn-plugin/

in the environment_variables file. These variables include
the names of the compilers (F90, C, and C++ compilers defined
in F90, CC, and CXX, respectively), the corresponding run com-
mand (PARA_PREFIX) if required, the paths to the E/F engine(s)
(Quantum-ESPRESSO and/or LAMMPS main directory), and
the BLAS library path. It is essential to use the same compiler
that was used to compile the engine, due to the shared library
interface between the engine and pARTn library. The main
pARTn directory contains a Makefile, and all available make
options can be displayed by typing the appropriate command.

make [help]

with or without the argument help.

8.1.2. pARTn for Quantum ESPRESSO
In the following, a quick Quantum ESPRESSO 7.0 instal-

lation guide is provided, followed by instructions on how to
patch QE with pARTn. For more specific QE installation
instructions, please refer to the QE documentation. Down-
load Quantum ESPRESSO 7.0 from the QE web site (www.
quantum-espresso.org). Untar and unzip. In the Quantum
ESPRESSO main directory type:

./configure
make pw

In the pARTn main directory the command

make lib

will compile libpart.a, which is the library needed for the
QE/pARTn interface.

make patch-qe

will patch and recompile Quantum ESPRESSO with the
libpart.a dependency.

A calculation invoking pARTn can be run by using the flag
-partn as argument of pw.x:

mpirun -np N pw.x -partn -inp input.qe

Note that patches have been tested ONLY for Quantum
ESPRESSO 7.0, which is the first version implementing FIRE.
For patching pARTn on other QE versions, please contact us.

8.1.3. QE input specification
For a proper execution of pARTn within QE, three vari-

ables must be specified in the QE input file, namely: in the
CONTROL namelist, the calculation type must be specified as
calculation = "relax", and the use of symmetries dis-
abled nosym = .true., and in the IONS namelist, the dynam-
ics must be specified as ion_dynamics="fire".

8.1.4. pARTn for LAMMPS
In the following a quick LAMMPS installation guide is de-

scribed, followed by instructions on how to compile pARTn
as a shared library, which is needed in order to behave as a
LAMMPS plugin. For more specific LAMMPS installation in-
structions please refer to the LAMMPS documentation.

First a LAMMPS 23 june 2022 or a more recent version
needs to be downloaded from the official LAMMPS web-
site (www.lammps.org). Untar and unzip. Before compiling
LAMMPS, the PLUGIN package needs to be activated. In the
directory LAMMPS/src/, type:

make yes-plugin

then LAMMPS compiled in the preferred way, using make,
or CMake, more info: https://docs.lammps.org/Build.
html. For a standard X86 linux, typing

make mode=shared serial (or mpi)

from the src directory should work.
The LAMMPS/pARTn interface uses the shared library

libartn.so, that is built by the command

make sharelib

from the main pARTn directory.
Note that the compiler (CC or CXX) defined in the file

environment_variables should be the same as the one used
to compile LAMMPS. As stated earlier, the PLUGIN package of
LAMMPS needs to be activated (make yes-plugin), which is
available in LAMMPS since the version stable_23Jun2022.

8.1.5. LAMMPS input specification
In the LAMMPS input script, the pARTn library passes

through the class plugin. The fix artn can be used only
after loading the dynamic library libartn.so, as for example:

plugin load /path/to/pARTn/libartn.so
fix fix_ID all artn
min_style fire
minimize etol ftol maxiter maxeval

The fix artn must also be associated with the algorithm FIRE
that is defined by the min_style command.

8.1.6. delete_atoms and order in LAMMPS
It must be noted that the order array of atomic indexes

which enter pARTn must be contiguous, or more precisely, the
maximal atomic index must correspond to the size of the ar-
ray of the positions. Attention when using the delete_atoms
function of LAMMPS – the keyword compress yes should
also be used.

9. Input and Output

9.1. I/O Format

Along with the regular input/output file(s) from the E/F en-
gine, pARTn has its own human-readable input and output

9

www.quantum-espresso.org
www.quantum-espresso.org
www.lammps.org
https://docs.lammps.org/Build.html
https://docs.lammps.org/Build.html

files, artn.in, artn.out, and files containing the found sad-
dle/minima configurations.

The pARTn input file artn.in is formatted as a Fortran
NAMELIST, containing the input parameters of ARTn. The
pARTn output file artn.out contains precise data on the
progress of the current saddle point search. The files containing
found saddle/minima configurations are text files written in two
possible formats, xsf or xyz, specified by the input variable
struc_format_out. The filenames of found configurations
are printed at the end of each ARTn research in the output file
artn.out. In order to not overwrite any of the configuration
files during an extensive exploration, counters are used as part
of the configuration filenames, with prefixes min or sad, de-
pending on whether the configuration has been found as a min-
imum, or saddle. For example the filename sad0013 indicates
the configuration written in the file is a saddle point number 13.

9.2. Input description
The pARTn input file ’artn.in’ is used to define/modify

the ARTn variables, which are presented in the Table 1. This file
is read in the initialization step of the artn() routine, specifi-
cally by the subroutine setup_artn().

The parameters controlling the general behaviour of pARTn
are verbose, engine_units, lrestart, struc_format_-
out, and converge_property. The verbosity of the output
is controlled by either value verbose={0,1,2} , where 0 is
the least verbose. The units of the E/F engine are specified
through engine_units, for instance engine_units=’qe’
when QE is used. The logical flag lrestart=.true. can
be set when a restart from a previous calculation is desired.
There are two possibilities for setting up the convergence
criteria, converge_property=’maxval’ or converge_-
property=’norm’, which decides whether the convergence
value is compared to the maximum value or to the total norm of
the property being checked for convergence (force).

Each block of the ARTn algorithm can be customised to
some extent, by modification of the relevant parameters in the
input file.

9.2.1. Controlling the initial push
The initial push vector can be customised with the combina-

tion of five parameters: push_mode, push_ids, add_const,
push_step_size, and dist_thr. The parameter push_mode
specifies the way to setup the initial push vector, and it has pos-
sible values all, list, rad, or file. In the case push_-
mode=’all’, the initial push vector is generated containing
a push on all the atoms present in the system; when push_-
mode=’list’ it is generated only for a list of atoms, which
needs to be provided as push_ids=id1,id2, ... , where
id# are the indices of atoms where the push vector shall be
nonzero.Doctor In order to define a preferential direction for
the initial random push of the atoms, the parameter add_const
can be used, for example the command add_const(:,id1)
= 1.0, 0.5, -1.0, 30.0 will constrain the push vector on
the atom id1 to be generated within a circular cone with
the axis in the (1.0, 0.5,−1.0) direction, and the angle 30 de-
grees from its apex, where the apex is the position of the

atom. The push_mode=’rad’ is used when a group of atoms
within a radius dist_thr of each atom specified in push_-
ids should have a nonzero push vector. When the initial push
vector should be read from a file, the push_mode=’file’ is
used, with the filename of the push vector provided in push_-
guess=filename.xyz specified. The norm of the initial push
vector is regulated by the push_step_size parameter, except
for when reading it from a file (push_mode=’file’) where the
vector is used as-is. The format of the xyz file is explained in
Appendix A.

9.2.2. Controlling the number of pushes before calling Lanczos
The evaluation of the lowest eigenvalue with the Lanczos

procedure can consume a non-negligible portion of the com-
putational time, due to many force computations, whereas it is
sometimes not needed. This is typically the case in the start-
ing basin, where the lowest eigenvalue is evidently positive. To
avoid force calculations in that case, it is possible to set the in-
teger variable ninit, which specifies the minimal number of
pushes to be done with the initial push vector, without call-
ing Lanczos. When the number of pushes exceeds ninit, the
Lanczos procedure is called for the first time. During the first
ninit steps, ARTn is thus effectively blind to the lowest eigen-
value and the corresponding eigenvector.

It is also possible to set ninit=0, in which case ARTn will
directly enter the Lanczos scheme from the start, and evaluate
the pushing direction based on the obtained eigenvalue. This is
useful when the starting structure is already close to a saddle
configuration, where the lowest eigenvalue is very likely nega-
tive, and the structure only needs to be refined to a saddle.

9.2.3. Controlling the Lanczos algorithm
For controlling the Lanczos diagonalisation scheme, param-

eters lanczos_disp, lanczos_max_size, and lanczos_-
eval_conv_thr are used. The lanczos_disp controls the
norm of the displacement ∆Ri prescribed by each Lanczos vec-
tor, to compute ∆Fi in each iteration step. The lanczos_-
max_size prescribes the maximum number of iterations of the
Lanczos scheme, which is also the maximal size of the tridi-
agonal matrix of αi and βi coefficients getting diagonalized at
each iteration. The lanczos_eval_conv_thr is the conver-
gence threshold on the eigenvalue λi obtained at each Lanczos
iteration i. The convergence criterion is:∣∣∣∣∣λi − λi−1

λi−1

∣∣∣∣∣ ≤ lanczos_eval_conv_thr (15)

Once λi is converged, the Lanczos scheme exits, or alternatively
when the maximal number of iterations i =lanczos_max_-
size is reached. For the first ARTn step where Lanczos scheme
is called, the starting Lanczos vector is random. Alternatively, it
can be read from a file specified by eigenvec_guess, written
in the xyz format, i.e. Appendix A, with atomic types replaced
with atomic indexes. For the subsequent ARTn steps, the eigen-
vector calculated in the previous ARTn step is reused as the first
vector for the current Lanczos scheme.

10

9.2.4. Controlling the eigenvector push
Once the eigenvalue obtained is lower than a prescribed

threshold eigval_thr, the push vector is overwritten by the
corresponding eigenvector. The maximal size of each push with
the eigenvector is regulated with eigen_step_size. In order
to make a smooth transition from pushing with the initial push
vector to pushing with the eigenvector, the parameter nsmooth
can be used, for instance nsmooth=3 indicates the transition
will be done in 3 steps, where during the transition the push vec-
tor is linearly interpolated between the initial push and eigen-
vector (see Ref [9]), the default value is however nsmooth=0.

It can happen during the saddle search, that despite all efforts,
a negative eigenvalue becomes positive, without ever passing a
saddle, and in a region which is far from a minimum. In this
case the direction of the eigenvector cannot be trusted anymore
to be pointing in the direction of a saddle. The default action
is thus to abort the current search, and start from the begin-
ning. An attempt to mitigate the behaviour in that scenario is
however to re-set the initial Lanczos vector to a random vector,
and attempt to recompute the true eigenvector. The number of
times this resetting is allowed to happen during a single search
is controlled by the variable nnewchance, which is by default
nnewchance=0.

9.2.5. Controlling the number of steps in the perpendicular re-
laxation

To avoid falling back to the initial minimum and to save
some unnecessary computational effort, it is recommended to
control the number of perpendicular relaxation steps for each
ARTn macro step. These numbers are set by the array nperp_-
limitation, for which the default values are (4, 8, 12, 16,−1).
If the structure is still in the basin – lowest eigenvalue is posi-
tive or above the corresponding threshold, then the number of
perpendicular relaxation steps is given by the first number in
the nperp_limitation array. Once the structure is out of the
basin – lowest eigenvalue is negative or below threshold, the
number of perpendicular relaxation steps is gradually increased
in each ARTn macro step, as prescribed by the sequence given
by the nperp_limitation array. In the case of the default
values, the sequence would be: 8 perpendicular relaxations af-
ter the first eigenvector push, 12 after the second, 16 after the
third. The number of entries in the array is free, thus adding
more entries to the sequence is possible. The last entry of the
nperp_limitation array indicates the number of relaxation
steps to be done when the sequence runs out. With the value −1,
the code will perform perpendicular relaxations until the per-
pendicular component of the force is lower in magnitude than
the parallel component.

For fixing the number of perpendicular relaxation steps while
the structure is still in the basin, the input variable nperp can
also be used. If set, the value of nperp will be pre-pended to
the nperp_limitation array.

9.2.6. ARTn force threshold
The forces are assumed to be a 3N vector in which N is the

number of atoms. The convergence of forces is not tested while

the eigenvalue is positive (structure is still in basin). It starts to
get tested once the lowest eigenvalue becomes negative, during
the perpendicular relaxation (possible convergence to the sad-
dle), and during the regular relaxation to the adjacent minima,
following the criterion prescribed by the input variable forc_-
thr. The configuration has converged to either a saddle point,
or a minimum, when the sum of the parallel and perpendicular
components of all atomic forces is lower than forc_thr.

The convergence of forces is tested by computing the abso-
lute size of the forces vector, and comparing it to the thresh-
old forc_thr. The absolute size of the forces vector can be
computed in two ways, either as maximal absolute element of
the vector, or as Cartesian 2-norm of the vector. The choice be-
tween the two is prescribed by setting the variable converge_-
property=’maxval’ or ’norm’.

The convergence criterion forc_thr can be very system-
dependent, as well as E/F engine-dependent, and it should
therefore always be tuned accordingly.

9.2.7. Final push, move to next minimum
Once a saddle point is reached, the default ARTn behaviour

also involves the final push and relaxation to the two adjacent
minima. This is controlled by the logical flag lpush_final,
which when set to .false., will signal ARTn to stop once a
saddle point has been found, and reset the atomic positions to
the initial configuration. On the other hand, if lpush_final
= .true., the algorithm will use the eigenvector obtained at
saddle to push the configuration to the +/- directions, and then
allowed to relax. The size of this final push is regulated through
push_over parameter.

Once the two minima are obtained, it is possible to set
the atomic positions to the adjacent local minimum, which is
achieved by setting the flag lmove_nextmin=.true.. As such
the subsequent ARTn exploration starts from the new minimum
configuration, otherwise the atomic positions are reset to the
initial configuration.

9.3. Output summary/or Output description
Along with the regular E/F engine output, the pARTn calcu-

lation produces another output file, named ’artn.out’. This
file contains a summary of input variables in the header, and
information about the current ARTn search. The output quanti-
ties are given in the units defined as engine units, specified by
the engine_units variable. The quantities written in output at
the most verbose level are, in respective order:

• istep: Iteration step of ARTn;

• ARTn_step: Computation block;

• Etot: Energy difference from the initial configuration;

• init/eign/perp/lanc/relx: Iterator "iblock" for each
computational block;

• Ftot Fperp Fpara: The value of total force and its per-
pendicular and parallel components;

• eigval: The minimum eigenvalue computed by lanczos;

11

• delr: The total displacement of the configuration from the
initial configuration;

• npart: Number of particles moved from the initial con-
figuration;

• evalf: Number of force evaluations;

• a1: scalar product between the current and the previous
push direction.

A brief report is written at the convergence to the saddle point,
indicating the energy difference of the saddle with respect to
the initial configuration, and the filename in which the saddle
configuration is saved. A similar report is written at the conver-
gence to minima from the saddle point. At the end of the search,
a debriefing line is written, which summarises the search.

In addition to artn.out, the files containing found config-
urations are generated. These files are written in the format
requested (struc_format_out=’xsf’, or ’xyz’), and con-
tain information on the number of atoms, lattice vectors, total
energy, atomic types, atomic positions, and the forces. The file-
names produced during each ARTn search are written at the end
of the output artn.out.

At the lowest level of verbosity verbose = 0, only the con-
figuration filenames are printed in the output.

10. Examples

The repository includes several examples (in the directory
examples), employing both currently interfaced E/F engines.
The examples with QE as the E/F engine are based on the
ones presented in the previous ARTn ab initio implementation
[9, 17]. The examples with LAMMPS as a E/F engine are taken
from OptBench [20] datasets, or from the former ARTn repos-
itory2, or have been designed for the purpose of pARTn. In the
following we describe two examples in detail, one for each in-
terface: the diffusion of an Al adatom on the Al(100) surface
with QE, and a search for saddle point of a Pt heptamer island
on Pt(111) surface with LAMMPS. To run the examples it is
first necessary to have a compiled version of the codes.

10.1. QE: Diffusion of an Al adatom on the Al(100) surface

This example is designed to demonstrate a constrained sad-
dle search with the pARTn plugin by employing QE as the E/F
engine. The instructions to compile and patch QE with pARTn
can be found in sections 8.1.1 and 8.1.2.

The example can be found in the
/examples/Alad.Al100.QE/ folder. The initial struc-
ture is a relaxed configuration of an Al adatom adsorbed
in a hollow site in a (5×5) supercell of a 6 layer Al(100)
slab. The two bottom layers of the Al(100) are constrained
to their bulk positions, whereas all other layers are allowed
to relax. The calculation is performed at the PBE level of
theory, employing a plane wave basis set with a 35 Ry cutoff

2https://normandmousseau.com/ART-nouveau.html

[111]
−

[1
11
]

ho
pp

ing

saddle point saddle point

initial configuration

exchange

Eact = 0.54 eV

[100]

initial push initial push

Eact = 0.38 eV

Figure 3: The initial configuration and the two initial displacements that lead
to the identification of the the saddle points corresponding to the hopping and
exchange mechanism for the diffusion of the Al adatom on the Al(100) surface.
The topviews of the saddle point configurations are also shown, the calculated
activation energies (Eact) are 0.54 eV for hopping and 0.38 eV for exchange.

for the wavefunctions (280 Ry for the charge-density) in
combination with an ultrasoft pseudopotential for Al (file
Al.pbe-n-rrkjus_psl.0.1.UPF3). The Brillouin zone
is sampled only at the Gamma point. The QE input file
(artn.Al-hollow.Al100-5x5-6l.in is modified in order
to work with the pARTn plugin, the key modifications being
to set calculation = ’relax’, nosym = .true., and
ion_dynamics = ’fire’ in the appropriate namelists. A
shell script (run_example.sh) is provided that launches the
example automatically.

The aim of the example is to calculate the energy barrier as-
sociated to two different mechanisms for the diffusion of an Al
adatom to an adjacent hollow site. The first mechanism (hop-
ping) involves only the displacement of the Al adatom from one
hollow site to another via the bridge site. The second mecha-
nism (exchange) involves the adatom and its nearest neighbour,
where the adatom moves to the positions of its nearest neigh-
bour and the nearest neighbour is displaced to the adjacent hol-
low site. This is a well known example and for more details on
different mechanisms please see Refs. [21, 22].

Therefore, two constrained saddle searches (as shown in Fig-
ure 3) are performed with the pARTn plugin. In order to con-
strain the initial displacement to a specific subset of atoms we
set push_mode = ’list’ in artn.in. For the hopping mech-
anism the initial displacement is placed only on the adatom
(atomic index 1) by setting push_ids = 1 and the displace-
ment is constrained to the [100] direction, by specifying add_-
const(1) = 1.0, 0.0, 0.0, 0.0. All other parameters
retain their default values. On the other hand, for the ex-
change mechanism, the adatom (atomic index 1) and one if
its nearest neighbours are displaced (atomic index 14), by set-

3http://pseudopotentials.quantum-espresso.org/upf_files/
Al.pbe-nl-rrkjus_psl.1.0.0.UPF

12

ting push_ids=1,14, the displacement of the adatom is done
in the [111] direction (towards its nearest neighbour), and the
nearest neighbour is displaced in the [111] direction (towards a
hollow site). Therefore, the constraints are specified as add_-
const(:,1) = 1.0,1.0,-1.0, 0.0 for the adatom, and
add_const(:,14) = 1.0, 1.0, 1.0, 0.0 for the near-
est neighbour. Additionally, the eigenvalue of the characteristic
eigenvector is above the default eigval_thr, therefore the lat-
ter is set to eigval_thr = -0.005 for this calculation. Fol-
lowing this setup, the two saddle points are reliably identified.
Note however that the calculations for this example are com-
putationally quite demanding and should be run by using the
parallelization capabilities of QE, i.e., by using 16 cores (Intel-
Xeon W-2295 CPU 3.00GHz) a saddle search consumes about
5 hours of wall time, mainly due to the force calculation. The
results of this example are two identified saddle points, one for
the exchange mechanism of Al adatom diffusion, with a barrier
of 0.38 eV and one for the hopping mechanism, with a barrier
of 0.54 eV (see Fig. 3). The files generated in a succesfull run
are available in the reference.d folder.

10.2. LAMMPS: Pt(111) surface heptamer island
This example shows the basic use of the pARTn plugin

with the LAMMPS E/F engine. It can be found in the
folder /example/Pt111_lammps/. The instructions to com-
pile pARTn as a LAMMPS plugin can be found in sections
8.1.1 and 8.1.4.

The structure is a Pt(111) surface with a heptamer island of
adatoms on top, which is in an energetic minimum, see Fig-
ure 4 left. It is taken from the OptBench database [20], from
the section of saddle search benchmark. The interatomic poten-
tial used is the Morse potential, with D = 0.7102, α = 1.6047,
and r0 = 2.897.

Figure 4: Left: side view of the Pt(111) heptamer structure. Top right: top view
of the heptamer island and the first layer of atoms underneath, with the initial
push vector marked in blue arrows. Bottom right: the structure of the saddle
point found with the given push. The atomic bonds are drawn only between the
heptamer island atoms for clarity.

The example is launched in a similar way as any other

LAMMPS calculation using the FIRE minimization. In order to
specify the pARTn calculation, the plugin must be loaded and
invoked through the fix as explained in section 8.1.5. There is a
maximum size for the displacement step in the FIRE implemen-
tation in LAMMPS (variable dmax), which can be modified by
adding it as parameter when invoking the fix, e.g.: "fix fix_-
ID all artn dmax 3.0". All other parameters of FIRE can
be edited in the same fashion.

To communicate the units of the E/F engine to pARTn,
the command engine_units=’lammps/metal’ is specified
in the artn.in input file for pARTn. Note that all parame-
ters given in this input are now relative to the specified units.
The condition for signalling a converged saddle point for this
example is that the norm of the total force is below 10−3

eV/Å, which is specified with the commands converge_-
property=’norm’, and forc_thr=0.001. The parameters
for computation of the eigenvalues and eigenvectors are as
follows. The displacement size lanczos_disp=1e-4 for the
Lanczos vectors, the maximal number of iterations lanczos_-
max_size=10, and the threshold of convergence of the eigen-
value lanczos_eval_conv_thr=1e-2, i.e. section 9.2.3. The
threshold for the eigenvalue is eigval_thr=-0.02. In or-
der to smooth the transition from pushing with the initial push
vector, to pushing with the found eigenvector, the parameter
nsmooth=2 is used, which signals the transition is done in 2
steps.

The main feature of this example is to read the initial push
from a file for the 7 atoms of the cluster, and use it to find
a saddle point. This is done by the input commands push_-
mode=’file’ followed by push_guess=’ini_push.xyz’,
which specifies the filename to read from. The format of the
file is explained in Appendix A. The given initial push vector
of this example is shown in Figure 4 top right in blue arrows,
resized by factor 3 for better visibility. This vector is used to
push the structure ninit=1 times before computing the lowest
eigenvalue for the first time.

With the given input parameters and the push vector, the re-
sult should be a saddle point with the structure as shown on the
bottom right of Figure 4, with the energy barrier of 1.47 eV.
Notice that the atom at the center of the hexagon had some dis-
placement prescribed by the initial push vector, but in the saddle
point this atom is not displaced much from its minimum posi-
tion. This indicates that the initial push vector does not need to
be extremely precise to find a saddle.

In the Supplementary Materials of this article, a self-
contained python notebook is available (.ipynb file), which
downloads LAMMPS and pARTn, compiles both, and launches
the Pt(111) example within a python environment.

11. Conclusion

In the present work we describe a paradigm to bias and re-
purpose integrator algorithms already present in E/F engines,
and overwrite them with a different algorithm, in the context
of atomistic simulations. This paradigm works by modifying
the instantaneous properties of the system, which are accessed
and modified via the function designed to apply the external

13

conditions on a system. Since these functions are generally
not invasive, biasing and taking over an algorithm in this way
is independent of the specific details of the native E/F engine.
This paradigm results in a plugin-algorithm which is easier to
port, maintain, and align with respect to the upgrades in the
E/F engines. As a proof of concept, we present a complete re-
factoring of the ARTn algorithm, into a plugin library (pARTn),
in line with the hijacker "bias and re-purpose" paradigm. We
show its porting and application to Quantum ESPRESSO [14]
and LAMMPS [15]. The pARTn library is a double licensed
Apache-2.0/GPLv3 and can be downloaded from git repository
4.

ACKNOWLEDGEMENTS

N.M.’s work is supported in part by a grant from the Nat-
ural Sciences and Engineering Research Council of Canada.
This work was performed using HPC resources from CALMIP
(Grant P1418). M.P. M.G., N.S., A.J., A.H., N.R., N.M.,
L.M.S. are active members of the multiscale and multimodel
approach for materials in applied science consortium (MAM-
MASMIAS consortium) and acknowledge the efforts of the
consortium in fostering scientific collaboration.

Appendix A. Guess input vector format

The vector is given in the standard xyz format, where the
first line is the number of atoms in the list, second line is empty
(comment), and the list of atoms starts at the third line. The
format of the list is flexible. The first argument of each line
must be the atom index. If only the atom index is given then
the displacement for that atom will be random, otherwise three
numbers must be given following the atomic index, which rep-
resent the coordinates of the push for that atom. An example
of the push init file is given for the 7 atoms of the LAMMPS
example from Sec. 10.2.

7

1 -7.58E-003 6.22E-002 -2.90E-002
2 5.44E-002 -6.24E-002 -2.90E-002
3 5.20E-002 -5.09E-002 -3.32E-002
4 5.92E-002 -6.22E-002 -4.53E-002
5 -2.61E-002 -1.24E-002 3.77E-002
6 -5.06E-002 -4.33E-002 -1.31E-002
7 4.71E-002 -3.91E-002 3.19E-002

Note that upon reading the push vector from a file, it is used
as-is, without any rescaling or other modification, thus it needs
to be given in units of ARTn, which is in Bohr radius.

References

[1] L. Verlet, Phys. Rev. 159, 98 (1967).

4https://gitlab.com/mammasmias/artn-plugin

[2] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch, Phys.
Rev. Lett. 97, 170201 (2006).

[3] R. Fletcher, Conjugate direction methods, in Practical Methods of
Optimization (John Wiley & Sons, Ltd, 2000) Chap. 4, pp. 80–94,
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118723203.ch4 .

[4] M. Bonomi, G. Bussi, C. Camilloni, G. A. Tribello, P. Banáš, A. Bar-
ducci, M. Bernetti, P. G. Bolhuis, S. Bottaro, D. Branduardi, R. Capelli,
P. Carloni, M. Ceriotti, A. Cesari, H. Chen, W. Chen, F. Colizzi, S. De,
M. De La Pierre, D. Donadio, V. Drobot, B. Ensing, A. L. Ferguson,
M. Filizola, J. S. Fraser, H. Fu, P. Gasparotto, F. L. Gervasio, F. Giberti,
A. Gil-Ley, T. Giorgino, G. T. Heller, G. M. Hocky, M. Iannuzzi, M. In-
vernizzi, K. E. Jelfs, A. Jussupow, E. Kirilin, A. Laio, V. Limongelli,
K. Lindorff-Larsen, T. Löhr, F. Marinelli, L. Martin-Samos, M. Masetti,
R. Meyer, A. Michaelides, C. Molteni, T. Morishita, M. Nava, C. Pais-
soni, E. Papaleo, M. Parrinello, J. Pfaendtner, P. Piaggi, G. Piccini,
A. Pietropaolo, F. Pietrucci, S. Pipolo, D. Provasi, D. Quigley, P. Rai-
teri, S. Raniolo, J. Rydzewski, M. Salvalaglio, G. C. Sosso, V. Spiwok,
J. Šponer, D. W. H. Swenson, P. Tiwary, O. Valsson, M. Vendruscolo,
G. A. Voth, A. White, and T. P. consortium, Nature Methods 16, 670
(2019).

[5] G. T. Barkema and N. Mousseau, Phys. Rev. Lett. 77, 4358 (1996).
[6] R. Malek and N. Mousseau, Phys. Rev. E 62, 7723 (2000).
[7] H. Kallel, N. Mousseau, and F. m. c. Schiettekatte, Phys. Rev. Lett. 105,

045503 (2010).
[8] M.-C. Marinica, F. Willaime, and N. Mousseau, Phys. Rev. B 83, 094119

(2011).
[9] A. Jay, C. Huet, N. Salles, M. Gunde, L. Martin-Samos, N. Richard,

G. Landa, V. Goiffon, S. De Gironcoli, A. Hémeryck, and N. Mousseau,
Journal of Chemical Theory and Computation, J. Chem. Theory Comput.
16, 6726 (2020).

[10] E. Machado-Charry, L. K. Béland, D. Caliste, L. Genovese,
T. Deutsch, N. Mousseau, and P. Pochet, The Journal of Chem-
ical Physics 135, 034102 (2011), https://pubs.aip.org/aip/jcp/article-
pdf/doi/10.1063/1.3609924/13319917/034102_1_online.pdf .

[11] N. Salles, N. Richard, N. Mousseau, and A. Hemeryck, The Journal of
Chemical Physics 147, 054701 (2017).

[12] M. Trochet, L. K. Béland, J.-F. m. c. Joly, P. Brommer, and N. Mousseau,
Phys. Rev. B 91, 224106 (2015).

[13] J. Guénolé, W. G. Nöhring, A. Vaid, F. Houllé, Z. Xie, A. Prakash, and
E. Bitzek, Computational Materials Science 175, 109584 (2020).

[14] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavaz-
zoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D.
Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann,
C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari,
F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbrac-
cia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari,
and R. M. Wentzcovitch, Journal of Physics: Condensed Matter 21,
395502 (2009).

[15] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore, T. D.
Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton,
Comp. Phys. Comm. 271, 108171 (2022).

[16] C. Lanczos, Journal of Research of the National Bureau of Standards 45,
255 (1950).

[17] A. Jay, M. Gunde, N. Salles, M. Poberžnik, L. Martin-Samos, N. Richard,
S. de Gironcoli, N. Mousseau, and A. Hémeryck, Computational Materi-
als Science 209, 111363 (2022).

[18] R. A. Olsen, G. J. Kroes, G. Henkelman, A. Arnaldsson, and
H. Jónsson, The Journal of Chemical Physics 121, 9776 (2004),
https://doi.org/10.1063/1.1809574 .

[19] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Ca-
landra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna,
I. Carnimeo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiSta-
sio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Ger-
stmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj,
E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L.
Nguyen, H.-V. Nguyen, A. O. de-la Roza, L. Paulatto, S. Poncé, D. Rocca,
R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Tim-
rov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, Journal of
Physics: Condensed Matter 29, 465901 (2017).

[20] S. T. Chill, J. Stevenson, V. Ruehle, C. Shang, P. Xiao, J. D. Farrell, D. J.

14

https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/https://doi.org/10.1002/9781118723203.ch4
https://doi.org/https://doi.org/10.1002/9781118723203.ch4
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118723203.ch4
https://doi.org/10.1038/s41592-019-0506-8
https://doi.org/10.1038/s41592-019-0506-8
https://doi.org/10.1103/PhysRevLett.77.4358
https://doi.org/10.1103/PhysRevE.62.7723
https://doi.org/10.1103/PhysRevLett.105.045503
https://doi.org/10.1103/PhysRevLett.105.045503
https://doi.org/10.1103/PhysRevB.83.094119
https://doi.org/10.1103/PhysRevB.83.094119
https://doi.org/10.1021/acs.jctc.0c00541
https://doi.org/10.1021/acs.jctc.0c00541
https://doi.org/10.1063/1.3609924
https://doi.org/10.1063/1.3609924
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.3609924/13319917/034102_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.3609924/13319917/034102_1_online.pdf
https://doi.org/10.1063/1.4996206
https://doi.org/10.1063/1.4996206
https://doi.org/10.1103/PhysRevB.91.224106
https://doi.org/https://doi.org/10.1016/j.commatsci.2020.109584
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.6028/jres.045.026
https://doi.org/10.6028/jres.045.026
https://doi.org/https://doi.org/10.1016/j.commatsci.2022.111363
https://doi.org/https://doi.org/10.1016/j.commatsci.2022.111363
https://doi.org/10.1063/1.1809574
https://arxiv.org/abs/https://doi.org/10.1063/1.1809574
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79

Wales, and G. Henkelman, Journal of Chemical Theory and Computation
10, 5476 (2014), pMID: 26583230, https://doi.org/10.1021/ct5008718 .

[21] G. Henkelman and H. Jónsson, J. Chem. Phys. 111, 7010 (1999).
[22] T. Fordell, P. Salo, and M. Alatalo, Phys. Rev. B 65, 233408 (2002).

15

https://doi.org/10.1021/ct5008718
https://doi.org/10.1021/ct5008718
https://arxiv.org/abs/https://doi.org/10.1021/ct5008718
https://doi.org/10.1063/1.480097
https://doi.org/10.1103/PhysRevB.65.233408

name type default description
I/O and calculation options
verbose INT 0 3 levels of verbosity: {0, 1, 2};
engine_units CHAR ’qe’ Units used by the engine:

"qe": Rydberg, bohr, a.u.time; "lammps/metal": eV, Å, ps;
struc_format_out CHAR ’xsf’ Output structure format, xyz or xsf;
lrestart BOOL F Flag for restarting a search,

if set to T, the restart file (artn.restart) is read;
lpush_final BOOL T When T, relax to both minima adjacent to the saddle point;
lmove_nextmin BOOL F Reset the configuration to that of the final minimum

when the ARTn algorithm is finished;
Controlling initial push
push_mode CHAR ’all’ Possible values are ’all’, ’list’, ’rad’, or ’file’;
push_ids INT(:) (id1,..,idN) List of atom indices with nonzero components in

the initial push vector;
add_const REAL(4,:) 0.0 Constraint on the initial push on each atom:

3-component vector, and 1 solid angle in degrees;
dist_thr REAL 0.0 Generate push on all atoms within the radius from an

atom in push_ids, used in combination with push_mode = ’rad’;
push_step_size REAL 0.3 Maximum size of a component in the initial displacement (∆Rinit);
push_guess CHAR " " Filename to read the initial push vector,

used in combination with push_mode=’file’;
ninit INT 3 Number of initial displacements without calling Lanczos;
Controlling the lanczos algorithm
lanczos_max_size INT 16 Maximum number of Lanczos iterations;
lanczos_disp REAL 10−2 Scaling factor for displacement during the Lanczos algorithm;
lanczos_eval_conv_thr REAL 10−2 Threshold for convergence of eigenvalue in Lanczos;
Controlling the eigenvector push
eigval_thr REAL −0.01 Threshold for λmin which determines

when to start following the eigenvector;
eigen_step_size REAL 0.2 Maximum size of the displacement with Vmin;
eigenvec_guess CHAR " " Filename where the eigenvector guess is read;
nsmooth INT 0 Number of smoothing steps from initial displacement to eigenvector;
neigen INT 1 Number of pushes along Vmin before starting a perpendicular relax;
nnewchance INT 0 Number of times a research is allowed to re-initialize

the first Lanczos vector;
Control the perpendicular relaxation
nperp INT -1 Maximum number of perpendicular relaxation steps in

all ARTn macro steps;
nperp_limitation INT(:) (4, 8, 12, 16, -1) Limit of perpendicular relaxation steps for each ARTn step;
Controlling convergence
forc_thr REAL 10−3 Final force convergence on both F⊥ and F threshold
converge_property CHAR "maxval" Define which forces quantities are compared, the maximum value

or the norm of the field. Possible values: "maxval" or "norm"
push_over REAL 1.0 factor multiplied by eigen_step_size to push the configuration

over the saddle point, before starting the final relaxation

Table 1: The input parameters of pARTn. Default values are in atomic units (lengths in bohr, energies in Ry, forces in Ry/bohr, and eigenvalues in Ry/bohr2.

16

	Introduction
	The concept
	Biasing the FIRE algorithm
	The ARTn algorithm
	Lanczos applied to the Hessian matrix

	Repurposing FIRE to deliver ARTn
	Achieving specific displacements for ARTn
	Algorithm control with flags and counters

	Implementation details
	The artn() routine
	The move_mode() routine
	The clean_artn() routine

	API and engine-specific interface
	Quantum ESPRESSO interface
	LAMMPS interface
	Summary for the building of an interface

	Package description and documentation
	Quick Installation guide
	Compile pARTn
	pARTn for Quantum ESPRESSO
	QE input specification
	pARTn for LAMMPS
	LAMMPS input specification
	delete_atoms and order in LAMMPS

	Input and Output
	I/O Format
	Input description
	Controlling the initial push
	Controlling the number of pushes before calling Lanczos
	Controlling the Lanczos algorithm
	Controlling the eigenvector push
	Controlling the number of steps in the perpendicular relaxation
	ARTn force threshold
	Final push, move to next minimum

	Output summary/or Output description

	Examples
	QE: Diffusion of an Al adatom on the Al(100) surface
	LAMMPS: Pt(111) surface heptamer island

	Conclusion
	Guess input vector format

