Carla Juvin
email: carla.juvin@laas.fr

Laurent Houssin
email: laurent.houssin@laas.fr

Pierre Lopez
email: pierre.lopez@laas.fr

Decomposition methods for the preemptive Flexible Job-Shop Scheduling Problem *

Keywords: Flexible job-shop scheduling, preemption, Benders decomposition, mixed-integer programming, constraint programming

In this paper, we focus on exact methods to solve the preemptive Flexible Job-Shop Scheduling Problem with makespan and total completion time minimisation objective functions. Mathematical and constraint programming models enable the resolution of this problem for small instances. However, as an NP-hard problem, the cost of solving grows rapidly when considering larger instances. In this regard, we propose a logic-based Benders decomposition that relies on an efficient branch-and-bound procedure to solve the subproblem representing a pure (non-flexible) preemptive job-shop scheduling problem. Computational experiments are carried out and show the very good performance of our proposals.

Introduction

The job-shop scheduling problem (JSSP) is a well studied and NP-hard problem [START_REF] Garey | The complexity of flowshop and jobshop scheduling[END_REF]. In the JSSP, a set of jobs are to be processed on a set of machines. Each job is composed of a sequence of operations that must be processed on machines with given processing time in a given job-dependent order, and each machine can process only one operation at a time. An extensive literature has been devoted to the JSSP, including the consideration of various additional constraints and different objective functions, even if makespan minimisation is mostly studied [START_REF] Jain | Deterministic job-shop scheduling: Past, present and future[END_REF]. Nevertheless, very few works consider the job-shop problem with preemption. Le Pape and Baptiste [START_REF] Pape | Resource constraints for preemptive job-shop scheduling[END_REF] were the first to solve the pJSSP. Then, genetic algorithm and fuzzy logic are used in Yun [START_REF] Yun | Genetic algorithm with fuzzy logic controller for preemptive and nonpreemptive job-shop scheduling problems[END_REF]. To our knowledge, Ebadi and Moslehi are among the latest authors to have solved the problem to optimality. In particular, they proposed a MILP model [START_REF] Ebadi | Mathematical models for preemptive shop scheduling problems[END_REF] and an efficient branch-and-bound procedure [START_REF] Ebadi | An optimal method for the preemptive job shop scheduling problem[END_REF].

The flexible job-shop problem (FJSSP) is a generalisation of the JSSP in the sense that, for each operation, there exists a set of eligible machines. This makes the problem more difficult to solve, as it consists of both a machine allocation and a sequencing problem. In the FJSSP literature, the most often studied optimisation criterion is the makespan minimisation; see for example the survey of Chaudhry and Khan [START_REF] Chaudhry | A research survey: review of flexible job shop scheduling techniques[END_REF]. Due to the complexity of the problem, many heuristics and metaheuristics have been developed, e.g., Tabu search [START_REF] Shen | Solving the flexible job shop scheduling problem with sequence-dependent setup times[END_REF][START_REF] Hurink | Tabu search for the job-shop scheduling problem with multi-purpose machines[END_REF], genetic algorithms [START_REF] Pezzella | A genetic algorithm for the flexible job-shop scheduling problem[END_REF][START_REF] Xianzhou | An improved genetic algorithm for dual-resource constrained flexible job shop scheduling[END_REF] or simulated annealing [START_REF] Najid | A modified simulated annealing method for flexible job shop scheduling problem[END_REF][START_REF] Yazdani | Two metaheuristic algorithms for the dual-resource constrained flexible job-shop scheduling problem[END_REF]. With the improvement of the performance of solvers, exact methods have also been designed, including a majority of mathematical models [START_REF] Özgüven | Mathematical models for job-shop scheduling problems with routing and process plan flexibility[END_REF][START_REF] Ziaee | A mixed integer linear programming model for flexible job shop scheduling problem[END_REF]. Meng et al. [START_REF] Meng | Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem[END_REF] compared four mixed-integer linear programming models and one constraint programming model. They showed that the constraint programming model outperforms all other studied exact methods. Numerous variants of the FJSSP exist and have been also studied in the literature, e.g., including sequencedependent setup times [START_REF] Shen | Solving the flexible job shop scheduling problem with sequence-dependent setup times[END_REF] or workers [START_REF] Kress | Mathematical models for a flexible job shop scheduling problem with machine operator constraints[END_REF].

Studies on the preemptive flexible job-shop scheduling problem (pFJSSP) are scarce: three metaheuristics are presented in Zhang and Yang [START_REF] Zhang | Flexible job-shop scheduling with flexible workdays, preemption, overlapping in operations and satisfaction criteria: An industrial application[END_REF], while Jansen et al. [START_REF] Jansen | Approximation algorithms for flexible job shop problems[END_REF] proposed several approximation algorithms for the FJSSP including one for the particular case of the pFJSSP. To the best of our knowledge, no exact method is reported in the literature to solve this problem. The purpose of the present article is to develop and compare several exact methods for the pFJSSP with makespan minimisation, namely: Mixed-Integer Linear Programming (MILP), Constraint programming (CP), and Logic-Based Benders decomposition (LBBD). We also extend these three methods to a second optimisation criterion: the total completion time minimisation.

LBBD was introduced by Hooker et al. [START_REF] Hooker | Verifying logic circuits by Benders decomposition[END_REF] in the context of logic circuit verification and Hooker [START_REF] Hooker | Logic based methods for optimization: Combining optimization and constraint satisfaction[END_REF] formalised the concept. This approach has been applied to a large variety of scheduling problems, especially those including assignment decisions to make: Hooker and Ottosson [START_REF] Hooker | Logic-based Benders decomposition[END_REF] tackle a parallel-machine problem with release and delivery dates with the objective to minimise processing costs, Hooker [START_REF] Hooker | Planning and scheduling by logic-based Benders decomposition[END_REF] addresses the cumulative scheduling problem, while Tan and Terekhov [START_REF] Tan | Logic-based Benders decomposition for two-stage flexible flow shop scheduling with unrelated parallel machines[END_REF] solve the flexible flow-shop problem with an LBBD algorithm. Naderi and Roshanaei [START_REF] Naderi | Critical-path-search logic-based Benders decomposition approaches for flexible job shop scheduling[END_REF] also proposed an LBBD scheme to solve the FJSSP without preemption.

The remainder of the paper is organised as follows. In the next section, the preemptive flexible job-shop scheduling problem is formally defined; MILP and CP models for the pFJSSP with makespan minimisation are also presented. In Section 3, we propose an LBBD scheme based on the use of an efficient branch-and-bound procedure for solving a pure scheduling subproblem. Computational experiments are carried out in Section 4 for two objective functions: the minimisation of the makespan and the minimisation of the total completion time. We draw a conclusion in Section 5.

Problem definition and modelling

An instance of the pFJSSP is defined as a set of jobs J and a set of machines M. A job is not subject to an initial release date. Each job i ∈ J consists of a sequence of n i operations. The j th operation O i,j ∈ O i of a job i must be performed by one of the machine from the set of eligible machines M i,j ⊆ M. Let p i,j,m denote the processing time of operation O i,j that is processed on machine m ∈ M i,j . Each machine can process at most one operation at a time and preemption is allowed: the processing of operations can be interrupted and resumed later without penalty. Although an operation can be interrupted (preemption), it is assumed that it must be fully processed by one and the same machine (no migration).

Notations and definitions

J

Set of jobs M Set of machines

n i Number of operations in job i (i ∈ J) O i Set of operations in job i (i ∈ J) O i,j j th operation of job i (i ∈ J , j ∈ {1, . . . , n i }) M i,j Set of eligible machines for operation O i,j (i ∈ J , O i,j ∈ O i) I m
Set of operations that can be processed by machine m (m ∈ M)

p i,j,m Processing time of operation O i,j on machine m (i ∈ J , O i,j ∈ O i , m ∈ M i,j) p min i,j Shortest processing time of operation O i,j , p min i,j = min m∈M i,j p i,j,m (i ∈ J , O i,j ∈ O i) r min i,j Shortest release date of operation O i,j , r min i,j = j ′ <j p min i,j ′ (i ∈ J , O i,j ∈ O i) q min i,j Shortest delivery time of operation O i,j , q min i,j = j ′ >j p min i,j ′ (i ∈ J , O i,j ∈ O i)
Example 1. Consider a pFJSSP with 4 jobs and 4 machines. The processing times p i,j,m of operations {O i,j ∈ O i , j = 1, . . . , n i } i∈J , on each eligible machine m ∈ M i,j are given in Table 1. 1. Figure 1 depicts such a solution. On machine M 2, operation O 3,2 is interrupted at t = 5 by operation O 2,2 and resumed on the same machine at t = 6. The makespan is 10.

Mathematical model

Let us introduce a mixed-integer program to solve the pFJSSP. It is based on a time-indexed formulation proposed by Bowman [START_REF] Bowman | The schedule-sequencing problem[END_REF] to solve the preemptive job-shop problem. We adapt it to integrate the notion of resource flexibility.

Let H = {1, 2, 3, . . . , h} be the time horizon. The decision variables are defined as follows:

x i,j,m = 1 if operation O i,j is processed on machine m; 0 otherwise. M1 M2 M3 M4 O 1,1 O 1,2 O 1,3 O 2,1 O 2,2 O 2,3 O 3,1 O 3,2 O 3,2 O 3,3 O 4,1 O 4,2 O 4,3 0
y i,j,t = 1 if operation O i,j
is in process at time t; 0 otherwise.

Hence for the mathematical model, it yields:

min C max (1)
s.t. m∈M i,j x i,j,m = 1 ∀i ∈ J , O i,j ∈ O i (2)
h t=1 y i,j,t ≥ m∈M i,j x i,j,m × p i,j,m ∀i ∈ J , O i,j ∈ O i (3) h t ′ =t y i,j,t ′ ≤ max m∈M i,j p i,j,m × (1 -y i,j+1,t) ∀i ∈ J , O i,j ∈ O i \ {O i,n i }, t ∈ H (4) i∈J n i j=1 x i,j,m × y i,j,t ≤ 1 ∀m ∈ M, t ∈ H (5)
C max ≥ (t + 1) × i∈J y i,n i ,t ∀t ∈ H (6)
x i,j,m ∈ {0, 1} ∀i ∈ J , O i,j ∈ O i , m ∈ M i,j (7)
y i,j,t ∈ {0, 1} ∀i ∈ J , O i,j ∈ O i , t ∈ H (8)
The objective (1) is the makespan minimisation. Constraints (2) ensure that each operation is processed by exactly one of the eligible machines. The duration of each operation is satisfied thanks to constraints [START_REF] Jain | Deterministic job-shop scheduling: Past, present and future[END_REF]. Constraints (4) express the precedence constraints between operations of the same job. Let i ∈ J be a job, O i,j and O i,j+1 be two successive operations and t be a given period. If operation O i,j+1 is processed at time t (i.e., y i,j+1,t = 1), then operation O i,j must be completed before t (i.e., no longer be processed from t, ∀t ′ ≥ t, y i,j,t ′ = 0). Constraints (5) represent the disjunctive constraints on each machine. Finally, constraints (6) allow us to calculate the makespan.

Note that constraints (5) are nonlinear, but can be easily linearised since variables x i,j,m and y i,j,t are binary, the previous mathematical model thus becoming a MILP model by adding the variables:

z i,j,m,t = 1 if operation O i,j
is processed on machine m at time t; 0 otherwise and replacing constraints (5) by the following constraint set:

z i,j,m,t ≥ x i,j,m + y i,j,t -1 ∀i ∈ J , O i,j ∈ O i , m ∈ M i,j , t ∈ H (9) z i,j,m,t ≤ x i,j,m ∀i ∈ J , O i,j ∈ O i , m ∈ M i,j , t ∈ H (10) z i,j,m,t ≤ y i,j,t ∀i ∈ J , O i,j ∈ O i , m ∈ M i,j , t ∈ H (11)
i∈J n i j=1 z i,j,m,t ≤ 1 ∀m ∈ M, t ∈ H (12)

Constraint programming

To introduce the CP model, we use the IBM CP Optimizer solver, which allows the use of specific decision variables and constraints. In particular, we use interval variables, whose main feature is to be optional. This concept is relevant to our problem since each operation is performed on a machine within a set of eligible machines.

There are two possible ways to model preemptive operations of duration p with interval variables [START_REF] Polo-Mejía | Mixed-integer/linear and constraint programming approaches for activity scheduling in a nuclear research facility[END_REF]: 1) by a set of optional interval variables with unfixed duration and imposing that the sum of their durations is equal to p;

2) by a chain of p unit-duration intervals.

These two possibilities are respectively illustrated in Figure 2 for an operation of duration 3.

In the context of preemptive multi-skill resource-constrained project scheduling, Polo-Mejía et al. [START_REF] Polo-Mejía | Mixed-integer/linear and constraint programming approaches for activity scheduling in a nuclear research facility[END_REF] show that the second approach is more efficient. We have 1)

. . .

2)

. . . also conducted experiments leading to this conclusion for our specific pFJSSP. For this purpose, each preemptive operation is divided into unit-duration parts in our constraint programming model. We introduce the following decision variables:

• task i,j : interval variable between the start and the end of the processing of operation O i,j ;

• mode i,j,m : interval variable between the start and the end of the processing of operation O i,j on machine m (since the operations have multiple eligible machines and must be executed by exactly one of them, this is an optional variable);

• part i,j,k,m : interval variable of unit duration of the processing of the k th part of operation O i,j on machine m (optional variable).

min C max (13) s.t. C max ≥ task i,n i .end ∀i ∈ J (14) EndBef oreStart(task i,j , task i,j+1) ∀i ∈ J , O i,j ∈ O i \ {O i,n i } (15) EndBef oreStart(part i,j,k,m , part i,j,k+1,m) ∀i ∈ J , O i,j ∈ O i , m ∈ M i,j , 1 ≤ k ≤ p i,j,m -1 (16)
Span(mode i,j,m , part i,j,k,m : ∀1 ≤ k ≤ p i,j,m) ∀i ∈ J , O i,j ∈ O i , m ∈ M i,j (17)
Alternative(task i,j , mode i,j,m : ∀m ∈ M i,j) ∀i ∈ J , O i,j ∈ O i (18) P resenceOf (mode i,j,m) ⇒ P resenceOf (part i,j,k,m) ∀i ∈ J , O i,j ∈ O i , m ∈ M i,j , 1 ≤ k ≤ p i,j,m (19)
N oOverlap(part i,j,k,m :

∀O i,j ∈ I m , 1 ≤ k ≤ p i,j,m) ∀m ∈ M (20)
The objective function (13) is to minimise the makespan. Constraints (14) define the makespan. The global constraint EndBeforeStart is used to model the precedence constraints, as in the two following constraint sets. Constraints [START_REF] Özgüven | Mathematical models for job-shop scheduling problems with routing and process plan flexibility[END_REF] ensure that the operations of the same job will be processed with respect to the job sequence. Constraints [START_REF] Ziaee | A mixed integer linear programming model for flexible job shop scheduling problem[END_REF] aim at ordering the parts of the operation and so avoid symmetries, and ensure that each part is treated one after the other. With the Span global constraint, constraints [START_REF] Meng | Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem[END_REF] are used to ensure that operation interval spans over all its processing parts (i.e., each operation starts with its first part and ends with its last part). Constraints [START_REF] Kress | Mathematical models for a flexible job shop scheduling problem with machine operator constraints[END_REF] use the Alternative global constraint that ensures each operation to be processed by exactly one of the eligible machines. From the presence status (PresenceOf function) of mode interval variable, constraints [START_REF] Zhang | Flexible job-shop scheduling with flexible workdays, preemption, overlapping in operations and satisfaction criteria: An industrial application[END_REF] define the duration of each operation. With the NoOverlap global constraint, constraints [START_REF] Jansen | Approximation algorithms for flexible job shop problems[END_REF] forbid the overlapping of operations processed on the same machine.

Logic-based Benders decomposition

Hybrid methods for optimisation, especially those combining MILP and CP, have been widely used since the late 90's. LBBD falls into this category. The LBBD approach decomposes a given problem into a master problem, usually a MILP, and one or several subproblems. It iterates between the master problem and the subproblems until an optimal solution is found by means of constraint generation techniques. At each iteration h, a subset of variables, say x, are fixed by the master problem, the resolution of the resulting subproblem provides the objective value z h implied by the current solution xh . This bound is then used to generate cuts that are added to the master problem, and so on. A state-of-the-art about LBBD can be found in [START_REF] Hooker | Integrated methods for optimization[END_REF].

Decomposition scheme

The pFJSSP can be decomposed into an assignment master problem and a scheduling subproblem. In the master problem, each operation is assigned to exactly one of its eligible machines. Solving the master problem enables to find a lower bound LB for the global problem. Once this assignment xh is fixed, the subproblem consists in a preemptive JSSP (i.e., without flexibility), of which a solution is an upper bound U B of the global problem and so a feasible solution of our problem. Solving this subproblem also allows the deduction of optimality cuts. Then, these cuts are added to the master problem, which is solved again. This general processing is illustrated in Figure 3. In the following, a MILP model is proposed for the master problem. The scheduling subproblems are solved using two different methods: constraint programming for the first version and a dedicated branch-and-bound algorithm for the second version. These methods are named LBBD CP O and LBBD B&B , respectively. Then the question of the generation of optimality cuts is addressed. Finally, we present an extension of the methods for the consideration of the total completion time minimisation problem.

Master problem

The master problem is a relaxation of the pFJSSP as it only consists in the assignment of operations to machines (i.e., the constraints only involve the assignment variables x i,j,m).

Let m ∈ M be a machine, I ′ m ⊆ I m be a subset of operations that can be processed by m, r ′ m = min O i,j ∈I ′ m r min i,j be the shortest release starting date of operations from I ′ m (minimum head) and

q ′ m = min O i,j ∈I ′ m q min i,j
be the shortest delivery time after I ′ m (minimum tail). The master problem is as follows:

min C max (21) s.t. m∈M i,j x i,j,m = 1 ∀i ∈ J , O i,j ∈ O i (22)
C max ≥ n i j=1 m∈M i,j x i,j,m × p i,j,m ∀i ∈ J (23)
C max ≥ r ′ m + O i,j ∈I ′ m x i,j,m × p i,j,m + q ′ m ∀m ∈ M, I ′ m ⊆ I m (24
)
x i,j,m ∈ {0, 1} ∀i ∈ J , O i,j ∈ O i , m ∈ M i,j (25)
Constraints (22) are identical to constraints (2) (processing of each operation by one of the eligible machines). Constraints (23) and (24) express the relaxation of the subproblem as they help to estimate the objective value C max according to the assignment variables x i,j,m . Having a tighter lower bound increases the chances of obtaining high-quality subproblem. Constraints [START_REF] Hooker | Logic-based Benders decomposition[END_REF] restrict the makespan to be at least equal to the sum of the processing times of operations of the same job. Constraints [START_REF] Hooker | Planning and scheduling by logic-based Benders decomposition[END_REF] come from an idea first proposed by Carlier [START_REF] Carlier | The one-machine sequencing problem[END_REF] to compute a lower bound for the JSSP: Given a machine m and a subset of operations I ′ m , the makespan is at least equal to the sum of the processing times of operations from this subset assigned to m, plus the minimum head and tail.

In practice, for this last set of constraints [START_REF] Hooker | Planning and scheduling by logic-based Benders decomposition[END_REF], it is not useful to consider all the possible subsets of I m . Indeed, based on Theorem 1 below, it is enough to study the sets I a created as follows: for each machine m and for each pair of operations a = (O i,j , O i ′ ,j ′) ∈ I m × I m , let r a = min(r min i,j , r min i ′ ,j ′) be the minimum head and q a = min(q min i,j , q min i ′ ,j ′) be the minimum tail, and

I a = {O i,j ∈ I m | r min i,j > r a , q min i,j
> q a } be the set of operations that can be processed by m and of which the shortest release date and the shortest delivery time are larger than the minimum head and tail, respectively. Theorem 1. Let I ′ m and I ′′ m be two subsets, such that

I ′′ m ⊂ I ′ m and ∃ O i,j ∈ I ′′ m with r min i,j = r ′ m and ∃ O i ′ ,j ′ ∈ I ′′ m with q min i ′ ,j ′ = q ′ m . Constraint C max ≥ r ′ m + O i,j ∈I ′ m x i,j,m × p i,j,m + q ′ m dominates constraint C max ≥ r ′′ m + O i,j ∈I ′′ m x i,j,m × p i,j,m + q ′′ m . Proof.
To prove that a constraint C1 dominates another one constraint C2, it must be shown that C1 implies C2.

By assumption r ′ m = r ′′ m , q ′′ m = q ′ m and, for any assignment,

O i,j ∈I ′ m x i,j,m × p i,j,m ≥ O i,j ∈I ′′ m x i,j,m × p i,j,m . Hence, r ′ m + O i,j ∈I ′ m x i,j,m × p i,j,m + q ′ m ≥ r ′′ m + O i,j ∈I ′′ m x i,j,m × p i,j,m + q ′′ m . It follows that: C max ≥ r ′ m + O i,j ∈I ′ m x i,j,m × p i,j,m + q ′ m =⇒ C max ≥ r ′′ m + O i,j ∈I ′′ m x i,j,m × p i,j,m + q ′′ m .
Example 2. Consider again Example 1 and let suppose that:

x 1,1,1 = x 1,2,3 = x 1,3,4 = x 2,1,1 = x 2,2,2 = x 2,3,1 = x 3,1,4 = x 3,2,2 = x 3,3,4 = x 4,1,2 = x 4,2,4 = x 4,3,3 = 1.
Regarding constraints [START_REF] Hooker | Logic-based Benders decomposition[END_REF], it yields:

• duration of job 1: p 1,1,1 + p 1,2,3 + p 1,3,4 = 2 + 4 + 2 = 8 =⇒ C 1 ≥ 8;
• duration of job 2:

p 2,1,1 + p 2,2,2 + p 2,3,1 = 3 + 1 + 3 = 7 =⇒ C 2 ≥ 7;
• duration of job 3:

p 3,1,4 + p 3,2,2 + p 3,3,4 = 3 + 4 + 2 = 9 =⇒ C 3 ≥ 9;
• duration of job 4:

p 4,1,2 + p 4,2,4 + p 4,3,3 = 2 + 2 + 4 = 8 =⇒ C 4 ≥ 8.
Therefore, the makespan of the incumbent solution is at least 9, that is, C max ≥ 9. About constraints [START_REF] Hooker | Planning and scheduling by logic-based Benders decomposition[END_REF], we detail the calculations for only one pair a = (O 1,1 , O 2,1) on machine M 1.

(1) Identify the head r a and tail q a : r a = min(r min 1,1 , r min 2,1) = min(0, 0) = 0 q a = min(q min 1,1 , q min 2,1) = min(p min 1,2 + p min 1,3 , p min 2,2 + p min 2,3) = min(4 + 2, 1 + 2) = 3

(2) Form subset I a :

I a = {O 1,1 , O 2,1 , O 3,1 , O 4,2 }
(3) Deduce a lower bound for the makespan:

C max ≥ 0 + p 1,1,1 × x 1,1,1 + p 2,1,1 × x 2,1,1 + p 3,1,1 × x 3,1,1 + p 4,2,1 × x 4,2,1 + 3 ≥ 0 + 2 × 1 + 3 × 1 + 3 × 0 + 4 × 0 + 3 = 8
Doing the calculations extensively on all machines and for all eligible pairs, we obtain C max ≥ 10 (for

I a ′ = {O 1,2 , O 4,3 } on machine M 3).
At each iteration h, we get a solution of the master problem, i.e., a set of operation-machine assignments. The following additional notations will be useful for the sequel: let xh i,j,m be the value of variable x i,j,m at iteration h. Let

P h m = {O i,j ∈ O i , i ∈ J | xh i,j
,m = 1} be the set of operations assigned to machine m at iteration h.

Subproblem

The subproblem is a pJSSP. To solve it, two different ways are proposed. We first present a CP model, then we describe a branch-and-bound algorithm that has its origin in a proposal made in Ebadi and Moslehi [START_REF] Ebadi | An optimal method for the preemptive job shop scheduling problem[END_REF].

Constraint programming: LBBD CP O

In the LBBD CP O method, the subproblem is solved using a constraint programming model. This model is similar to the one proposed in Section 2.2. However, in this case, it aims at solving a non-flexible pJSSP since the assignments are already fixed. The variables involved in this model are the following:

• task i,j : interval variable between the start and the end of the processing of operation O i,j ;

• part i,j,k : interval variable of unit duration of the processing of the k th part of operation O i,j .

Since, the set of eligible machines is reduced to a single machine, unlike the model presented in Section 2.2, the mode i,j,m variables does not appear and part i,j,k are non-optional variables. The subproblem is described as follows:

min z h (26)
s.t. z h ≥ task i,n i .end ∀i ∈ J (27) EndBef oreStart(task i,j , task i,j+1) ∀i ∈ J , O i,j ∈ O i \ {O i,n i } (28) EndBef oreStart(part i,j,k , part i,j,k+1) ∀i ∈ J , O i,j ∈ O i , 1 ≤ k ≤ p h i,j -1 (29)
Span(task i,j , part i,j,k :

∀1 ≤ k ≤ p h i,j) ∀i ∈ J , O i,j ∈ O i (30)
N oOverlap(part i,j,k :

∀O i,j ∈ P h m , 1 ≤ k ≤ p h i,j) ∀m ∈ M (31)
where p h i,j = m∈M i,j p i,j,m × xh i,j,m .

Branch-and-bound algorithm: LBBD B&B

The resolution algorithm used for the LBBD B&B method is inspired by Ebadi and Moslehi [START_REF] Ebadi | An optimal method for the preemptive job shop scheduling problem[END_REF]. In this study, the authors solve the pJSSP using a branch-and-bound algorithm developed on the basis of a disjunctive graph representation. By exploiting the properties of the problem, they introduce effective dominance rules and lower bounds that make the method efficient. In particular, they have shown that the set of schedules of which preemption is only allowed by a newly available operation is dominant for the problem. The proposed algorithm is briefly presented in the following.

Each operation O i,j of duration p i,j is divided into p i,j operations {O i,j,1 , . . . , O i,j,p i,j } of unit duration named unit operations. At each level of the branch-andbound, the set V a of available unit operations (i.e., whose preceding operations have already been scheduled) is formed. The machine m * processing the unit operation with the earliest availability date (the availability date is determined by the longest path between node Start and the unit operation in the partial disjunctive graph) ES is selected. The set of unit operations available in ES on m * is denoted by V ′ a . A lower bound X for the date of the next available unit operation on m * is calculated. For each unit operation O i,j,k in V ′ a , a new node is created where O i,j,k and the (X -1) unit operations following are scheduled from ES. The disjunctive graph is updated (a disjunctive arc between the last unit operation O i,j,p i,j of operation O i,j and the set of other unit operations in V ′ a is added); hence, a lower bound LB of the partial scheduling is obtained to evaluate this new node. If LB is greater than the objective value of the best solution obtained so far, the node is pruned. Otherwise, the algorithm continue at the next level.

Ebadi and Moslehi [START_REF] Ebadi | An optimal method for the preemptive job shop scheduling problem[END_REF] make the assumption that each job visits each machine at most once (in shop scheduling this is known as no recirculation). However, this is not true in our case when solving a subproblem of the pFJSSP. Indeed, during the assignment phase, nothing prevents two operations of the same job from being performed by the same machine (cf. Example 1). This is why we have to adapt the solving algorithm to our specific problem.

Benders cuts

If z h is the minimum makespan found by the subproblem, then a trivial Benders cut requires the makespan to be at least z h , whenever all assignments remain the same. In other words, any solution that achieves a better makespan assigns at least one of the operations to another machine. Thus, the following cut is created and added to the master problem:

C max ≥ z h 1 - m∈M O i,j ∈P h m (1 -xh i,j,m) (32)
Inequality [START_REF] Fisher | Probabilistic learning combinations of local job-shop scheduling rules[END_REF] is valid in the sense that it does not remove any feasible solution. However, this cut involves all the assignments and leads to the exclusion of only one solution of the master problem, since the cut becomes useless when even one of the operation assignments is changed. The goal is therefore to strengthen the cut by identifying a subset of assignments responsible for the value of the makespan.

For this purpose, we adapt our algorithm (see Algorithm 1). Once the master problem is solved (Step 1), instead of going directly to the subproblem (Step 3), the idea proposed by Carlier [START_REF] Carlier | The one-machine sequencing problem[END_REF] is again used, as in the set of constraints [START_REF] Hooker | Planning and scheduling by logic-based Benders decomposition[END_REF], as a relaxation of the subproblem (Step 2). However, at this stage of the search, the assignments are fixed; this allows us to calculate a better approximation of the value of the objective function. Indeed, the duration of each operation O i,j is known: p h i,j = m∈M i,j p i,j,m × xh i,j,m , thus it is possible to redefine the shortest release date (resp. shortest delivery time) of an operation O i,j at iteration h as r min,h i,j = j ′ <j p h i,j (resp. q min,h i,j = j ′ >j p h i,j). Let m ∈ M be a machine, a = (O i,j , O i ′ ,j ′) ∈ P h m × P h m be a pair of operations processed by machine m. Let us define r a = min(r h i,j , r h i ′ ,j ′) as the minimum head, q a = min(q h i,j , q h i ′ ,j ′) as the minimum tail, and P a = {O i,j ∈ P h m | m ∈ M i,j , r h i,j > r a , q h i,j > q a } as the set of operations that are processed by m and of which the shortest release date and the delivery time are smaller than the minimum head and the minimum tail, respectively. LB a = r a + O i,j ∈Pa p i,j,m + q a is a lower bound on the optimum value for the z h objective value in the pJSSP subproblem.

Therefore, if LB a is superior to the incumbent best solution found, it is useless to solve the subproblem since it is impossible to improve the best known solution. Instead of solving the subproblem, it is required to add the following cut:

C max ≥ LB a 1 - m∈M O i,j ∈Sa∩P h m (1 -xh i,j,m) (33)
where S a is the set of operations belonging to P a , but also the operations of jobs with at least one operation belonging to this set (because they have an influence on the calculation of r a or q a).

Example 3. Consider Example 1 again and assume the same assignments as in

Example 2, that is:

xh 1,1,1 = xh 1,2,3 = xh 1,3,4 = xh 2,1,1 = xh 2,2,2 = xh 2,3,1 = xh 3,1,4 = xh 3,2,2 = xh 3,3,4 = xh 4,1,2 = xh 4,2,4 = xh 4,3,3 = 1.
Algorithm 1: Logic-based Benders decomposition algorithm Initialisation Master constraints ←{constraint sets (22), (23), (24)} ; incumbent solution ← solution found using a heuristic ; h ← 0 ;

Step 1 Master problem Solve the assignment master problem until a new feasible solution P h is found ;

Step 2 Subproblem relaxation

foreach m ∈ M do foreach pair a = (O i,j , O i ′ ,j ′) ∈ P h m × P h m do r a ← min(r h i,j , r h i ′ ,j ′) ; q a ← min(q h i,j , q h i ′ ,j ′) ; P a ← {O i,j ∈ P h m | r h i,j > r a , q h i,j > q a } ; LB a ← r a + O i,j ∈Pa p i,j,m + q a m ; if LB a > incumbent solution.

value then

Generate cut [START_REF] Lawrence | Resource constrained project scheduling: an experimental investigation of heuristic scheduling techniques[END_REF] and add it to master constraints ; Go back to Step 1 ;

Step 3 Subproblem current solution ← Solve the pJSSP subproblem with P h assignments ; if current solution.value < incumbent solution.value then incumbent solution ← current solution ;

Generate cut [START_REF] Fisher | Probabilistic learning combinations of local job-shop scheduling rules[END_REF] and add it to master constraints ; Go back to Step 1

We focus on machine M 1 and we take into account the pair a = (O 1,1 , O 2,1):

LB a = r a + O i,j ∈Pa p i,j,1 + q a = min(r h 1,1 , r h 2,1) +p 1,1,1 + p 2,1,1 + min(q h 1,1 , q h 2,1) = min(r h 1,1 , r h 2,1) +p 1,1,1 + p 2,1,1 + min(p h 1,2 + p h 1,3 , p h 2,2 + p h 2,3) = min(0, 0) +2 + 3 + min(4 + 2, 1 + 3) = 9
This leads to the following cut:

C max ≥ 9 × 1 - m∈M O i,j ∈(O 1 ∪O 2)∩P h m (1 -xh i,j,m)
In Example 3, although the considered subset of operations assigned to machine M 1 is identical to the one studied in Example 2, the bound obtained is tighter because the values r a and q a are calculated differently. Since the assignments are fixed, only the current assignment selection P h is taken into consideration to calculate the shortest release date r h i,j and shortest delivery time q h i,j of an operation O i,j (i.e., there is no need to consider all the possible assignments of previous and following operations).

Total completion time

Considering the total completion time (i.e., the sum of the completion times of all the jobs) as the objective function to minimise, the decomposition scheme presented in Section 3.1 remains identical. However, adjustments have to be done to solve both the master problem and the subproblems.

Master problem

The master problem needs to be adapted to the new objective function. First of all, the criterion (21) is replaced by: min C total [START_REF] Adams | The shifting bottleneck procedure for job shop scheduling[END_REF] where C total is the total completion time.

Then we used two relaxations for the master problem. The first one is based on the idea that the completion time C i of a job i is at least equal to the sum of the processing times of operations belonging to job i, C i ≥ m∈M n i j=1 x i,j,m × p i,j,m , ∀i ∈ J . Constraints [START_REF] Hooker | Logic-based Benders decomposition[END_REF] are thus replaced by the following:

C total ≥ i∈J n i j=1 m∈M i,j x i,j,m × p i,j,m (35)
The second relaxation of the subproblem is based on the consideration of a singlemachine problem for each machine. On the one hand, by definition, the completion time of a job is not less than the completion time of one of its operations plus the tail of this operation: C i ≥ C i,j + q min i,j , ∀i ∈ J , O i,j ∈ O i . Hence, we deduce:

C i ≥ 1 n i × n i j=1 (C i,j + q min i,j), ∀i ∈ J and C total ≥ i∈J 1 n i × n i j=1 (C i,j + q min i,j
). Let C m be a lower bound on the total completion time of operations on machine m. According to the previous statement, we can say that:

C total ≥ 1 max i∈J n i × m∈M C m + i∈J n i j=1 q min i,j (36)
On the other hand, the Shortest Processing Time first (SPT) rule is known to be optimal for the single-machine problem when the objective is to minimise the total completion time. Thus, for each machine m, let π m be a permutation of

I m such that p πm(1) ≤ p πm(2) ≤ • • • ≤ p πm(|Im|) . Hence, C ′ m = |Im| k=0 C πm(k)
where

C πm(k) ≥ k l=0 p πm(l) × x πm(l) × x πm(k) (37
)
is a lower bound on the total completion time of operations on machine m. Terms C πm(k) occur only for those operations that are assigned to machine m, that is why we introduce the assignment variables x πm(k) . We linearise by writing :

C πm(k) ≥ k l=0 (p πm(l) × x πm(l) -B πm(k) × (1 -x πm(k)) (38
)
and C πm(k) ≥ 0, the big-M term B πm(k) is given by:

B πm(k) = k-1 l=0 p πm(l) (39)
Finally, we sum over all machines and constraints (24) are replaced by constraints [START_REF] Barnes | Flexible job shop scheduling by tabu search[END_REF], [START_REF] Kacem | Pareto-optimality approach for flexible jobshop scheduling problems: Hybridization of evolutionary algorithms and fuzzy logic[END_REF], and the following:

C total ≥ 1 max i∈J n i m∈M |Im| k=0 C πm(k) + i∈J n i j=1 q min i,j (40)

Subproblem

The subproblem must also fit the objective function. In particular, in the subproblem of the LBBD CP O version, it is enough to replace constraints (27) of the CP model by:

z h ≥ i∈J task i,n i .end (41)
Regarding the LBBD B&B version, some adaptations must be made in the branchand-bound algorithm. Specifically, the objective function value is given by the total length of the longest paths from node Start to the last unit operation of each job, in the disjunctive graph. At each node, a lower bound is calculated in a similar way in the partial disjunctive graph.

Numerical experiments

For computational tests, all experiments are performed on three cluster nodes with Intel Xeon E5-2695 v4 CPU at 2.1 GHz. All algorithms presented are implemented in C++, using CPLEX 12.10 for the MILP models and CP Optimizer (CPO) 12.10 for the CP models. CPU time and RAM were respectively limited to 1 hour and 16 GB.

A naive heuristic allows us to obtain an upper bound for the objective value. This solution is used at the beginning of the search in the decomposition methods. For the purpose of comparison between methods, and for the sake of fairness, we also use this solution as a warm start for the CP method. Therefore, the instances are solved using the CP model presented in Section 2 with warm start solution (method warm CP O) and without (CP O), and by the two versions of the decomposition proposed in Section 3 (LBBD CP O and LBBD B&B).

To evaluate and compare the diverse methods, we consider various performance measures:

• the average optimality gap, computed as follows:

gap method = U B method -LB method U B method (42)
• the proportion of optima found;

• the relative percentage deviation compared to the best solution found. It aims to evaluate the quality of the upper bounds found by each method. It is therefore computed as follows:

RD method = U B method -U B * U B * (43)
where U B * is the best bound found among all tested methods;

• the proportion of instances for which the best solution (among the tested methods) is found.

Moreover, two objective functions are considered: the minimisation of the makespan and the minimisation of the total completion time.

Instances

Numerous benchmark instances for the FJSSP without preemption are available in the literature. These instances serve as a reference to evaluate our propositions in the preemptive case.

Brandimarte [START_REF] Brandimarte | Routing and scheduling in a flexible job shop by tabu search[END_REF] introduced instances, referred to here as "BrandimarteMk ", of which data are randomly generated using a uniform distribution within a given limit. Hurink et al. [START_REF] Hurink | Tabu search for the job-shop scheduling problem with multi-purpose machines[END_REF] provided an adaptation of some of the classical JSSP instances [START_REF] Fisher | Probabilistic learning combinations of local job-shop scheduling rules[END_REF][START_REF] Lawrence | Resource constrained project scheduling: an experimental investigation of heuristic scheduling techniques[END_REF][START_REF] Adams | The shifting bottleneck procedure for job shop scheduling[END_REF][START_REF] Carlier | An algorithm for solving the job-shop problem[END_REF][START_REF] Applegate | A computational study of the job-shop scheduling problem[END_REF] and generate three data sets, denoted by "HurinkEdata", "HurinkRdata" and "HurinkVdata", with increasing flexibility, by expanding the pool of eligible machines for some of the operations. Dauzère-Pérès and Paulli [START_REF] Dauzère-Pérès | An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search[END_REF] designed a data set "DPpaulli ", in which the number of operations per job is greater than the number of machines, and whose parameters are randomly generated using a uniform distribution within given limits. Barnes and Chambers [START_REF] Barnes | Flexible job shop scheduling by tabu search[END_REF] created a set of instances "ChambersBarnes" based on three instances of the classical JSSP problem [START_REF] Fisher | Probabilistic learning combinations of local job-shop scheduling rules[END_REF][START_REF] Lawrence | Resource constrained project scheduling: an experimental investigation of heuristic scheduling techniques[END_REF] transformed into FJSSP instances by duplicating some machines. Kacem et al. [START_REF] Kacem | Pareto-optimality approach for flexible jobshop scheduling problems: Hybridization of evolutionary algorithms and fuzzy logic[END_REF] created the instances "Kacem" with total flexibility (i.e., each machine is able to process each operation). Furthermore, for this benchmark, it is worth mentioning that it is also distinguished by the very small number of instances it contains (4). Lastly, Fattahi et al. [START_REF] Fattahi | Mathematical modeling and heuristic approaches to flexible job shop scheduling problems[END_REF] proposed randomly generated small-and medium-size problems ("Fattahi ").

Characteristics of these benchmarks are summarised in Table 2. For each benchmark, we report the number of instances (276 in total) that compose it, the size of these instances (in terms of number of jobs and number of machines), as well as the flexibility degree of the instance, defined as the average number of eligible machines per operation. Detailed information on these instances is presented in Behnke and Geiger [START_REF] Behnke | Test instances for the flexible job shop scheduling problem with work centers[END_REF].

Makespan

Figures 4 to 7 show a graphical visualisation of the performance indicators for the minimisation of the makespan. In these figures, the results are grouped by type of benchmark. Figure 4 presents the average optimality gap for each method. We observe that the proposed decomposition methods outperform CP methods for all benchmarks. Globally, if we consider together the 276 instances, CP O method reaches in average an optimality gap of 23% (22% for warm CP O) in comparison with 10% for the LBBD CP O method and 6% for the LBBD B&B . Figure 5 illustrates the proportion of optima found for each benchmark. Overall, LBBD B&B is able to solve to optimality a larger number of instances within the limited time: 104 compared to 51 for LBBD CP O , 36 for CP O and 41 for warm CP O. Note that none of the methods succeeds in solving even a single instance for benchmarks from Dauzère-Pérès and Paulli [START_REF] Dauzère-Pérès | An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search[END_REF] and Barnes and Chambers [START_REF] Barnes | Flexible job shop scheduling by tabu search[END_REF].

Figure 6 provides the proportion of best solutions found among all methods. In contrast to the optimality gap, if we consider the number of best solutions found We illustrate the relative percentage deviation compared to the best solution found in Figure 7. It shows that LBBD B&B always gets high-quality solutions and never exceeds an average of 2% deviation for each benchmark. For the other methods, the quality of the solutions obtained is quite variable depending on the benchmark studied.

Based on these results we deduce that the proposed decomposition LBBD B&B outperforms the CP model for makespan minimisation. For all studied benchmarks, the LBBD B&B method obtains a greater number of optimal solutions (Figure 5), a greater number of best solutions (Figure 6), a smaller average gap (Figure 4), and a smaller relative deviation to the best solution found (Figure 7).

Although the LBBD B&B method achieves better performances, we notice a great variability of the results depending on the benchmarks. Therefore, we propose to fo- The observation of Figure 8 what can be seen in Figure 4, namely that the decomposition-based methods achieve a better optimality gap than pure constraint programming methods. Moreover, using the linear regression performed for each method, we notice that problems become more difficult to solve as the number of operations per machine increases. However, the efficiency of the decomposition methods is less sensitive to that factor than the CP methods. Indeed, while the slope of the linear regression relating the optimality gap obtained by the CP-based methods (warm CP O and CP O) according to the number of operations per machine is 1.0, this same coefficient goes down to 0.1 for the LBBD-based methods (LBBD CP O and LBBD B&B).

Finally, all the results presented above show the superiority of the LBBD B&B method over the LBBD CP O method. In Table 3, we report, for these two methods, the proportion of time spent in solving the subproblems (SP(%)), the proportion of time spent in solving the master problems (MP(%)), the average number of subproblems solved (SP number), and the average time spent to solve a subproblem (time per SP) for each studied benchmark. As expected, the time spent to solve the subproblems is much smaller for methods using the branch-and-bound algorithm, which explains its better performance. We also notice that for the most complicated instances (DPpaulli and ChambersBarnes), very few subproblems are considered (only 1 in most cases), which means that, whatever the method used, the imposed time limit of 1 hour is not enough to optimally solve these subproblems. By crossing this information with Figure 6, we note that even for these complicated instances method LBBD B&B obtains better quality solutions. We deduce that, in addition to proving the optimality of a solution more efficiently, the branch-and-bound algorithm allows finding better solutions in a given time than the CP method for the considered objective.

Total completion time

As presented in Section 3.5, we adapt all methods to the problem of minimising the total completion time. For this objective function, we illustrate all the considered performance measures in Figures 9101112.

Contrary to the makespan minimisation problem, no method clearly outperforms the others when minimising the total completion time. In general, the observed performances, for instance in Figures 9 and10, are worse for this objective function, as it makes the problem more difficult. In more detail, we can observe in Figure 9 that very few instances are solved to optimality, only 6% of them, considering together the four methods under study. Among them, the methods that prove the optimality for the largest number of instances are warm CP O and CP O, which obtain exactly the same results (with 15 instances over 276) followed by LBBD B&B (14 instances), and finally LBBD CP O (9 instances). In addition, the optimality gap is very wide, for many instances and all methods, as shown in Figure 10. We also note that the average gap per benchmark is similar for each method, which results in very close overall average gaps: 39% for the warm CP O method, 38% for CP O, 37% for LBBD CP O , and 36% for LBBD B&B .

Conclusions

In this paper, we present several exact methods to solve the preemptive flexible job-shop scheduling problem with two different objective functions, the makespan minimisation and the total completion time minimisation. We model the problem with both mixed-integer linear programming and constraint programming. Our main contribution consists in proposing a logic-based Benders decomposition algorithm by splitting the problem into an assignment master problem and a non-flexible scheduling subproblem. Concerning the makespan minimisation, the decomposition makes possible the use of the most powerful procedure in the literature to solve the preemptive job-shop subproblem, namely a branch-and-bound algorithm. With this method, the proposed decomposition outperforms the constraint programming model both in terms of optimality gap and in terms of the quality of the solutions found. We extend these solution methods to the total completion time minimisation problem. Due to Future works could explore a way to take advantage of the proposed decomposition for the total completion time objective. Heuristics are also needed for the purpose of providing a warm-start solution for exact methods, or for simply yielding an approximate solution to compare against.

Figure 1 :

 1 Figure 1: Gantt chart of a solution for Example 1 (4-job×4-machine pFJSSP, makespan 10)

Figure 2 :

 2 Figure 2: Two possible models with interval variables for preemptive operations of duration 3

Figure 3 :

 3 Figure 3: A decomposition scheme for the pFJSSP

BKFigure 4 :K

 4 Figure 4: Makespan minimisation -Average optimality gap for each method accordto benchmarks

B r a nKFigure 6 :

 6 Figure 6: Makespan minimisation -Proportion of best solutions found for each method according to benchmarks

BKFigure 2 Figure 8 :

 28 Figure Makespan minimisation -Average relative deviation to the best solution found for each method according to benchmarks

KFigure 9 :KFigure 10 :Figure 11 :

 91011 Figure 9: Total completion time minimisation -Proportion of optima found for each method according to benchmarks

B r a nKFigure 12 :

 12 Figure 12: Total completion time minimisation -Average relative deviation to the best solution found for each method according to benchmarks

Table 1 :

 1 Numerical example of an instance of the pFJSSP: processing times A solution of this instance of the pFJSSP is to consider the following assignments: operations O 1,1 , O 2,1 and O 2,3 on machine M 1, operations O 2,2 , O 3,2 , O 4,1 on machine M 2, operations O 1,2 , O 4,3 on machine M 3, and operations O 1,3 , O 3,1 , O 3,3 , O 4,2 on machine M 4. These assignments are associated with the processing times noted in bold in Table

Table 2 :

 2 FJSSP instances characteristics

 Figure Makespan minimisation -Proportion of optima found for each method according to benchmarks as an indicator of performance, method LBBD CP O (with 65 best solutions found over all instances) does not clearly dominate CP O (with 56 best solutions) and gets even worse results than warm CP O (with 90 best solutions). However, method LBBD B&B still outperforms all these methods (with 194 best solutions) and finds at least half of the best solutions for each benchmark.

Table 3 :

 3 Makespan minimisation -Performances of decomposition methods for each benchmark

	Benchmarks			LBBD CP O				LBBD B&B	
		SP(%) MP(%) SP number time per SP SP(%) MP(%) SP number time per SP
	BrandimarteMk 99.94 0.07	3	502.9	99.81	0.2	69	16.3
	HurinkEdata	100	0.01	3	861.8	100	0.01	42	54
	HurinkRdata	99.99 0.02	35	100.1	93.19 6.82	2855	0.9
	HurinkVdata	99.84 0.17	9	326.6	69.11 30.9	2858	0.4
	DPpaulli	99.57 0.44	1	2809	99.71	0.3	1	2810.5
	ChambersBarnes 99.99 0.02	1	3599.5	100	0.01	1	2614.8
	Kacem	16.67 83.34	9	0.1	0	100	9	0
	Fattahi	99.99 0.02	38	30.4	0.14 99.87	2364	0.1

Acknowledgements

The authors are indebted to Abbas Ebadi and Ghasem Moslehi who very kindly provided their branch-and-bound code.