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Abstract

In this paper, we focus on exact methods to solve the preemptive Flexi-
ble Job-Shop Scheduling Problem with makespan and total completion time
minimisation objective functions. Mathematical and constraint programming
models enable the resolution of this problem for small instances. However,
as an NP-hard problem, the cost of solving grows rapidly when considering
larger instances. In this regard, we propose a logic-based Benders decom-
position that relies on an efficient branch-and-bound procedure to solve the
subproblem representing a pure (non-flexible) preemptive job-shop scheduling
problem. Computational experiments are carried out and show the very good
performance of our proposals.
Keywords: Flexible job-shop scheduling, preemption, Benders decomposi-
tion, mixed-integer programming, constraint programming.

1 Introduction

The job-shop scheduling problem (JSSP) is a well studied and NP-hard problem
[2]. In the JSSP, a set of jobs are to be processed on a set of machines. Each job
is composed of a sequence of operations that must be processed on machines with
given processing time in a given job-dependent order, and each machine can process
only one operation at a time. An extensive literature has been devoted to the JSSP,
including the consideration of various additional constraints and different objective

∗An updated version focusing on the makespan minimisation criterion was published in the
journal Computers & Operations Research, see [1].
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functions, even if makespan minimisation is mostly studied [3]. Nevertheless, very
few works consider the job-shop problem with preemption. Le Pape and Baptiste [4]
were the first to solve the pJSSP. Then, genetic algorithm and fuzzy logic are used
in Yun [5]. To our knowledge, Ebadi and Moslehi are among the latest authors to
have solved the problem to optimality. In particular, they proposed a MILP model
[6] and an efficient branch-and-bound procedure [7].

The flexible job-shop problem (FJSSP) is a generalisation of the JSSP in the
sense that, for each operation, there exists a set of eligible machines. This makes
the problem more difficult to solve, as it consists of both a machine allocation and
a sequencing problem. In the FJSSP literature, the most often studied optimisation
criterion is the makespan minimisation; see for example the survey of Chaudhry and
Khan [8]. Due to the complexity of the problem, many heuristics and metaheuris-
tics have been developed, e.g., Tabu search [9, 10], genetic algorithms [11, 12] or
simulated annealing [13, 14]. With the improvement of the performance of solvers,
exact methods have also been designed, including a majority of mathematical models
[15, 16]. Meng et al. [17] compared four mixed-integer linear programming models
and one constraint programming model. They showed that the constraint program-
ming model outperforms all other studied exact methods. Numerous variants of the
FJSSP exist and have been also studied in the literature, e.g., including sequence-
dependent setup times [9] or workers [18].

Studies on the preemptive flexible job-shop scheduling problem (pFJSSP) are
scarce: three metaheuristics are presented in Zhang and Yang [19], while Jansen
et al. [20] proposed several approximation algorithms for the FJSSP including one
for the particular case of the pFJSSP. To the best of our knowledge, no exact method
is reported in the literature to solve this problem. The purpose of the present article
is to develop and compare several exact methods for the pFJSSP with makespan
minimisation, namely: Mixed-Integer Linear Programming (MILP), Constraint pro-
gramming (CP), and Logic-Based Benders decomposition (LBBD). We also extend
these three methods to a second optimisation criterion: the total completion time
minimisation.

LBBD was introduced by Hooker et al. [21] in the context of logic circuit verifi-
cation and Hooker [22] formalised the concept. This approach has been applied to a
large variety of scheduling problems, especially those including assignment decisions
to make: Hooker and Ottosson [23] tackle a parallel-machine problem with release
and delivery dates with the objective to minimise processing costs, Hooker [24] ad-
dresses the cumulative scheduling problem, while Tan and Terekhov [25] solve the
flexible flow-shop problem with an LBBD algorithm. Naderi and Roshanaei [26] also
proposed an LBBD scheme to solve the FJSSP without preemption.
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The remainder of the paper is organised as follows. In the next section, the
preemptive flexible job-shop scheduling problem is formally defined; MILP and CP
models for the pFJSSP with makespan minimisation are also presented. In Section 3,
we propose an LBBD scheme based on the use of an efficient branch-and-bound
procedure for solving a pure scheduling subproblem. Computational experiments
are carried out in Section 4 for two objective functions: the minimisation of the
makespan and the minimisation of the total completion time. We draw a conclusion
in Section 5.

2 Problem definition and modelling

An instance of the pFJSSP is defined as a set of jobs J and a set of machinesM.
A job is not subject to an initial release date. Each job i ∈ J consists of a sequence
of ni operations. The jth operation Oi,j ∈ Oi of a job i must be performed by one
of the machine from the set of eligible machines Mi,j ⊆ M. Let pi,j,m denote the
processing time of operation Oi,j that is processed on machine m ∈ Mi,j. Each
machine can process at most one operation at a time and preemption is allowed:
the processing of operations can be interrupted and resumed later without penalty.
Although an operation can be interrupted (preemption), it is assumed that it must
be fully processed by one and the same machine (no migration).

Notations and definitions

J Set of jobs
M Set of machines
ni Number of operations in job i (i ∈ J )
Oi Set of operations in job i (i ∈ J )
Oi,j jth operation of job i (i ∈ J , j ∈ {1, . . . , ni})
Mi,j Set of eligible machines for operation Oi,j (i ∈ J , Oi,j ∈ Oi)
Im Set of operations that can be processed by machine m (m ∈M)
pi,j,m Processing time of operation Oi,j on machine m (i ∈ J , Oi,j ∈ Oi,m ∈Mi,j)
pmin
i,j Shortest processing time of operation Oi,j,

pmin
i,j = minm∈Mi,j

pi,j,m (i ∈ J , Oi,j ∈ Oi)
rmin
i,j Shortest release date of operation Oi,j,

rmin
i,j =

∑
j′<j p

min
i,j′ (i ∈ J , Oi,j ∈ Oi)

qmin
i,j Shortest delivery time of operation Oi,j,

qmin
i,j =

∑
j′>j p

min
i,j′ (i ∈ J , Oi,j ∈ Oi)
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Example 1. Consider a pFJSSP with 4 jobs and 4 machines. The processing times
pi,j,m of operations {Oi,j ∈ Oi, j = 1, . . . , ni}i∈J , on each eligible machine m ∈ Mi,j

are given in Table 1.

M1 M2 M3 M4
O1,1 2 3

J1 O1,2 4 4 5
O1,3 4 3 2
O2,1 3 4

J2 O2,2 1 2
O2,3 3 2
O3,1 3 5 3

J3 O3,2 4 6
O3,3 3 2
O4,1 2 3

J4 O4,2 2 2
O4,3 4 4

Table 1: Numerical example of an instance of the pFJSSP: processing times

A solution of this instance of the pFJSSP is to consider the following assignments:
operations O1,1, O2,1 and O2,3 on machine M1, operations O2,2, O3,2, O4,1 on machine
M2, operations O1,2, O4,3 on machine M3, and operations O1,3, O3,1, O3,3, O4,2 on
machine M4. These assignments are associated with the processing times noted in
bold in Table 1. Figure 1 depicts such a solution. On machine M2, operation O3,2 is
interrupted at t = 5 by operation O2,2 and resumed on the same machine at t = 6.
The makespan is 10.

2.1 Mathematical model

Let us introduce a mixed-integer program to solve the pFJSSP. It is based on a
time-indexed formulation proposed by Bowman [27] to solve the preemptive job-shop
problem. We adapt it to integrate the notion of resource flexibility.

Let H = {1, 2, 3, . . . , h} be the time horizon. The decision variables are defined
as follows:

xi,j,m =

{
1 if operation Oi,j is processed on machine m;
0 otherwise.

4



M1

M2

M3

M4

O1,1

O1,2

O1,3

O2,1

O2,2

O2,3

O3,1

O3,2 O3,2

O3,3

O4,1

O4,2

O4,3

0 1 2 3 4 5 6 7 8 9 10 11

Figure 1: Gantt chart of a solution for Example 1 (4-job×4-machine pFJSSP,
makespan 10)

yi,j,t =

{
1 if operation Oi,j is in process at time t;
0 otherwise.

Hence for the mathematical model, it yields:

minCmax (1)

s.t.
∑

m∈Mi,j

xi,j,m = 1 ∀i ∈ J , Oi,j ∈ Oi (2)

h∑
t=1

yi,j,t ≥
∑

m∈Mi,j

xi,j,m × pi,j,m ∀i ∈ J , Oi,j ∈ Oi (3)

h∑
t′=t

yi,j,t′ ≤ max
m∈Mi,j

pi,j,m × (1− yi,j+1,t) ∀i ∈ J , Oi,j ∈ Oi \ {Oi,ni
}, t ∈ H (4)

∑
i∈J

ni∑
j=1

xi,j,m × yi,j,t ≤ 1 ∀m ∈M, t ∈ H (5)

Cmax ≥ (t+ 1)×
∑
i∈J

yi,ni,t ∀t ∈ H (6)

xi,j,m ∈ {0, 1} ∀i ∈ J , Oi,j ∈ Oi,m ∈Mi,j (7)

yi,j,t ∈ {0, 1} ∀i ∈ J , Oi,j ∈ Oi, t ∈ H (8)

The objective (1) is the makespan minimisation. Constraints (2) ensure that
each operation is processed by exactly one of the eligible machines. The duration
of each operation is satisfied thanks to constraints (3). Constraints (4) express the
precedence constraints between operations of the same job. Let i ∈ J be a job, Oi,j
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and Oi,j+1 be two successive operations and t be a given period. If operation Oi,j+1 is
processed at time t (i.e., yi,j+1,t = 1), then operation Oi,j must be completed before t
(i.e., no longer be processed from t, ∀t′ ≥ t, yi,j,t′ = 0). Constraints (5) represent the
disjunctive constraints on each machine. Finally, constraints (6) allow us to calculate
the makespan.

Note that constraints (5) are nonlinear, but can be easily linearised since variables
xi,j,m and yi,j,t are binary, the previous mathematical model thus becoming a MILP
model by adding the variables:

zi,j,m,t =

{
1 if operation Oi,j is processed on machine m at time t;
0 otherwise

and replacing constraints (5) by the following constraint set:

zi,j,m,t ≥ xi,j,m + yi,j,t − 1 ∀i ∈ J , Oi,j ∈ Oi, m ∈Mi,j, t ∈ H (9)

zi,j,m,t ≤ xi,j,m ∀i ∈ J , Oi,j ∈ Oi, m ∈Mi,j, t ∈ H (10)

zi,j,m,t ≤ yi,j,t ∀i ∈ J , Oi,j ∈ Oi, m ∈Mi,j, t ∈ H (11)∑
i∈J

ni∑
j=1

zi,j,m,t ≤ 1 ∀m ∈M, t ∈ H (12)

2.2 Constraint programming

To introduce the CP model, we use the IBM CP Optimizer solver, which allows
the use of specific decision variables and constraints. In particular, we use interval
variables, whose main feature is to be optional. This concept is relevant to our
problem since each operation is performed on a machine within a set of eligible
machines.

There are two possible ways to model preemptive operations of duration p with
interval variables [28]:

1) by a set of optional interval variables with unfixed duration and imposing that
the sum of their durations is equal to p;

2) by a chain of p unit-duration intervals.

These two possibilities are respectively illustrated in Figure 2 for an operation of
duration 3.

In the context of preemptive multi-skill resource-constrained project scheduling,
Polo-Mej́ıa et al. [28] show that the second approach is more efficient. We have
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1) . . . 2) . . .

Figure 2: Two possible models with interval variables for preemptive operations of
duration 3

also conducted experiments leading to this conclusion for our specific pFJSSP. For
this purpose, each preemptive operation is divided into unit-duration parts in our
constraint programming model. We introduce the following decision variables:

• taski,j : interval variable between the start and the end of the processing of
operation Oi,j;

• modei,j,m : interval variable between the start and the end of the processing
of operation Oi,j on machine m (since the operations have multiple eligible
machines and must be executed by exactly one of them, this is an optional
variable);

• parti,j,k,m : interval variable of unit duration of the processing of the kth part
of operation Oi,j on machine m (optional variable).

minCmax (13)

s.t. Cmax ≥ taski,ni
.end ∀i ∈ J (14)

EndBeforeStart(taski,j, taski,j+1) ∀i ∈ J ,
Oi,j ∈ Oi \ {Oi,ni

} (15)

EndBeforeStart(parti,j,k,m, parti,j,k+1,m) ∀i ∈ J , Oi,j ∈ Oi,

m ∈Mi,j, 1 ≤ k ≤ pi,j,m − 1
(16)

Span(modei,j,m, parti,j,k,m : ∀1 ≤ k ≤ pi,j,m) ∀i ∈ J , Oi,j ∈ Oi,

m ∈Mi,j (17)

Alternative(taski,j,modei,j,m : ∀m ∈Mi,j) ∀i ∈ J , Oi,j ∈ Oi (18)

PresenceOf(modei,j,m)⇒ PresenceOf(parti,j,k,m) ∀i ∈ J , Oi,j ∈ Oi,

m ∈Mi,j, 1 ≤ k ≤ pi,j,m
(19)

NoOverlap(parti,j,k,m : ∀Oi,j ∈ Im, 1 ≤ k ≤ pi,j,m) ∀m ∈M (20)
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The objective function (13) is to minimise the makespan. Constraints (14) define
the makespan. The global constraint EndBeforeStart is used to model the precedence
constraints, as in the two following constraint sets. Constraints (15) ensure that
the operations of the same job will be processed with respect to the job sequence.
Constraints (16) aim at ordering the parts of the operation and so avoid symmetries,
and ensure that each part is treated one after the other. With the Span global
constraint, constraints (17) are used to ensure that operation interval spans over all
its processing parts (i.e., each operation starts with its first part and ends with its
last part). Constraints (18) use the Alternative global constraint that ensures each
operation to be processed by exactly one of the eligible machines. From the presence
status (PresenceOf function) of mode interval variable, constraints (19) define the
duration of each operation. With the NoOverlap global constraint, constraints (20)
forbid the overlapping of operations processed on the same machine.

3 Logic-based Benders decomposition

Hybrid methods for optimisation, especially those combining MILP and CP, have
been widely used since the late 90’s. LBBD falls into this category. The LBBD ap-
proach decomposes a given problem into a master problem, usually a MILP, and one
or several subproblems. It iterates between the master problem and the subproblems
until an optimal solution is found by means of constraint generation techniques. At
each iteration h, a subset of variables, say x, are fixed by the master problem, the
resolution of the resulting subproblem provides the objective value zh implied by the
current solution x̄h. This bound is then used to generate cuts that are added to the
master problem, and so on. A state-of-the-art about LBBD can be found in [29].

3.1 Decomposition scheme

The pFJSSP can be decomposed into an assignment master problem and a scheduling
subproblem. In the master problem, each operation is assigned to exactly one of its
eligible machines. Solving the master problem enables to find a lower bound LB for
the global problem. Once this assignment x̄h is fixed, the subproblem consists in a
preemptive JSSP (i.e., without flexibility), of which a solution is an upper bound
UB of the global problem and so a feasible solution of our problem. Solving this
subproblem also allows the deduction of optimality cuts. Then, these cuts are added
to the master problem, which is solved again. This general processing is illustrated
in Figure 3.
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Master problem: Assignment problem
update LB

Subproblem: Job-Shop Scheduling problem
update UB

Assignment and scheduling optimal Compute optimality cut

fixed assignment
x̄h

LB = UB LB < UB

Add cut

Figure 3: A decomposition scheme for the pFJSSP

In the following, a MILP model is proposed for the master problem. The schedul-
ing subproblems are solved using two different methods: constraint programming for
the first version and a dedicated branch-and-bound algorithm for the second ver-
sion. These methods are named LBBDCPO and LBBDB&B, respectively. Then the
question of the generation of optimality cuts is addressed. Finally, we present an
extension of the methods for the consideration of the total completion time minimi-
sation problem.

3.2 Master problem

The master problem is a relaxation of the pFJSSP as it only consists in the assign-
ment of operations to machines (i.e., the constraints only involve the assignment
variables xi,j,m).

Let m ∈ M be a machine, I ′m ⊆ Im be a subset of operations that can be pro-
cessed by m, r′m = minOi,j∈I′

m
rmin
i,j be the shortest release starting date of operations

from I ′m (minimum head) and q′m = minOi,j∈I′
m
qmin
i,j be the shortest delivery time
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after I ′m (minimum tail). The master problem is as follows:

minCmax (21)

s.t.
∑

m∈Mi,j

xi,j,m = 1 ∀i ∈ J , Oi,j ∈ Oi (22)

Cmax ≥
ni∑
j=1

∑
m∈Mi,j

xi,j,m × pi,j,m ∀i ∈ J (23)

Cmax ≥ r′m +
∑

Oi,j∈I′
m

xi,j,m × pi,j,m + q′m ∀m ∈M, I ′m ⊆ Im (24)

xi,j,m ∈ {0, 1} ∀i ∈ J , Oi,j ∈ Oi, m ∈Mi,j (25)

Constraints (22) are identical to constraints (2) (processing of each operation by
one of the eligible machines). Constraints (23) and (24) express the relaxation of
the subproblem as they help to estimate the objective value Cmax according to the
assignment variables xi,j,m. Having a tighter lower bound increases the chances of
obtaining high-quality subproblem. Constraints (23) restrict the makespan to be
at least equal to the sum of the processing times of operations of the same job.
Constraints (24) come from an idea first proposed by Carlier [30] to compute a lower
bound for the JSSP: Given a machinem and a subset of operations I ′m, the makespan
is at least equal to the sum of the processing times of operations from this subset
assigned to m, plus the minimum head and tail.

In practice, for this last set of constraints (24), it is not useful to consider all the
possible subsets of Im. Indeed, based on Theorem 1 below, it is enough to study the
sets Ia created as follows:
for each machine m and for each pair of operations a = (Oi,j, Oi′,j′) ∈ Im × Im, let
ra = min(rmin

i,j , rmin
i′,j′ ) be the minimum head and qa = min(qmin

i,j , qmin
i′,j′ ) be the minimum

tail, and Ia = {Oi,j ∈ Im | rmin
i,j > ra, q

min
i,j > qa} be the set of operations that can

be processed by m and of which the shortest release date and the shortest delivery
time are larger than the minimum head and tail, respectively.

Theorem 1. Let I ′m and I ′′m be two subsets, such that I ′′m ⊂ I ′m and ∃Oi,j ∈ I ′′m with
rmin
i,j = r′m and ∃Oi′,j′ ∈ I ′′m with qmin

i′,j′ = q′m. Constraint Cmax ≥ r′m+
∑

Oi,j∈I′
m
xi,j,m×

pi,j,m + q′m dominates constraint Cmax ≥ r′′m +
∑

Oi,j∈I′′
m
xi,j,m × pi,j,m + q′′m.

Proof. To prove that a constraint C1 dominates another one constraint C2, it must
be shown that C1 implies C2.

By assumption r′m = r′′m, q
′′
m = q′m and, for any assignment,

∑
Oi,j∈I′

m
xi,j,m ×

pi,j,m ≥
∑

Oi,j∈I′′
m
xi,j,m × pi,j,m. Hence, r′m +

∑
Oi,j∈I′

m
xi,j,m × pi,j,m + q′m ≥ r′′m +
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∑
Oi,j∈I′′

m
xi,j,m × pi,j,m + q′′m.

It follows that:
Cmax ≥ r′m +

∑
Oi,j∈I′

m
xi,j,m× pi,j,m + q′m =⇒ Cmax ≥ r′′m +

∑
Oi,j∈I′′

m
xi,j,m× pi,j,m +

q′′m.

Example 2. Consider again Example 1 and let suppose that: x1,1,1 = x1,2,3 = x1,3,4 =
x2,1,1 = x2,2,2 = x2,3,1 = x3,1,4 = x3,2,2 = x3,3,4 = x4,1,2 = x4,2,4 = x4,3,3 = 1.

Regarding constraints (23), it yields:

• duration of job 1: p1,1,1 + p1,2,3 + p1,3,4 = 2 + 4 + 2 = 8 =⇒ C1 ≥ 8;

• duration of job 2: p2,1,1 + p2,2,2 + p2,3,1 = 3 + 1 + 3 = 7 =⇒ C2 ≥ 7;

• duration of job 3: p3,1,4 + p3,2,2 + p3,3,4 = 3 + 4 + 2 = 9 =⇒ C3 ≥ 9;

• duration of job 4: p4,1,2 + p4,2,4 + p4,3,3 = 2 + 2 + 4 = 8 =⇒ C4 ≥ 8.

Therefore, the makespan of the incumbent solution is at least 9, that is, Cmax ≥ 9.
About constraints (24), we detail the calculations for only one pair a = (O1,1, O2,1)

on machine M1.

(1) Identify the head ra and tail qa:

ra = min(rmin
1,1 , rmin

2,1 ) = min(0, 0) = 0

qa = min(qmin
1,1 , qmin

2,1 ) = min(pmin
1,2 + pmin

1,3 , pmin
2,2 + pmin

2,3 ) = min(4 + 2, 1 + 2) = 3

(2) Form subset Ia:

Ia = {O1,1, O2,1, O3,1, O4,2}

(3) Deduce a lower bound for the makespan:

Cmax ≥ 0 + p1,1,1 × x1,1,1 + p2,1,1 × x2,1,1 + p3,1,1 × x3,1,1 + p4,2,1 × x4,2,1 + 3

≥ 0 + 2× 1 + 3× 1 + 3× 0 + 4× 0 + 3 = 8

Doing the calculations extensively on all machines and for all eligible pairs, we obtain
Cmax ≥ 10 (for Ia′ = {O1,2, O4,3} on machine M3).

At each iteration h, we get a solution of the master problem, i.e., a set of
operation-machine assignments. The following additional notations will be use-
ful for the sequel: let x̄h

i,j,m be the value of variable xi,j,m at iteration h. Let
Ph

m = {Oi,j ∈ Oi, i ∈ J | x̄h
i,j,m = 1} be the set of operations assigned to machine m

at iteration h.
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3.3 Subproblem

The subproblem is a pJSSP. To solve it, two different ways are proposed. We first
present a CP model, then we describe a branch-and-bound algorithm that has its
origin in a proposal made in Ebadi and Moslehi [7].

3.3.1 Constraint programming: LBBDCPO

In the LBBDCPO method, the subproblem is solved using a constraint programming
model. This model is similar to the one proposed in Section 2.2. However, in this
case, it aims at solving a non-flexible pJSSP since the assignments are already fixed.
The variables involved in this model are the following:

• taski,j : interval variable between the start and the end of the processing of
operation Oi,j ;

• parti,j,k : interval variable of unit duration of the processing of the kth part of
operation Oi,j.

Since, the set of eligible machines is reduced to a single machine, unlike the model
presented in Section 2.2, the modei,j,m variables does not appear and parti,j,k are
non-optional variables. The subproblem is described as follows:

min zh (26)

s.t. zh ≥ taski,ni
.end ∀i ∈ J (27)

EndBeforeStart(taski,j, taski,j+1) ∀i ∈ J , Oi,j ∈ Oi \ {Oi,ni
} (28)

EndBeforeStart(parti,j,k, parti,j,k+1) ∀i ∈ J , Oi,j ∈ Oi,

1 ≤ k ≤ phi,j − 1 (29)

Span(taski,j, parti,j,k : ∀1 ≤ k ≤ phi,j) ∀i ∈ J , Oi,j ∈ Oi (30)

NoOverlap(parti,j,k : ∀Oi,j ∈ Ph
m, 1 ≤ k ≤ phi,j) ∀m ∈M (31)

where phi,j =
∑

m∈Mi,j
pi,j,m × x̄h

i,j,m.

3.3.2 Branch-and-bound algorithm: LBBDB&B

The resolution algorithm used for the LBBDB&B method is inspired by Ebadi and
Moslehi [7]. In this study, the authors solve the pJSSP using a branch-and-bound
algorithm developed on the basis of a disjunctive graph representation. By exploiting
the properties of the problem, they introduce effective dominance rules and lower
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bounds that make the method efficient. In particular, they have shown that the
set of schedules of which preemption is only allowed by a newly available operation
is dominant for the problem. The proposed algorithm is briefly presented in the
following.

Each operation Oi,j of duration pi,j is divided into pi,j operations {Oi,j,1, . . . ,
Oi,j,pi,j} of unit duration named unit operations. At each level of the branch-and-
bound, the set Va of available unit operations (i.e., whose preceding operations have
already been scheduled) is formed. The machine m∗ processing the unit operation
with the earliest availability date (the availability date is determined by the longest
path between node Start and the unit operation in the partial disjunctive graph)
ES is selected. The set of unit operations available in ES on m∗ is denoted by V ′

a. A
lower bound X for the date of the next available unit operation on m∗ is calculated.
For each unit operation Oi,j,k in V ′

a, a new node is created where Oi,j,k and the
(X − 1) unit operations following are scheduled from ES. The disjunctive graph is
updated (a disjunctive arc between the last unit operation Oi,j,pi,j of operation Oi,j

and the set of other unit operations in V ′
a is added); hence, a lower bound LB of the

partial scheduling is obtained to evaluate this new node. If LB is greater than the
objective value of the best solution obtained so far, the node is pruned. Otherwise,
the algorithm continue at the next level.

Ebadi and Moslehi [7] make the assumption that each job visits each machine
at most once (in shop scheduling this is known as no recirculation). However, this
is not true in our case when solving a subproblem of the pFJSSP. Indeed, during
the assignment phase, nothing prevents two operations of the same job from being
performed by the same machine (cf. Example 1). This is why we have to adapt the
solving algorithm to our specific problem.

3.4 Benders cuts

If zh is the minimum makespan found by the subproblem, then a trivial Benders cut
requires the makespan to be at least zh, whenever all assignments remain the same.
In other words, any solution that achieves a better makespan assigns at least one of
the operations to another machine. Thus, the following cut is created and added to
the master problem:

Cmax ≥ zh
(
1−

∑
m∈M

∑
Oi,j∈Ph

m

(1− x̄h
i,j,m)

)
(32)

Inequality (32) is valid in the sense that it does not remove any feasible solution.
However, this cut involves all the assignments and leads to the exclusion of only one
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solution of the master problem, since the cut becomes useless when even one of the
operation assignments is changed. The goal is therefore to strengthen the cut by
identifying a subset of assignments responsible for the value of the makespan.

For this purpose, we adapt our algorithm (see Algorithm 1). Once the master
problem is solved (Step 1), instead of going directly to the subproblem (Step 3),
the idea proposed by Carlier [30] is again used, as in the set of constraints (24),
as a relaxation of the subproblem (Step 2). However, at this stage of the search,
the assignments are fixed; this allows us to calculate a better approximation of the
value of the objective function. Indeed, the duration of each operation Oi,j is known:
phi,j =

∑
m∈Mi,j

pi,j,m × x̄h
i,j,m , thus it is possible to redefine the shortest release date

(resp. shortest delivery time) of an operation Oi,j at iteration h as rmin,h
i,j =

∑
j′<j p

h
i,j

(resp. qmin,h
i,j =

∑
j′>j p

h
i,j).

Let m ∈ M be a machine, a = (Oi,j, Oi′,j′) ∈ Ph
m × Ph

m be a pair of operations
processed by machine m. Let us define ra = min(rhi,j, r

h
i′,j′) as the minimum head,

qa = min(qhi,j, q
h
i′,j′) as the minimum tail, and Pa = {Oi,j ∈ Ph

m |m ∈ Mi,j, r
h
i,j >

ra, q
h
i,j > qa} as the set of operations that are processed by m and of which the

shortest release date and the delivery time are smaller than the minimum head and
the minimum tail, respectively. LBa = ra +

∑
Oi,j∈Pa

pi,j,m + qa is a lower bound on

the optimum value for the zh objective value in the pJSSP subproblem.
Therefore, if LBa is superior to the incumbent best solution found, it is useless

to solve the subproblem since it is impossible to improve the best known solution.
Instead of solving the subproblem, it is required to add the following cut:

Cmax ≥ LBa

(
1−

∑
m∈M

∑
Oi,j∈Sa∩Ph

m

(1− x̄h
i,j,m)

)
(33)

where Sa is the set of operations belonging to Pa, but also the operations of jobs
with at least one operation belonging to this set (because they have an influence on
the calculation of ra or qa).

Example 3. Consider Example 1 again and assume the same assignments as in
Example 2, that is: x̄h

1,1,1 = x̄h
1,2,3 = x̄h

1,3,4 = x̄h
2,1,1 = x̄h

2,2,2 = x̄h
2,3,1 = x̄h

3,1,4 = x̄h
3,2,2 =

x̄h
3,3,4 = x̄h

4,1,2 = x̄h
4,2,4 = x̄h

4,3,3 = 1.
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Algorithm 1: Logic-based Benders decomposition algorithm

Initialisation Master constraints ←{constraint sets (22), (23), (24)} ;
incumbent solution← solution found using a heuristic ;
h← 0 ;
Step 1 Master problem

Solve the assignment master problem until a new feasible solution Ph is
found ;

Step 2 Subproblem relaxation
foreach m ∈M do

foreach pair a = (Oi,j, Oi′,j′) ∈ Ph
m × Ph

m do
ra ← min(rhi,j, r

h
i′,j′) ;

qa ← min(qhi,j, q
h
i′,j′) ;

Pa ← {Oi,j ∈ Ph
m | rhi,j > ra, q

h
i,j > qa} ;

LBa ← ra +
∑

Oi,j∈Pa
pi,j,m + qam ;

if LBa > incumbent solution.value then
Generate cut (33) and add it to master constraints ;
Go back to Step 1 ;

Step 3 Subproblem
current solution← Solve the pJSSP subproblem with Ph assignments ;
if current solution.value < incumbent solution.value then

incumbent solution← current solution ;

Generate cut (32) and add it to master constraints ;
Go back to Step 1
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We focus on machine M1 and we take into account the pair a = (O1,1, O2,1):

LBa = ra +
∑

Oi,j∈Pa

pi,j,1 + qa

= min(rh1,1, r
h
2,1) +p1,1,1 + p2,1,1 +min(qh1,1, q

h
2,1)

= min(rh1,1, r
h
2,1) +p1,1,1 + p2,1,1 +min(ph1,2 + ph1,3, p

h
2,2 + ph2,3)

= min(0, 0) +2 + 3 +min(4 + 2, 1 + 3) = 9

This leads to the following cut:

Cmax ≥ 9×
(
1−

∑
m∈M

∑
Oi,j∈(O1∪O2)∩Ph

m

(1− x̄h
i,j,m)

)
In Example 3, although the considered subset of operations assigned to machine

M1 is identical to the one studied in Example 2, the bound obtained is tighter
because the values ra and qa are calculated differently. Since the assignments are
fixed, only the current assignment selection Ph is taken into consideration to calculate
the shortest release date rhi,j and shortest delivery time qhi,j of an operation Oi,j (i.e.,
there is no need to consider all the possible assignments of previous and following
operations).

3.5 Total completion time

Considering the total completion time (i.e., the sum of the completion times of all
the jobs) as the objective function to minimise, the decomposition scheme presented
in Section 3.1 remains identical. However, adjustments have to be done to solve both
the master problem and the subproblems.

3.5.1 Master problem

The master problem needs to be adapted to the new objective function. First of all,
the criterion (21) is replaced by:

minCtotal (34)

where Ctotal is the total completion time.
Then we used two relaxations for the master problem. The first one is based on

the idea that the completion time Ci of a job i is at least equal to the sum of the
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processing times of operations belonging to job i, Ci ≥
∑

m∈M
∑ni

j=1 xi,j,m × pi,j,m,
∀i ∈ J . Constraints (23) are thus replaced by the following:

Ctotal ≥
∑
i∈J

ni∑
j=1

∑
m∈Mi,j

xi,j,m × pi,j,m (35)

The second relaxation of the subproblem is based on the consideration of a single-
machine problem for each machine. On the one hand, by definition, the completion
time of a job is not less than the completion time of one of its operations plus the
tail of this operation: Ci ≥ Ci,j + qmin

i,j ,∀i ∈ J , Oi,j ∈ Oi. Hence, we deduce:

Ci ≥
1

ni

×
∑ni

j=1(Ci,j + qmin
i,j ),∀i ∈ J and Ctotal ≥

∑
i∈J

1

ni

×
∑ni

j=1(Ci,j + qmin
i,j ).

Let Cm be a lower bound on the total completion time of operations on machine m.
According to the previous statement, we can say that:

Ctotal ≥
1

maxi∈J ni

×
( ∑
m∈M

Cm +
∑
i∈J

ni∑
j=1

qmin
i,j

)
(36)

On the other hand, the Shortest Processing Time first (SPT) rule is known to be
optimal for the single-machine problem when the objective is to minimise the total
completion time. Thus, for each machine m, let πm be a permutation of Im such
that pπm(1) ≤ pπm(2) ≤ · · · ≤ pπm(|Im|). Hence, C

′
m =

∑|Im|
k=0 Cπm(k) where

Cπm(k) ≥
( k∑

l=0

pπm(l) × xπm(l)

)
× xπm(k) (37)

is a lower bound on the total completion time of operations on machine m. Terms
Cπm(k) occur only for those operations that are assigned to machine m, that is why
we introduce the assignment variables xπm(k). We linearise by writing :

Cπm(k) ≥
k∑

l=0

(pπm(l) × xπm(l)−Bπm(k) × (1− xπm(k)) (38)

and Cπm(k) ≥ 0, the big-M term Bπm(k) is given by:

Bπm(k) =
k−1∑
l=0

pπm(l) (39)
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Finally, we sum over all machines and constraints (24) are replaced by con-
straints (38), (39), and the following:

Ctotal ≥
1

maxi∈J ni

( ∑
m∈M

|Im|∑
k=0

Cπm(k) +
∑
i∈J

ni∑
j=1

qmin
i,j

)
(40)

3.5.2 Subproblem

The subproblem must also fit the objective function. In particular, in the subproblem
of the LBBDCPO version, it is enough to replace constraints (27) of the CP model
by:

zh ≥
∑
i∈J

taski,ni
.end (41)

Regarding the LBBDB&B version, some adaptations must be made in the branch-
and-bound algorithm. Specifically, the objective function value is given by the total
length of the longest paths from node Start to the last unit operation of each job,
in the disjunctive graph. At each node, a lower bound is calculated in a similar way
in the partial disjunctive graph.

4 Numerical experiments

For computational tests, all experiments are performed on three cluster nodes with
Intel Xeon E5-2695 v4 CPU at 2.1 GHz. All algorithms presented are implemented
in C++, using CPLEX 12.10 for the MILP models and CP Optimizer (CPO) 12.10
for the CP models. CPU time and RAM were respectively limited to 1 hour and 16
GB.

A naive heuristic allows us to obtain an upper bound for the objective value.
This solution is used at the beginning of the search in the decomposition methods.
For the purpose of comparison between methods, and for the sake of fairness, we also
use this solution as a warm start for the CP method. Therefore, the instances are
solved using the CP model presented in Section 2 with warm start solution (method
warm CPO) and without (CPO), and by the two versions of the decomposition
proposed in Section 3 (LBBDCPO and LBBDB&B).

To evaluate and compare the diverse methods, we consider various performance
measures:
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• the average optimality gap, computed as follows:

gapmethod =
UBmethod − LBmethod

UBmethod
(42)

• the proportion of optima found;

• the relative percentage deviation compared to the best solution found. It aims
to evaluate the quality of the upper bounds found by each method. It is
therefore computed as follows:

RDmethod =
UBmethod − UB∗

UB∗ (43)

where UB∗ is the best bound found among all tested methods;

• the proportion of instances for which the best solution (among the tested meth-
ods) is found.

Moreover, two objective functions are considered: the minimisation of the make-
span and the minimisation of the total completion time.

4.1 Instances

Numerous benchmark instances for the FJSSP without preemption are available in
the literature. These instances serve as a reference to evaluate our propositions in
the preemptive case.

Brandimarte [31] introduced instances, referred to here as “BrandimarteMk”,
of which data are randomly generated using a uniform distribution within a given
limit. Hurink et al. [10] provided an adaptation of some of the classical JSSP in-
stances [32, 33, 34, 35, 36] and generate three data sets, denoted by “HurinkEdata”,
“HurinkRdata” and “HurinkVdata”, with increasing flexibility, by expanding the
pool of eligible machines for some of the operations. Dauzère-Pérès and Paulli [37]
designed a data set “DPpaulli”, in which the number of operations per job is greater
than the number of machines, and whose parameters are randomly generated using a
uniform distribution within given limits. Barnes and Chambers [38] created a set of
instances “ChambersBarnes” based on three instances of the classical JSSP problem
[32, 33] transformed into FJSSP instances by duplicating some machines. Kacem
et al. [39] created the instances “Kacem” with total flexibility (i.e., each machine is
able to process each operation). Furthermore, for this benchmark, it is worth men-
tioning that it is also distinguished by the very small number of instances it contains
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(4). Lastly, Fattahi et al. [40] proposed randomly generated small- and medium-size
problems (“Fattahi”).

Characteristics of these benchmarks are summarised in Table 2. For each bench-
mark, we report the number of instances (276 in total) that compose it, the size of
these instances (in terms of number of jobs and number of machines), as well as the
flexibility degree of the instance, defined as the average number of eligible machines
per operation. Detailed information on these instances is presented in Behnke and
Geiger [41].

Data set Reference Number of Size Flexibility
instances Jobs Machines

BrandimarteMk Brandimarte [31] 15 [10 . . . 30] [4 . . . 15] [1.4 . . . 4.1]

HurinkEdata Hurink et al. [10] 66 [6 . . . 30] [4 . . . 15] [1.1 . . . 1.2]

HurinkVdata Hurink et al. [10] 66 [6 . . . 30] [4 . . . 15] [2 . . . 6.7]

DPpaulli Dauzère... [37] 18 [10 . . . 20] [5 . . . 10] [1.1 . . . 5]

ChambersBarnes Barnes... [38] 21 [10 . . . 15] [11. . . 18] [1 . . . 1.3]

Kacem Kacem et al. [39] 4 [4 . . . 15] [5 . . . 10] [5 . . . 10]

Fattahi Fattahi et al. [40] 20 [2 . . . 12] [2 . . . 8] [1.5 . . . 2.7]

Total 276 [2 . . . 30] [2 . . . 18] [1 . . . 10]

Table 2: FJSSP instances characteristics

4.2 Makespan

Figures 4 to 7 show a graphical visualisation of the performance indicators for the
minimisation of the makespan. In these figures, the results are grouped by type
of benchmark. Figure 4 presents the average optimality gap for each method. We
observe that the proposed decomposition methods outperform CP methods for all
benchmarks. Globally, if we consider together the 276 instances, CPO method
reaches in average an optimality gap of 23% (22% for warm CPO) in comparison
with 10% for the LBBDCPO method and 6% for the LBBDB&B.

Figure 5 illustrates the proportion of optima found for each benchmark. Overall,
LBBDB&B is able to solve to optimality a larger number of instances within the lim-
ited time: 104 compared to 51 for LBBDCPO, 36 for CPO and 41 for warm CPO.
Note that none of the methods succeeds in solving even a single instance for bench-
marks from Dauzère-Pérès and Paulli [37] and Barnes and Chambers [38].

Figure 6 provides the proportion of best solutions found among all methods. In
contrast to the optimality gap, if we consider the number of best solutions found
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Figure 4: Makespan minimisation – Average optimality gap for each method accord-
ing to benchmarks
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as an indicator of performance, method LBBDCPO (with 65 best solutions found
over all instances) does not clearly dominate CPO (with 56 best solutions) and gets
even worse results than warm CPO (with 90 best solutions). However, method
LBBDB&B still outperforms all these methods (with 194 best solutions) and finds
at least half of the best solutions for each benchmark.
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Figure 6: Makespan minimisation – Proportion of best solutions found for each
method according to benchmarks

We illustrate the relative percentage deviation compared to the best solution
found in Figure 7. It shows that LBBDB&B always gets high-quality solutions and
never exceeds an average of 2% deviation for each benchmark. For the other methods,
the quality of the solutions obtained is quite variable depending on the benchmark
studied.

Based on these results we deduce that the proposed decomposition LBBDB&B

outperforms the CP model for makespan minimisation. For all studied benchmarks,
the LBBDB&B method obtains a greater number of optimal solutions (Figure 5), a
greater number of best solutions (Figure 6), a smaller average gap (Figure 4), and a
smaller relative deviation to the best solution found (Figure 7).

Although the LBBDB&B method achieves better performances, we notice a great
variability of the results depending on the benchmarks. Therefore, we propose to fo-
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cus on the possible factors. In particular, Figure 8 permits us to study the optimality
gap according to the average number of operations per machine. Each point of this
graph represents an instance of the FJSSP solved by one of the four studied methods,
with as abscissa the average number of operations per machine of the instance and
as ordinate the obtained optimality gap for it with the involved method.

0 10 20 30 40

0

20

40

60

CPO

1.0 × x + 7.9

warm CPO

1.0 × x + 7.4

LBBD CPO

0.1 × x + 8.0

LBBD B&B

0.1 × x + 4.2

Figure 8: Makespan minimisation – Gap according to the average number of opera-
tions per machine for each method

The observation of Figure 8 confirms what can be seen in Figure 4, namely that
the decomposition-based methods achieve a better optimality gap than pure con-
straint programming methods. Moreover, using the linear regression performed for
each method, we notice that problems become more difficult to solve as the number
of operations per machine increases. However, the efficiency of the decomposition
methods is less sensitive to that factor than the CP methods. Indeed, while the slope
of the linear regression relating the optimality gap obtained by the CP-based meth-
ods (warm CPO and CPO) according to the number of operations per machine is
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1.0, this same coefficient goes down to 0.1 for the LBBD-based methods (LBBDCPO

and LBBDB&B).
Finally, all the results presented above show the superiority of the LBBDB&B

method over the LBBDCPO method. In Table 3, we report, for these two methods,
the proportion of time spent in solving the subproblems (SP(%)), the proportion of
time spent in solving the master problems (MP(%)), the average number of subprob-
lems solved (SP number), and the average time spent to solve a subproblem (time
per SP) for each studied benchmark. As expected, the time spent to solve the sub-
problems is much smaller for methods using the branch-and-bound algorithm, which
explains its better performance. We also notice that for the most complicated in-
stances (DPpaulli and ChambersBarnes), very few subproblems are considered (only
1 in most cases), which means that, whatever the method used, the imposed time
limit of 1 hour is not enough to optimally solve these subproblems. By crossing
this information with Figure 6, we note that even for these complicated instances
method LBBDB&B obtains better quality solutions. We deduce that, in addition
to proving the optimality of a solution more efficiently, the branch-and-bound algo-
rithm allows finding better solutions in a given time than the CP method for the
considered objective.

Table 3: Makespan minimisation – Performances of decomposition methods for each
benchmark

Benchmarks LBBDCPO LBBDB&B

SP(%) MP(%) SP number time per SP SP(%) MP(%) SP number time per SP
BrandimarteMk 99.94 0.07 3 502.9 99.81 0.2 69 16.3
HurinkEdata 100 0.01 3 861.8 100 0.01 42 54
HurinkRdata 99.99 0.02 35 100.1 93.19 6.82 2855 0.9
HurinkVdata 99.84 0.17 9 326.6 69.11 30.9 2858 0.4
DPpaulli 99.57 0.44 1 2809 99.71 0.3 1 2810.5

ChambersBarnes 99.99 0.02 1 3599.5 100 0.01 1 2614.8
Kacem 16.67 83.34 9 0.1 0 100 9 0
Fattahi 99.99 0.02 38 30.4 0.14 99.87 2364 0.1

4.3 Total completion time

As presented in Section 3.5, we adapt all methods to the problem of minimising the
total completion time. For this objective function, we illustrate all the considered
performance measures in Figures 9–12.
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Contrary to the makespan minimisation problem, no method clearly outperforms
the others when minimising the total completion time. In general, the observed
performances, for instance in Figures 9 and 10, are worse for this objective function,
as it makes the problem more difficult. In more detail, we can observe in Figure 9 that
very few instances are solved to optimality, only 6% of them, considering together
the four methods under study. Among them, the methods that prove the optimality
for the largest number of instances are warm CPO and CPO, which obtain exactly
the same results (with 15 instances over 276) followed by LBBDB&B (14 instances),
and finally LBBDCPO (9 instances). In addition, the optimality gap is very wide,
for many instances and all methods, as shown in Figure 10. We also note that
the average gap per benchmark is similar for each method, which results in very
close overall average gaps: 39% for the warm CPO method, 38% for CPO, 37% for
LBBDCPO, and 36% for LBBDB&B.
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Figure 9: Total completion time minimisation – Proportion of optima found for each
method according to benchmarks

Figures 11 and 12 focus on relative performances of the methods concerning the
quality of the returned solutions. Again, none of the methods stand out, however, we
notice a different behaviour for the CP methods compared to the LBBD methods.
For both indicators (number of best solutions and relative deviation) and for most
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Figure 10: Total completion time minimisation – Average optimality gap for each
method according to benchmarks
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benchmarks, either the CP methods dominate, or the LBBD methods perform better.

Br
an
dim

art
eM

k

Hu
rin

kE
da
ta

Hu
rin

kR
da
ta

Hu
rin

kV
da
ta

DP
pa
ull
i

Ch
am

be
rsB

arn
es

Ka
cem

Fa
tta

hi
0

20

40

60

80

100

120

Benchmarks

B
es
t
(%

)

CPO

warm CPO

LBBDCPO

LBBDB&B

Figure 11: Total completion time minimisation – Proportion of best solutions found
for each method according to benchmarks

5 Conclusions

In this paper, we present several exact methods to solve the preemptive flexible
job-shop scheduling problem with two different objective functions, the makespan
minimisation and the total completion time minimisation. We model the problem
with both mixed-integer linear programming and constraint programming. Our main
contribution consists in proposing a logic-based Benders decomposition algorithm by
splitting the problem into an assignment master problem and a non-flexible schedul-
ing subproblem. Concerning the makespan minimisation, the decomposition makes
possible the use of the most powerful procedure in the literature to solve the preemp-
tive job-shop subproblem, namely a branch-and-bound algorithm. With this method,
the proposed decomposition outperforms the constraint programming model both in
terms of optimality gap and in terms of the quality of the solutions found. We extend
these solution methods to the total completion time minimisation problem. Due to
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Figure 12: Total completion time minimisation – Average relative deviation to the
best solution found for each method according to benchmarks
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the greater complexity of this problem, none of the proposed methods can achieve
satisfactory results.

Future works could explore a way to take advantage of the proposed decompo-
sition for the total completion time objective. Heuristics are also needed for the
purpose of providing a warm-start solution for exact methods, or for simply yielding
an approximate solution to compare against.
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