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Abstract
Constraint Programming has been widely, and very successfully, applied to scheduling problems.
However, the focus has been on uninterruptible tasks, and preemptive scheduling problems are
typically harder for existing constraint solvers. Indeed, one usually needs to represent all potential
task interruptions thus introducing many variables and symmetrical or dominated choices.

In this paper, building on mostly known results, we observe that a large class of preemptive
disjunctive scheduling problems do not require an explicit model of task interruptions. We then
introduce a new constraint programming approach for this class of problems that significantly
outperforms state-of-the-art dedicated approaches in our experimental results.
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1 Introduction

Many applications involve scheduling a set of tasks subject to resource constraints. Constraint
programming (CP) techniques lead to significant advances in this domain and, conversely,
some of the early work on the propagation of global constraints originated from scheduling
applications.

In preemptive scheduling problems, the processing of some tasks can be interrupted, to
be resumed at a later time. CP is generally much more successful on non-preemptive rather
than preemptive scheduling problems. The standard approach to modelling interruptible
tasks in constraint programming, while preserving completeness1, is to decompose each task
into as many unit-length tasks as its duration. A disjunctive resource can then be modelled
as an AllDifferent constraint, a parallel-machine resource as a GlobalCardinality

1 Without this restriction, the range of possible approaches is significantly wider.
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constraint, and a cumulative resource as a general flow constraint. Another approach is
to decompose the tasks into variable-size tasks. In this case, either the duration variables
have a null lower bound, which severely hinders constraint propagation, or constraints have
to be posted on the number of fragments and their duration, which entails searching over
the different ways to split the tasks. As a result, the former approach is often the best. In
either cases, the complexity of the methods heavily depends on the duration of the tasks,
and therefore do not scale well in practice.

In this paper, we use the observation that when preemptive resources are disjoint, there
is no need to compute the fragmentation of the tasks during search. In other words, the
problem can be modelled as a constraint satisfaction problem (CSP) with two variables per
task: one for its start time and one for its end time. Deciding whether a set of interruptible
tasks with release and due dates can be processed on a disjunctive constraint is easy (e.g., via
the Jackson Preemptive Schedule). Moreover, if some tentative release and due dates for the
tasks pass the overload check2 [29], then a feasible fragmentation of the tasks is guaranteed
to exist. Therefore, provided that the disjunctive resources are disjoint and that constraint
propagation is at least as strong as the overload check, one can simply branch on start and
end time variables for every task.

This condition of disjointness is true in many problems, and there is no further restriction
on the constraint graph. For instance in this paper we focus on the preemptive Job Shop
Scheduling Problem (pJSSP). In this problem, the resources are naturally disjoint, but tasks
requiring distinct machines can be linked by precedence constraints. Our method can be
applied to several other preemptive versions of disjunctive scheduling problems (e.g., open
shop scheduling where job sequences are to be decided, job shop scheduling augmented with
setup times, or generalised precedences, etc.).

The paper is organised as follows: In Section 2 we recall some background and define the
disjunctive preemptive constraint as well as the preemptive Job shop Scheduling problem.
In Section 3 we briefly review the existing CP models for preemptive scheduling. We show
that the standard approach of using the constraints AllDifferent or NoOverload on
unit-length tasks are weaker than the same approach using the AllDiffPrec constraint.
Then we discuss the main observations, which are not original, but are key to our main
result: it is often not necessary to introduce unit-length tasks, and without unit-length
tasks Edge-Finding is sufficient to enforce bounds consistency. Then we introduce a novel
constraint model for the preemptive Job Shop Scheduling Problem based on these observations
in Section 4 and finally we discuss the state of the art for the pJSSP and experimentally
compare our approach to it in Section 5.

2 Background and Related Work

2.1 CSP and bounds consistency
A constraint network is a triple (x,D, c) where x is a finite totally ordered set of variables, D
is a finite set, and c is a finite set of constraints. A constraint c is a pair (Sc , Pc) where the
scope Sc is a subset of x and Pc is a predicate on the variables Sc . An assignment σ : x 7→ D
is a mapping from variables in x to values in D, and σ(x) denotes the value assigned to
variable x by σ. Given a constraint network (x,D, c), the Constraint Satisfaction Problem
(CSP) asks whether there is an assignment σ of values in D to the variables x such that for
every constraint c ∈ c, the predicate Pc is true on the projection of σ onto Sc .

2 That the total duration of any set of tasks is not larger than their execution window.
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Most constraint solvers store a current domain D(x) ⊆ D for every variable x ∈ x and
use some form of consistency reasoning to reduce these domains without losing solutions.
We assume that the domain D is totally ordered and denote min(x) (resp. max(x)) the
minimum (resp. maximum) value in D(x). Moreover, we denote [l, u] the discrete interval
containing every element in D that is larger than or equal to l and lower than or equal to u.

▶ Definition 1 (Bounds Consistency). Let c be a constraint and x ∈ Sc be a variable
constrained by c. An assignment σ is a bound support of the pair (x, v) in a current domain
D if and only if:

σ(x) = v;
the predicate Pc is satisfied by σ (σ is said to be consistent and we write Pc(σ) = true);
and for every variable y ∈ x \ x, σ(y) ∈ [min(y), max(y)] (σ is said to be valid).

A constraint c is bounds consistent (BC) for the current domain D if and only if, for
every x ∈ Sc , (x, min(x)) and (x, max(x)) have a bound support in D.

A constraint network N = (x,D, c) is BC in a current domain D if and only if, for every
c ∈ c, c is BC in D.

The notion of consistency can be used to compare constraint models, and in particular
compare constraints to their decompositions.

▶ Definition 2 (Pruning power). Let c be a constraint and N = (x,D, c) be a decomposition
of the constraint, i.e., a constraint network such that:

Sc ⊆ x and
σ satisfies Pc if and only if, there is a solution σ′ of N such that the projection of σ′

onto Sc is equal to σ.
We say that BC on the decomposition N is as strong as BC on the constraint c if for any
current domain D, it holds that N is BC in D implies c is BC in D. Otherwise, we say that
BC on the decomposition is weaker than on the constraint.

2.2 Preemptive Scheduling
The constraint PreemptiveNoOverlap ensures that a set of interruptible tasks requiring
a disjunctive resource do not overlap. Let T = {t1, . . . , tn} be a set of tasks, and let
s = {s1, . . . , sn} and e = {e1, . . . , en} be two sets of variables standing respectively for the
earliest start and latest end times of the tasks, i.e., a task ti ∈ T must be processed in the
interval [si, ei) (closed at the start and opened at the end). Notice that although we will
often use the terms “start (or end) variable” for convenience, these variables actually define
an interval in which the task is processed. In particular, task tj might not be processed at
all at time sj and may be finished at a time strictly earlier than ej . This is apparent in
Definitions 3 and 4, and the reasons for this choice are discussed in Section 3.2.1.

Moreover, let pi be the duration of task ti. For a set of tasks Ω ⊆ T , we write sΩ for the
earliest start time of any task in Ω (sΩ = min({si | ti ∈ Ω})), eΩ for the latest end time of
any task in Ω (eΩ = max({ei | ti ∈ Ω})), and pΩ =

∑
ti∈Ω pi for the total processing time of

tasks in Ω. Since the tasks are interruptible, there must exist a “fragmentation” function
that maps at most one task to each time point. Let H = [0, ub) be a time interval where ub

is some upper bound on the end times of tasks in T , and let a = {ai,τ | ti ∈ T , τ ∈ H} be
Boolean activation variables, where ai,τ indicates whether task ti is active at time τ .

CP 2023
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▶ Definition 3. PreemptiveNoOverlap (on activation variables)

PreemptiveNoOverlap(T , a, s, e)
⇐⇒

∀τ ∈ H
∑
ti∈T

ai,τ ≤ 1 ∧ ∀ti ∈ T
ei−1∑
τ=si

ai,τ = pi

In this paper we consider the case where we do not make the fragmentation function
explicit (via activation variables), but rather only care about the start and end times of
the tasks, while only making sure that some fragmentation function exists. This leads to
Definition 4:

▶ Definition 4. PreemptiveNoOverlap (on start and end variables)

PreemptiveNoOverlap(T , s, e)
⇐⇒
∃f : H 7→ T ∪ {∅},∀ti ∈ T , |{τ ∈ [si, ei) | f(τ) = ti}| = pi

2.3 Preemptive Job Shop Scheduling (pJSSP)
In the pJSSP, a set J of n jobs are to be processed on a set M of machines. Each job
Ji ∈ J consists of a sequence of ni tasks that must be executed in order. Each task ti,j ∈ Ji

must be executed on one machine Mi,j ∈M with a processing time pi,j ∈ N. Preemption is
allowed, i.e. tasks can use a machine for some time, stop to let another task be processed,
and then resume at a later time. The objective is to minimise the total makespan, that is,
the maximum completion time of any task (denoted Cmax).

The pJSSP is NP-hard even with two machines and three jobs (J2|n = 3, pmtn|Cmax) [7]
while the non-preemptive version (J2|n = 3|Cmax) is solvable in polynomial time; an O(r4)-
algorithm with r = maxi∈J ni in given in [22]. We have observed that in most academic
data sets used to benchmark job shop scheduling algorithms, there is “no recirculation”, that
is, jobs have exactly one task per machine. However, this particular case is also NP-hard for
as few as three machines since it generalises the flow shop problem which is itself NP-hard
[16]. The approach introduced in this paper applies to job shop problems with or without
recirculation, although all the instances used in the experiments belong to the latter class.

3 Constraint Programming for Preemptive Scheduling

Many propagation algorithms for reasoning on resources for non-interruptible tasks rely on
relaxing non-preemption, and can therefore be applied to the preemptive case with very few
changes, as observed for instance in [24].

The Edge-Finding rule is of particular interest in the preemptive case. It relies on the
overload check implied by the disjunctive resource constraint:

▶ Definition 5. NoOverload

NoOverload(T ) ⇐⇒
∧

Ω⊆T
pΩ ≤ eΩ − sΩ

In the preemptive case, the overload check is not only implied, it is equivalent to
the PreemptiveNoOverlap constraint. The following theorem is a direct corollary of
Proposition 3 in [8]:
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▶ Theorem 6. PreemptiveNoOverlap(T , s, e) ⇐⇒ NoOverload(T , s, e)

The Edge-Finding rule consists in detecting precedence constraints whose violation would
in turn make the overload check false. In the non-preemptive case, they are defined as
shown in Definition 7. They are written here as constraints, but notice that they can be
directly translated to a propagation rule by considering “optimistic” values for variables
in the left-hand side (minima for start times and maxima for end times). Of course both
constraints have a symmetric version (by reflection).

▶ Definition 7. Edge-Finding (non-preemptive case)

sΩ∪{ti} + pi + pΩ > eΩ =⇒ si ≥ sΩ + pΩ ∀Ω ⊆ T ,∀ti ∈ T \ Ω

A slight adaptation is required for the preemptive case [4]. The precondition implies that
task ti must end last among Ω ∪ {ti}, which is not equivalent to starting last since the task
can be interrupted:

▶ Definition 8. Edge-Finding (Preemptive case)

sΩ∪{ti} + pi + pΩ > eΩ =⇒ ei ≥ sΩ∪{ti} + pi + pΩ ∀Ω ⊆ T ,∀ti ∈ T \ Ω

The following theorem is a direct corollary of Proposition 9 in [4] concerning fully elastic
schedules. A fully elastic schedule is one where tasks are preemptive and do not have a
constant demand on the resource when active (however, their total energy, i.e., total resource
demand integrated over time, is a constant). On disjunctive resource, since the demand is
an integer and can only be equal to 0 (inactive) or 1 (active), fully elastic schedules and
preemptive schedules are equivalent. Interestingly, this theorem shows that other rules that
are useful on non-preemptive scheduling (such as the “not-first/not-last” rule) are useless in
the preemptive case.

▶ Theorem 9. Edge-Finding constraints are all bounds consistent on a set of tasks T if and
only if PreemptiveNoOverlap(T ) is bounds consistent.

3.1 Formulation with fragmentation
It is easy to see Definition 4 is not sufficient when the same preemptive task requires
more than a single (disjunctive) resource. Consider the instance illustrated in Figure 1a.
Task t1 requires resources a and b while tasks t2 and t3 require resource a, and t4 and
t5 require resource b. All start and end times are fixed, and under Definition 4, the
constraint PreemptiveNoOverlap is satisfied both for the scope (s1, s2, s3, e1, e2, e3) and
(s1, s4, s5, e1, e4, e5). However, there is no assignment of the variables a = a1,0, . . . , a1,5
which satisfies both constraints under Definition 3. In this section we review the existing
formulations of the disjunctive constraint that model task fragmentation.

A standard way to model preemptive resources is to decompose each task ti into pi

unit-length tasks, where variable xi,k stands for the processing time of the k-th unit of task
ti. Then a disjunctive resource can be represented as an AllDifferent constraint:

▶ Definition 10. AllDifferent decomposition of PreemptiveNoOverlap (w.r.t. Defin-
ition 3)

PreemptiveNoOverlap(T , a, s, e) ⇐⇒
AllDifferent({xi,k | ti ∈ T ∀k ∈ [0, pi)}) (1)

∀ti ∈ T ∀k ∈ [0, pi) ∀τ ∈ H xi,k = τ ⇐⇒ ai,τ (2)
∀ti ∈ T ∀k ∈ [0, pi) si ≤ xi,k < ei (3)

CP 2023
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pi si ei Res.

t1 3 0 6 a and b

t2 1 1 2 a

t3 1 3 4 a

t4 1 2 3 b

t5 1 4 5 b

(a) with vs. without fragmentation

pi si ei

t1 2 0 3 2 5
t2 2 0 3 2 5
t3 2 0 5 2 7

(b) AllDifferent decomposition

Figure 1 An example showing that activation variables are necessary when a task requires
several distinct resources (Figure 1a), and an example showing that the decomposition using the
AllDifferent constraint hinders propagation (Figure 1b).

A similar decomposition holds for the constraint PreemptiveNoOverlap(s, e) when
we ignore the activation variables, and hence Constraint (2).

These two decompositions hinder propagation, i.e., BC on the decomposition is not
equivalent to BC on the global constraint.

▶ Theorem 11. Bounds consistency on Constraints 1, 2 and 3 is weaker than bounds
consistency on PreemptiveNoOverlap(T , s, e).

Proof. Consider the three tasks shown in Figure 1b. The AllDifferent constraint has 6
variables in both decompositions, and there is no Hall interval and hence is BC. Therefore,
the channelling constraints are also BC. Yet the values 2 to 5 are not BC for e3 in the global
constraint, since that would produce an overload in the interval [0, 5). ◀

The decomposition is weaker because the pi units of task ti are interchangeable. Indeed
we may add the following symmetry breaking constraints:

∀ti ∈ T ∀k ∈ [1, pi) xi,k−1 < xi,k (4)

However, there is a quadratic algorithm to achieve BC on the conjunction of an AllDif-
ferent constraint and a set of binary precedence constraints (the AllDiffPrec con-
straint [5]), and which therefore be used to achieve BC on the conjunction of Constraints 1
and 4. Let this formulation be “the AllDiffPrec decomposition”.

▶ Theorem 12. Bounds consistency on the AllDiffPrec decomposition is as strong as
bounds consistency on PreemptiveNoOverlap(T , s, e).

Proof. Let T be a set of tasks with start and end variables s, e, and suppose that
PreemptiveNoOverlap(T , s, e) is not BC. Then there exists a task ti ∈ T whose upper
bound is not BC. By Theorem 6, it means that there exist v ≤ max(ei) and Ω ⊂ T such
that pΩ + pi > max(eΩ, v) −min(sΩ, min(si)). Now, consider the assignment xi,pi

← v in
the decomposition. In order to satisfy the precedences xi,k−1 < xi,k for k ∈ [1, pi), all these
variables must take values less than or equal to v. Therefore, in the decomposition, there
are pΩ + pi variables which must take a value in the interval [min(sΩ, min(si)), max(eΩ, v))
which is unfeasible. It follows that the assignment xi,pi

← v is not BC for the AllDiffPrec
constraint. ◀

This decomposition, however, requires O(N) variables with N =
∑

ti∈T pi, and BC
can be achieved in O(N2) time. However, it can be achieved in a time complexity that
does not depend on N by direct application of Theorem 9. Indeed, there are algorithms
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in O(n log n) [29] or even in linear time (after sorting) [13] to achieve BC on at least one
Edge-Finding constraint. Moreover, since there are at most n2 precedences to enforce,
achieving BC on the PreemptiveNoOverlap constraint can be done in time polynomial
in n only.3

3.2 Formulation without fragmentation
When resources are disjoint, that is, when no task requires more than a single resource, then
the problem can be modelled without representing task fragmentation. Indeed, Definition 4
ensures that a fragmentation such that no two tasks requiring that resource are processed
simultaneously, and each task ti is processed within the time interval [si, ei), in other words,
we have:

∃a PreemptiveNoOverlap(T , a, s, e) ⇐⇒ PreemptiveNoOverlap(T , s, e)

Therefore, when activation variables (a) are not constrained otherwise, the two formulations
are equivalent.

Checking this constraint can be done efficiently: the Jackson Preemptive Schedule
algorithm [9, 18] finds a fragmentation, or proves that none exists in O(n log n) time.
Moreover, Theorem 6 entails that one does not need to find a witness fragmentation if
the constraint propagation of the disjunctive constraint involves the overload check.

3.2.1 Monotonicity
Notice that the definition of the PreemptiveNoOverlap constraint does not force a task
ti to be in process at time si, nor at time ei − 1. In other words, start and end times are
simply bounds within which the task can be processed. It follows that this constraint is
monotonic: decreasing the start time of a task (or increasing its end time) in a satisfying
assignment can never make this assignment inconsistent.

▶ Definition 13 (Monotonic constraints). Let σx←v be the assignment that associates value v

to variable x and that is equal to σ otherwise. We say that a constraint c is monotonic with
respect to a function f : x×D 7→ D if and only if:

Pc(σ) = true =⇒ (∀x ∈ Sc , Pc(σx←f(x,σ(x))) = true)

▶ Lemma 14. The constraint PreemptiveNoOverlap(T , s, e) is monotonic with respect
to any function that is non-increasing for start-time variables, or non-decreasing for end-time
variables.

Proof. The fragmentation of a task remains valid if its start time is decreased or its end
time is increased. ◀

▶ Corollary 15. If the constraint PreemptiveNoOverlap(T , s, e) is satisfiable, then, for
any ti ∈ T , the assignments si ← min(si) and ei ← max(ei) are bounds consistent.

Proof. If the constraint is satisfiable, there exists a consistent and valid assignment, and
by Lemma 14, changing the value of si to min(si) (resp. ei to max(ei)) is a non-increasing
(resp. non-decreasing) operation and hence yields a consistent and valid assignment. ◀

3 In practice a fix-point can be reached in far fewer iterations.

CP 2023
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There are two consequences to the PreemptiveNoOverlap constraint being monotonic.
Firstly, achieving bounds consistency on the PreemptiveNoOverlap constraint can

only prune the upper (resp. lower) bound of the start (resp. end) time variables. However,
bounds of end time variables could be pruned beyond BC without losing solutions. For
instance, assume that task ti is such that si = 0, ei = 3 and pi = 3. Clearly, this task requires
the resource on the whole interval [0, 3) and therefore no other task can start at a time
point earlier than 3. This corresponds to achieving BC on a restriction of Definition 4 where
we constrain every task tj ∈ T to be in process at time sj and at time ej − 1. We have
experimented with this formulation, and BC can be achieved in the same time complexity as
enforcing Edge-Finding, using a slight generalisation of the propagation algorithm for BC on
the AllDifferent constraint [27]. However, besides complexifying the definitions and the
algorithm, it turns out that achieving this extra pruning is counter-productive, at least on
pJSSP benchmarks.

Secondly, in the job shop scheduling problem, the only constraints besides disjunctive
resources are the chain of precedences to represent the job sequences. Therefore, the start
time of a task can always be extended to the end time of the previous task on that job (or
to 0 if it is the first task) without invalidating the schedule. Similarly, its end time can be
extended to the start time of the next task in that job. As a result, we can assume that a
task ends exactly when the next task of its job starts and forbid any idle gap between the
tasks of a job.

4 A Constraint Programming Approach to pJSSP

From the observation made in Section 3.2, we can propose the following constraint model for
the preemptive job shop scheduling problem, with si,j (resp. ei,j) standing for the start (resp.
end) variable associated to the j-th task of job i, and with T = {ti,j | Ji ∈ J ,∀j ∈ [1, ni)}.

min Cmax (5)
s.t. Cmax ≥ ei,ni

∀Ji ∈ J (6)
ei,j ≥ si,j + pi,j ∀Ji ∈ J , ∀j ∈ [1, ni] (7)

ei,j ≤ si,j+1 ∀Ji ∈ J , ∀j ∈ [1, ni) (8)
PreemptiveNoOverlap(Tm, sm, em) ∀m ∈M (9)

The objective variable Cmax represents the makespan, that is, the maximum completion
time of any task (Constraint 6). Constraints 7 and 8 encode respectively the durations
of the task, and the job sequences. As discussed in this section, Constraints 9 (with
Tm = {ti,j | Mi,j = m, Ji ∈ J }, sm = {si,j | ti,j ∈ Tm} and em = {ei,j || ti,j ∈ Tm}) are
sufficient to ensure that a preemptive schedule exists, and can be computed efficiently once
all start and end time variables are fixed.

Moreover, because of Corollary 15, we know that extending the end time of a task cannot
violate the resource constraints. Since the only other constraints are chains of precedences,
extending the end time of task up to the start time of the next task in its job (or extending
its start time to the end time of the preceding task in the job) cannot violate any constraint.

We can therefore replace Constraints 6 and 7 with the following constraints:

si,0 = 0 ∀i ∈ J (10)
ei,j = si,j+1 ∀i ∈ J , ∀j ∈ [1, ni) (11)
ei,ni = Cmax ∀i ∈ J (12)
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Constraints 10 and 12 force the start (resp. end) time of the first (resp. last) task of
every job to be equal to 0 (resp. the makespan), and Constraint 11 ensures that there is
no gap between the end of a task and the start of the next task on its job. With these
constraints, dominated solutions that leave a gap between two consecutive tasks of the same
job are pruned out.

5 Experimental Results

In this section we compare our approach with the state-of-the-art approaches for the pJSSP.
We first describe the two comparison methods: a recent dedicated branch-and-bound al-
gorithm and the commercial solver CP Optimizer.

5.1 State-of-the-art Approaches
Most solution methods for the pJSSP are approximation algorithms [3, 15, 20] and heuristics
[31]. Among the exact methods, Dantzig [10] introduced a linear programming model based
on time index. Le Pape and Baptiste [24, 25] proposed a branch-and-bound procedure
using classical constraint propagation techniques (timetable, disjunctive constraints and
Edge-Finding) extended to preemptive problems. Ebadi and Moslehi have recently proposed
two exact solution methods for the pJSSP, a mixed-integer programming (MIP) approach
[11], and a dedicated branch-and-bound algorithm [12]. As our method, the MIP model
requires no activation variable. It only involves variables for the start and times of the tasks,
with the same guarantee that feasible (resp. optimal) solutions of this MIP correspond to
feasible (resp. optimal) complete schedules, which task fragmentation can be computed
e.g., via application of the Jackson’s preemptive algorithm. However, in order to guarantee
that the overload check is satisfied for a given resource, the model involves a set of linear
constraints of size exponential in the number of tasks requiring this resource. This MIP
model is less efficient than the dedicated branch-and-bound method proposed by the same
authors, and hence we used the latter as reference in our experimental evaluation.

We do not compare with the recent method introduced in [21] in our experiments since
this approach deals with the more general preemptive and flexible JSSP. It uses a logic-based
Benders decomposition that splits the problem into a master problem of assigning operations
to machines and into non-flexible pJSSP subproblems. The master problem is solved by
mixed-integer programming while the subproblems are solved by existing approaches, such
as the one introduced in this paper.

5.1.1 Dedicated Branch-and-Bound
Ebadi and Moslehi’s branch-and-bound procedure [12] employs a depth-first search strategy
to explore the set of feasible schedules without proactively creating unit-length tasks.

However, since the propagation in their method is not as strong as the overload check,
a different technique is used to ensure that the produced schedule follows the Jackson’s
preemptive rule on each machine: unit-length tasks are created lazily when branching. In
the search tree, each node represents a partial schedule with a set of already scheduled
unit-length tasks and a disjunctive graph representing the current precedence relations.
At the root node, the set of scheduled tasks is empty, and the arcs of the graph are only
the precedences between the tasks of the same job. At each decision point, the machine
processing the non-scheduled unit-length task with the smallest availability date is selected.
The branching strategy consists in creating a node for each such task on this machine, with
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this task scheduled at its earliest possible start time. Moreover, dominance rules ensure that
many unit-length tasks can be created and added to the partial schedule at once as edges in
the disjunctive graph. Lower bounds are computed at each node, based on the disjunctive
graph, for pruning the search tree.

This method improved the state of the art for this problem at time of publication, and in
particular Le Pape and Baptiste’s CP model. It was the first to solve large instances (up to
50 jobs and 10 machines) to optimality. To our knowledge, this is currently the most efficient
method to solve the pJSSP problem.

5.1.2 CP Optimizer model
IBM CP Optimizer solver is the most efficient off-the-shelf tool in many scheduling problems.
We describe in this section the standard model for the preemptive job shop scheduling
problem in CP Optimizer.

CP Optimizer allows the use of specific decision variables and constraints. In particular,
interval variables can be used to represent the time during which a task is processed. Interval
variables are defined by a start value, an end value and a size, which are the decision variables
of the problem. We denote ti,j this interval variable, whose start and end time variables
correspond to si and ei respectively. Moreover, in this model, each preemptive task is divided
into unit-length parts. Therefore, for each task ti,j , we introduce pi,j unit-length interval
variables xi,j,k with k ∈ [1, pi,j ] besides the interval variable ti,j .

The problem is described as follows:

min Cmax (13)
s.t. Cmax ≥ ei,ni ∀Ji ∈ J (14)

EndBeforeStart(ti,j , ti,j+1) ∀Ji ∈ J , ∀j ∈ [1, ni) (15)
EndBeforeStart(xi,j,k, xi,j,k+1) ∀Ji ∈ J , ∀j ∈ [1, ni], ∀k ∈ [1, pi,j) (16)

Span(ti,j , xi,j,k : ∀k ∈ [1, pi,j ]) ∀Ji ∈ J , ∀j ∈ [1, ni] (17)
NoOverlap(xi,j,k : ∀Ji ∈ J , ∀j ∈ [1, ni],

∀k ∈ [1, pi,j ] |Mi,j = m) ∀m ∈M (18)

The objective function (13) is to minimise the makespan. Constraints (14) define the
makespan. The global constraint EndBeforeStart is used to model the precedence constraints,
as in the two following constraint sets. Constraints (15) ensure that the tasks of the same
job will be processed with respect to the job sequence. Constraints (16) aim at ordering the
parts of the task and so avoid symmetries, and ensure that each part is treated one after
the other. With the Span global constraint, Constraints (17) are used to ensure that task
interval spans over all its processing parts (i.e., each task starts with its first part and ends
with its last part). With the NoOverlap global constraint, Constraints (18) forbid the
overlapping of tasks processed on the same machine. We denote this model CPOp=1, and
we experimented with several variants of this models where a task tj is cut in fewer than pj

pieces. These variants are sound but incomplete: the optimal schedule on these models is
feasible but not necessarily optimal for the original problem. However, the idea is that they
should be easier to solve and hopefully approximate the optimal solution.

CPOp=ℓ refers to the model where each task ti,j is cut into ⌊pi,j

ℓ ⌋ subtasks of duration ℓ

and one task of duration pi,j mod ℓ.
CPOn=ℓ refers to the model where each task ti,j is cut into ℓ tasks of variable duration
but whose total is constrained to be pi,j (Constraint 19).
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ℓ∑
k=1

sizeOf(xi,j,k) = pi,j ∀Ji ∈ J , ∀j ∈ [1, ni] (19)

To avoid symmetries, we made sub-task interval variables optional and add the following
constraints:

PresenceOf(xi,j,k+1) =⇒ PresenceOf(xi,j,k) ∀Ji ∈ J , ∀j ∈ [1, ni], ∀k ∈ [1, ℓ) (20)
EndOf(xi,j,k) < StartOf(xi,j,k+1) ∀Ji ∈ J , ∀j ∈ [1, ni], ∀k ∈ [1, ℓ) (21)

Constraints (20) ensure that a sub-task can only be present if the previous sub-task is also
present. Constraints (21) guarantees that two successive pieces of the same task do not
immediately follow each other (a task is split only if it has preemption).

Interestingly, the CP Optimizer model using the constraint AllDifferent (as shown in
Definition 10, with the symmetry breaking Constraints 4) instead of NoOverlap turned out
to be much less efficient in our experiments.4 This is surprising because the latter constraint
is more general and yet equivalent when tasks are unit-length. We conjecture that this could
be explained by some hidden preprocessing in CP Optimizer.

5.2 Experimental protocol
We used some standard benchmark instances available in the literature [1, 2, 14, 23, 28].
These instances were proposed for the JSSP without preemption, but are often used in the
preemptive case as well. Characteristics of these benchmarks are summarised in Table 1. For
each benchmark, we report the number of instances (63 in total) that compose it, the size of
these instances (number of jobs × number of machines) as well as the intervals the processing
times are generated from. Detailed information on these instances is presented in [19].

All experiments were performed on three cluster nodes with Intel Xeon E5-2695 v4 CPU
at 2.1 GHz with a 1 hour time cutoff. The branch-and-bound algorithm is implemented in
C++, the exact CPOp=1 model and all of its variants (CPOp=ℓ and CPOn=ℓ for ℓ ∈ {3, 10})
are implemented with the C++ interface of CP Optimizer 12.10.

Our approach was implemented in C++ using Mistral [17]5 with the following search
strategy (corresponding to the default settings): the variable ordering uses the minimal ratio
between domain size and weighted degree heuristic [6], with an exponential decay on the
weights of 0.96 and with the last conflict procedure [26]. The value ordering uses binary
branching with the constraints x ≤ ⌊min(x) + max(x)⌋/2 and x > ⌊min(x) + max(x)⌋/2,
and a geometric restart policy [30] starting at 200 fails and increasing by a factor 1.05.

5.3 Numerical results
Figure 2a shows how many instances are optimally solved by each method as a function of
time. We include the results of the incomplete variants (dashed lines) although these proofs
are weaker: they show that there is no better solution for the restricted model. Nonetheless,
CPOp=ℓ obtains fewer such proofs for ℓ < 10, and CPOn=ℓ can only prove a single instance.

4 Hence we only report results for the best model using NoOverlap.
5 The source code of Mistral is available here: https://github.com/ehebrard/Mistral-2.0 and fea-

tures the model used in our experiments.
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Table 1 JSSP instances characteristics.

Data set Reference Number of Sizes Processing timesinstances

ft6,10,20 [14] 3 6× 6, 10× 10, 20× 20 [1,10],[1,99]10× 5, 15× 5, 20× 5,

la01-40 [23] 40 10× 10, 15× 10, 20× 10, [5,99]30× 10, 15× 15
abz5-9 [1] 5 10× 10, 20× 15 [50,100], [25,100], [11,40]
orb1-10 [2] 10 10× 10 [5,99]
swv16-20 [28] 5 50× 10 [1,100]

Essentially, among exact methods, CP Optimizer (CPOp=1) solves far fewer instances
than other methods in the time available and is slower on the instances it does solve. For
the easiest 50% of instances, both the branch-and-bound method (B&B) and Mistral can
solve them quickly, in about 10 seconds. For the other instances, Mistral is faster and
manages to solve 80% of the instances to optimality against 60% for the branch-and-bound.
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Figure 2 Number of proofs and gap to the best overall solution over time. Dashed lines correspond
to incomplete methods.

Figure 2b shows the average gap to the best known solution over time for Mistral
and four approximate methods namely CPOp=3, CPOp=10, CPOn=3 and CPOn=10. We
observe that none of these variants can find better solutions than Mistral, even considering
a short calculation time. We also notice that the variants that considers fixed subtasks
duration (CPOp=ℓ) are more efficient than the variant that considers a fixed number of
subtasks (CPOn=ℓ) and that for these two variants, the fewer the subtasks, the more efficient
is the method. In fact CPOp=10 finds better solutions than Mistral on two instances: abz7
and abz8.

Results on individual instances are reported in Table 2. Our approach is better than the
branch-and-bound on all but one instance: orb01 where the latter method proves optimality
in 2118 seconds whereas Mistral does not return a proof within one hour. Moreover, within
the one hour cutoff, it finds the best solution over all of the methods considered in these
experiments on all but two of the instances, for which approximate models are more efficient.
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Table 2 Results on every benchmark instance, proven optimal schedules are marked with a “∗”,
best Cmax are in bold font.

Inst. Mistral B&B CPOp=1 CPOp=10 CPOn=3

Cmax time (s) Cmax time (s) Cmax time (s) Cmax time (s) Cmax time (s)

abz5 1203∗ 213.22 1212 3600.00 1299 3600.00 1204 817.51 1266 3600.00
abz6 924∗ 27.28 924∗ 185.14 961 3600.00 924 205.52 957 3600.00
abz7 681 3600.00 749 3600.00 723 3600.00 672 3600.00 746 3600.00
abz8 694 3600.00 750 3600.00 723 3600.00 677 3600.00 766 3600.00
abz9 691 3600.00 752 3600.00 751 3600.00 695 3600.00 817 3600.00
ft06 54∗ < 0.01 54∗ < 0.01 54∗ 0.65 55 0.02 54 3600.00
ft10 900∗ 238.81 900∗ 1846.53 955 3600.00 900 526.71 1035 3600.00
ft20 1165∗ 0.93 1165∗ 6.89 1207 3600.00 1165 260.83 1204 3600.00
la01 666∗ < 0.01 666∗ 0.02 666∗ 24.59 666 0.17 670 3600.00
la02 655∗ 0.03 655∗ 0.05 655∗ 631.14 655 20.91 692 3600.00
la03 597∗ 0.08 597∗ 0.04 597 3600.00 597 19.64 635 3600.00
la04 567∗ 0.06 567∗ 0.14 583 3600.00 567 17.35 599 3600.00
la05 593∗ < 0.01 593∗ < 0.01 593∗ 1.65 593 0.04 593 3600.00
la06 926∗ < 0.01 926∗ 0.02 926∗ 5.52 926 0.1 926 3600.00
la07 890∗ 0.03 890∗ 0.05 890∗ 38.49 890 3.05 890 3600.00
la08 863∗ 0.04 863∗ 0.04 863∗ 144.41 863 2.81 863 3600.00
la09 951∗ 0.04 951∗ 0.02 951∗ 23.18 951 0.64 951 3600.00
la10 958∗ < 0.01 958∗ 0.02 958∗ 24.34 958 0.19 958 3600.00
la11 1222∗ 0.03 1222∗ 0.04 1222∗ 1025.62 1222 3.15 1222 3600.00
la12 1039∗ 0.03 1039∗ 0.05 1039∗ 396.78 1039 1.14 1039 3600.00
la13 1150∗ < 0.01 1150∗ 0.04 1150∗ 99.89 1150 1.56 1150 3600.00
la14 1292∗ 0.02 1292∗ 0.04 1292∗ 14.17 1292 0.23 1292 3600.00
la15 1207∗ 0.18 1207∗ 0.19 1207∗ 1920.59 1207 12.38 1207 3600.00
la16 934∗ 22.03 934 3600.00 961 3600.00 934 244.25 997 3600.00
la17 747∗ 0.1 759 3600.00 794 3600.00 747 110.23 793 3600.00
la18 822∗ 2.65 822∗ 676.12 850 3600.00 822 185.64 864 3600.00
la19 812∗ 318.24 812∗ 1469.22 825 3600.00 814 902.75 894 3600.00
la20 871∗ 3.21 892 3600.00 922 3600.00 875 342.32 926 3600.00
la21 1033∗ 2179 1110 3600.00 1121 3600.00 1033 2674.68 1122 3600.00
la22 913∗ 2.92 930 3600.00 982 3600.00 913 1695.98 1005 3600.00
la23 1032∗ 0.38 1032∗ 1.04 1054 3600.00 1032 221.06 1039 3600.00
la24 909 3600.00 939 3600.00 973 3600.00 910 3600.00 1001 3600.00
la25 947 3600.00 983 3600.00 1071 3600.00 947 2428.74 1073 3600.00
la26 1218∗ 3.45 1232 3600.00 1386 3600.00 1218 733 1272 3600.00
la27 1235∗ 116.59 1346 3600.00 1360 3600.00 1235 2458.09 1337 3600.00
la28 1216∗ 2.72 1255 3600.00 1402 3600.00 1216 1282.21 1299 3600.00
la29 1173 3600.00 1225 3600.00 1325 3600.00 1196 3600.00 1283 3600.00
la30 1355∗ 0.58 1355∗ 0.51 1499 3600.00 1355 143.42 1396 3600.00
la31 1784∗ 1.91 1784∗ 2.13 1835 3600.00 1784 60.13 1790 3600.00
la32 1850∗ 1.12 1850∗ 0.21 1874 3600.00 1850 104.93 1850 3600.00
la33 1719∗ 2.06 1719∗ 0.35 1817 3600.00 1719 59.96 1719 3600.00
la34 1721∗ 2.1 1721∗ 0.92 1836 3600.00 1721 397.13 1768 3600.00
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Table 2: continued from previous page
Inst. Mistral B&B CPOp=1 CPOp=10 CPOn=3

Cmax time (s) Cmax time (s) Cmax time (s) Cmax time (s) Cmax time (s)

la35 1888∗ 1.37 1888∗ 0.48 1944 3600.00 1888 587.35 1894 3600.00
la36 1252 3600.00 1297 3600.00 1358 3600.00 1252 3600.00 1360 3600.00
la37 1397∗ 2.72 1411 3600.00 1500 3600.00 1397 2609.27 1503 3600.00
la38 1175 3600.00 1255 3600.00 1308 3600.00 1191 3600.00 1350 3600.00
la39 1221∗ 2.98 1362 3600.00 1389 3600.00 1221 2119.53 1378 3600.00
la40 1199 3600.00 1311 3600.00 1357 3600.00 1234 3600.00 1332 3600.00
orb01 1035 3600.00 1035∗ 2118.7 1115 3600.00 1036 3600.00 1114 3600.00
orb02 864∗ 174.17 869 3600.00 887 3600.00 865 621.22 943 3600.00
orb03 973 3600.00 1054 3600.00 1043 3600.00 975 1191.62 1093 3600.00
orb04 980∗ 266.45 980∗ 182.2 1023 3600.00 981 382.11 1045 3600.00
orb05 849∗ 28.81 852 3600.00 870 3600.00 853 339.27 977 3600.00
orb06 985 3600.00 997 3600.00 1109 3600.00 985 870.98 1079 3600.00
orb07 389∗ 355.36 389∗ 439.51 395 3600.45 390 127.81 389 1511.23
orb08 894∗ 0.26 894∗ 55.94 959 3600.00 894 169.13 960 3600.00
orb09 917∗ 2.67 917∗ 214.58 969 3600.00 920 154.89 988 3600.00
orb10 930∗ 15.36 941 3600.00 1011 3600.00 930 211.73 986 3600.00
swv16 2924∗ 2.03 2924∗ 0.69 2924∗ 191.93 2924 1.94 2924 3600.00
swv17 2794∗ 0.41 2794∗ 0.7 2794∗ 3203.24 2794 9.5 2794 3600.00
swv18 2852∗ 2 2852∗ 0.74 2852∗ 232.57 2852 70.48 2852 3600.00
swv19 2843∗ 5.08 2843∗ 3.09 2970 3600.00 2843 141.85 2843 3600.00
swv20 2823∗ 1.14 2823∗ 0.75 2823∗ 226.14 2823 204.49 2823 3600.00

5.4 Evaluation of the compact model

Finally, we conducted further experiments to assess the gain attributable to the addition of
Constraints 10, 11 and 12 in order to reduce the number of variables and eliminate solutions
that leave a gap between two consecutive tasks of the same job. We ran Mistral on the
basic model (i.e., without Constraints 10, 11 and 12) on the same benchmark instances. We
only present aggregated data here.

The conclusion of these experiments is that both models (with or without) those constraints
are fairly equivalent when considering the objective value only. The average gain, on the
data set I containing only instances that are not proven optimal by both models, is:

1
|I|

∑
i∈I

Cmax(i)− C∗max(i)
Cmax(i) = 0.03

where C∗max(i) denote the objective value for instance i with the extra constraints and Cmax(i)
the objective value without these constraints. The difference is extremely small, and either
model can be best on a given instance.

On instances that were proven optimal, however, the difference is clear and significant:
proving optimality is done in 32.76 seconds on average with the extra constraints, whereas it
takes 81.42 seconds on average without them. Moreover, one instance (la21) can only be
proven optimal within the 1h time cutoff when the extra constraints are used.
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6 Conclusion

In this paper, we introduced a CP model for the preemptive job shop scheduling problem,
and our experimental evaluation shows that it significantly improves the state of the art for
this problem. The key aspect of this approach is the observation that when resources are
disjoint, the Edge-Finding propagation algorithm guarantees that a preemptive schedule
exists, without the need to explicitly compute a fragmentation of the tasks. This approach
generalises to all disjunctive scheduling problems where resources are disjoint.

Extending this approach to general resource hypergraphs is an interesting avenue for
future work. It could for instance be done in a decomposition scheme whereby after solving
the model described in this paper, unit-length tasks are added, however only for those tasks
whose fragmentations on two resources are in conflict.
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