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Abstract

Recent work by Gao et al. [16] has laid the foundations for post-clustering inference. For the
first time, the authors established a theoretical framework allowing to test for differences between
means of estimated clusters. Additionally, they studied the estimation of unknown parameters while
controlling the selective type I error. However, their theory was developed for independent observa-
tions identically distributed as p-dimensional Gaussian variables with a spherical covariance matrix.
Here, we aim at extending this framework to a more convenient scenario for practical applications,
where arbitrary dependence structures between observations and features are allowed. We show that
a p-value for post-clustering inference under general dependency can be defined, and we assess the
theoretical conditions allowing the compatible estimation of a covariance matrix. The theory is devel-
oped for hierarchical agglomerative clustering algorithms with several types of linkages, and for the
k-means algorithm. We illustrate our method with synthetic data and real data of protein structures.

1 Introduction

Post-selection inference has gained substantial attention in recent years due to its potential to address
practical problems in diverse fields. The issue of using data to answer a question that has been cho-
sen based on the same data was formalized in [15], where the basis of selective hypothesis testing was
rigorously set with the definition of the selective type I error. This paved the way to perform selective
testing when null hypotheses are chosen through clustering algorithms, bypassing the naive data splitting
that reveals unsuitable in this context. However, their proposed approach, referred to as data carving,
as well as more recent approaches like data fission [23] are difficult to implement in practice because
they require knowledge of the covariance structure between variables. Moreover, they often involve the
non-trivial calibration of a tuning parameter that controls the proportion of information allocated for
model selection and for inference. The seminal work by Gao et al. [16] established for the first time a
theoretical framework allowing selective testing after clustering, when observations are independent and
identically distributed as p-dimensional Gaussian random variables with a spherical covariance matrix.
This corresponds to the following matrix normal model [19]:

X ∼ MN n×p(µ, In, σ2Ip), (1)

where µ ∈ Mn×p(R) and σ > 0. Under (1), the authors in [16] defined a p-value that controls the
selective type I error when testing for a difference in means between a pair of estimated clusters. This
p-value can be efficiently computed for hierarchical clustering algorithms with common linkage functions.
Moreover, the authors in [16] made another remarkable contribution by addressing the estimation of
σ while controlling the selective type I error, which had not been addressed in previous works [23, 34]
despite its major importance in real problems. They showed that if σ is asymptotically over-estimated,
the p-value is asymptotically super-uniform, and provided an estimator σ̂ that can be used in practice.

Despite the notable contribution of [16], the model (1) is somewhat limited in more complex applica-
tions. In real problems, features describing observations are unlikely to be independent and have identical
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Figure 1: Empirical cumulative distribution functions (ECDF) of p-values defined in [16] testing for the
difference in cluster means after performing a hierarchical clustering algorithm (HAC) with average

linkage. The ECDF were computed from M = 2000 realizations of a matrix normal model with
µ = 0n×p and non-diagonal covariance matrices encoding the dependence between observations and
features. For each realization, the test compared the means of two randomly selected clusters after

setting the HAC to choose three clusters. p-values were computed by assuming (1), setting n = 100 and
p ∈ {5, 20, 50}.

variance, but rather present more general covariance structures Σ. In the same way, observations may
present non-negligible dependence structures when, for instance, they can be drawn from time series mod-
els or simulated with physical models involving time evolution. Note that ignoring dependency between
features and observations yields the loss of selective type I error control. This can be easily illustrated if
we simulate matrix normal samples with non-diagonal covariance matrices accounting for the dependence
structures between observations and features. If we set the global null hypothesis µ = 0n×p and assume
that observations follow (1), the p-values defined in [16] do not control the selective type I error when
testing for the equality of cluster means. Moreover, their deviation from uniformity increases with the
dimension of the feature space. This is illustrated in Figure 1. Details about the corresponding simulation
are given in Appendix D.1.

The practical motivation of the present work is to perform inference after clustering protein confor-
mations. Protein structures are non-static and their conformational variability is essential to understand
the relationship between sequence, structural properties and function [21]. Due to the high complexity
of the conformational space, clustering techniques have emerged as powerful tools to characterize the
structural variability of proteins, by extracting families of representative states [3, 10, 32, 36]. Usually,
Euclidean distances between pairs of amino acids are considered as p-dimensional descriptors of protein
conformations [7,10,22]. These distances are highly correlated and hardly match the model (1). Moreover,
protein data is often simulated with Molecular Dynamics approaches that simulate the time-evolution of
the protein according to physical models [2]. In that case, independence between observations cannot be
assumed.

Accordingly, our aim is to go one step further and extend the framework introduced in [16] to a more
general setting where arbitrary dependence structures between observations and features are admitted.
We present an adaptation of [16] where the model (1) is extended to

X ∼ MN n×p(µ, U, Σ), (2)
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where µ ∈ Mn×p(R), U ∈ Mn×n(R) and Σ ∈ Mp×p(R). Our techniques follow the same reasoning
steps as the ones in [16] and show that a p-value for testing differences between estimated cluster means
can be defined under (2). The paper is organized as follows:

• Section 2 presents the definition of a p-value for post-clustering inference under the general model
(2), and show that its efficient computation is straightforward if it is achievable under (1).

• In Section 3, we explore the scenarios that allow the asymptotic over-estimation of either U or Σ
while respecting the asymptotic control of the selective type I error. We provide an estimator that
can be used in several common practical scenarios.

• In Section 4, we revisit the framework presented in Section 2 when, for technical reasons, additional
information is imposed to the conditioning event that defines the p-value. In particular, this enables
selective inference after k-means clustering, following [9].

• Section 5 illustrates all the results through numerical experiments on synthetic data. Finally, Sec-
tion 6 shows how this theory can be applied to perform inference after clustering protein structures.

2 Selective inference for clustering under general dependency

In [16], the authors consider the problem of selective inference after hierarchical clustering in the case of
independent observations and features. Here, we aim to extend the method to admit general dependence
structures. We consider n observations of p features drawn from the matrix normal distribution (2),
where U and Σ are required to be positive definite. Each row of X is a vector of features in Rp. The
dependence between such features is given by Σ, and U encodes the dependency between observations.
If observations are independent with unit variance, we have U = In, and if features are independent with
equal variance we can write Σ = σ2Ip for a given σ > 0. These two assumptions define the model in [16].
Here, we show that this model can be generalized to arbitrary U, Σ, defining a p-value that controls the
selective type I error rate for clustering.

Let us first recall the setting introduced in [16]. We will denote by Xi (resp. µi) the i-th row of X
(resp. µ) and, for a group of observations G ⊆ {1, . . . , n}, XG will denote the submatrix of X with rows
Xi for i ∈ G. We also consider the mean of G in X, denoted by

µ̄G = 1
|G|
∑
i∈G

µi, (3)

and its empirical counterpart
X̄G = 1

|G|
∑
i∈G

Xi. (4)

From now on, we use the notation M = (Mij)ij to denote real matrices. Let C be a clustering algorithm,
x a realization of the random variable X and Ĉ1, Ĉ2 an arbitrary pair of clusters in C(x). The goal of
post-clustering inference is to assess the null hypothesis

H
{Ĉ1,Ĉ2}
0 : µ̄Ĉ1

= µ̄Ĉ2
(5)

by controlling the selective type I error for clustering at level α, i.e. by ensuring that

P
H

{Ĉ1,Ĉ2}
0

(
reject H

{Ĉ1,Ĉ2}
0 based on X at level α

∣∣∣∣ Ĉ1, Ĉ2 ∈ C(X)
)

≤ α ∀ α ∈ [0, 1]. (6)
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The ideal scenario to define a p-value for (5) satisfying (6) would be to only condition on the event
{Ĉ1, Ĉ2 ∈ C(X)}, which is the broader conditioning set that allows selective type I error control. However,
making the p-value analytically tractable often needs the refinement of the conditioning set by adding
more technical events (see also Section 4). In [16], the authors consider a test statistic of the form∥∥X̄Ĉ1

− X̄Ĉ2

∥∥
2 and introduce the quantity

p(x; {Ĉ1, Ĉ2}) = P
H

{Ĉ1,Ĉ2}
0

(∥∥X̄Ĉ1
− X̄Ĉ2

∥∥
2 ≥

∥∥x̄Ĉ1
− x̄Ĉ2

∥∥
2

∣∣∣∣ Ĉ1, Ĉ2 ∈ C(X),

π⊥
ν(Ĉ1,Ĉ2)X = π⊥

ν(Ĉ1,Ĉ2)x , dir
(
X̄Ĉ1

− X̄Ĉ2

)
= dir

(
x̄Ĉ1

− x̄Ĉ2

))
, (7)

where π⊥
ν = In − ννT / ∥ν∥2

2, dir(u) = u/ ∥u∥2 1{u ̸= 0} and the components of ν(Ĉ1, Ĉ2) are defined as

ν(Ĉ1, Ĉ2)i = 1{i ∈ Ĉ1}/|Ĉ1| − 1{i ∈ Ĉ2}/|Ĉ2|. (8)

Theorem 1 in [16] proves that (7) is a p-value for (5). Moreover, if C is a hierarchical clustering algorithm,
the p-value (7) can be explicitly characterized and efficiently computed for several types of linkages.
Otherwise, it can be approximated with a Monte Carlo procedure.

Here, we aim at extending (7) for the general model (2). The main idea is to replace the norm ∥·∥2
in the test statistic by the more general norm

∥x∥VĈ1,Ĉ2
=
√

xT V−1
Ĉ1,Ĉ2

x, ∀ x ∈ Rp, (9)

where VĈ1,Ĉ2
∈ Mp×p(R) integrates the information about the scale matrices in (2). Let us first introduce

some notation. For a pair of non-overlapping groups of observations G1, G2 ⊆ {1, . . . , n}, we define the
p(|G1| + |G2|) column vector

XG1,G2 = (vec(XT
G1

), vec(XT
G2

)), (10)

which concatenates the column vectors of observations in G1 with the ones in G2. Similarly, we denote as
UG1,G2 the principal submatrix of U containing the rows and columns in G1 ∪ G2. Finally, we consider
DG1,G2 ∈ Mp×p(|G1|+|G2|) the linear operator verifying DG1,G2XG1,G2 = X̄G1 − X̄G2 , that we can write
explicitly as the block matrix

DG1,G2 =
(

1
|G1| Ip

|G1|
· · · 1

|G1| Ip − 1
|G2| Ip

|G2|
· · · − 1

|G2| Ip

)
. (11)

We can now define the matrix VG1,G2 in (9) as

VG1,G2 = DG1,G2(UG1,G2 ⊗ Σ)DT
G1,G2

, (12)

where ⊗ denotes the Kronecker product of matrices. Note that (9) is a well-defined norm if and only if
VG1,G2 is a positive definite matrix, which here is guaranteed as DG1,G2 has full rank and U and Σ are
positive definite [19]. The following result extends Theorem 1 in [16] by proving that the quantity

pVĈ1,Ĉ2
(x; {Ĉ1, Ĉ2}) = P

H
{Ĉ1,Ĉ2}
0

(∥∥X̄Ĉ1
− X̄Ĉ2

∥∥
VĈ1,Ĉ2

≥
∥∥x̄Ĉ1

− x̄Ĉ2

∥∥
VĈ1,Ĉ2

∣∣∣∣ Ĉ1, Ĉ2 ∈ C(X),

π⊥
ν(Ĉ1,Ĉ2)X = π⊥

ν(Ĉ1,Ĉ2)x , dirVĈ1,Ĉ2

(
X̄Ĉ1

− X̄Ĉ2

)
= dirVĈ1,Ĉ2

(
x̄Ĉ1

− x̄Ĉ2

))
, (13)

where dirVĈ1,Ĉ2
(u) = u/ ∥u∥VĈ1,Ĉ2

1{u ̸= 0}, is a computationally tractable p-value for (5) that controls
the selective type I error rate for arbitrary dependence structures U, Σ.
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Theorem 2.1. Let x be a realization of X and G1, G2 ∈ P({1, . . . , n}) with G1 ∩ G2 = ∅. Then,
pVG1,G2

(x; {G1, G2}) is a p-value for the test H
{G1,G2}
0 : µ̄G1 = µ̄G2 that controls the selective type I error

for clustering (6) at level α. Furthermore, it satisfies

pVG1,G2
(x; {G1, G2}) = 1 − Fp

(
∥x̄G1 − x̄G2∥VG1,G2

, SVG1,G2
(x; {G1, G2})

)
, (14)

where Fp(t, S) is the cumulative distribution function of a χp random variable truncated to the set S and

SVG1,G2
(x; {G1, G2}) =

{
ϕ ≥ 0 : G1, G2 ∈ C

(
π⊥

ν(G1,G2)x +
(

ϕ
1

|G1| + 1
|G2|

)
ν(G1, G2)dirVG1,G2

(x̄G1 − x̄G2)
)}

.

(15)

Theorem 2.1 is proved in Appendix A. One can easily verify that replacing U = In and Σ = σ2Ip

in Theorem 2.1 yields exactly Theorem 1 in [16]. The only difference is that, here, the information
about the variance has been extracted from the statistic null distribution, which now remains the same
independently of U, Σ, and moved it into the test statistic itself by making it dependent on the scale
matrices. Note that this formulation replaces the Euclidean distance considered in [16] by the Mahalanobis
distance [26]. Recall that, if x, y ∈ Rp and P is a probability distribution supported on Rp with covariance
matrix C, the Mahalanobis distance between x and y with respect to P is given by ∥x − y∥C , where ∥·∥C

is defined as (9). Consequently, the formulation in Theorem 2.1 corresponds to consider as statistic the
Mahalanobis distance between the empirical means X̄Ĉ1

and X̄Ĉ2
with respect to the null distribution

of their difference X̄Ĉ1
− X̄Ĉ2

, which is a centered multivariate normal of covariance matrix VĈ1,Ĉ2
(see

proof of Theorem 2.1). This distance generalizes to multiple dimensions the idea of quantifying how
many standard deviations away a point is from the mean of its distribution, and therefore integrates the
dependence structure between columns and rows in X.

Following (14), computing the p-value (13) only depends on the characterization of the one-dimensional
set

ŜVĈ1,Ĉ2
= SVĈ1,Ĉ2

(x; {Ĉ1, Ĉ2}) =
{

ϕ ≥ 0 : Ĉ1, Ĉ2 ∈ C
(

x′
VĈ1,Ĉ2

(ϕ)
)}

, (16)

where the set SVĈ1,Ĉ2
(x, ·) is defined in (15) and

x′
VĈ1,Ĉ2

(ϕ) = π⊥
ν(Ĉ1,Ĉ2)x +

 ϕ
1

|Ĉ1| + 1
|Ĉ2|

 ν(Ĉ1, Ĉ2)dirVĈ1,Ĉ2
(x̄Ĉ1

− x̄Ĉ2
). (17)

The data set (17) is analogous to x′(ϕ) in [16, Equation (13)] for the norm (9), and its interpretation is
equivalent. Indeed, we can rewrite both x′(ϕ) and (17) as

x′(ϕ) = x + ν(Ĉ1, Ĉ2)∥∥∥ν(Ĉ1, Ĉ2)
∥∥∥2

2

(
ϕ −

∥∥x̄Ĉ1
− x̄Ĉ2

∥∥
2

)
dir(x̄Ĉ1

− x̄Ĉ2
), (18)

x′
VĈ1,Ĉ2

(ϕ) = x + ν(Ĉ1, Ĉ2)∥∥∥ν(Ĉ1, Ĉ2)
∥∥∥2

2

(
ϕ −

∥∥x̄Ĉ1
− x̄Ĉ2

∥∥
VĈ1,Ĉ2

)
dirVĈ1,Ĉ2

(x̄Ĉ1
− x̄Ĉ2

). (19)

Consequently, we can interpret (17) as a perturbed version x′(ϕ) of x, but where the perturbation is
based on the norm ∥·∥VĈ1,Ĉ2

defined in (9) instead of ∥·∥2. Thus, the set (16) is the set of non-negative
ϕ for which applying the clustering algorithm C to the perturbed data set x′

VĈ1,Ĉ2
(ϕ) yields Ĉ1 and Ĉ2.
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As shown in [16], the set
Ŝ = {ϕ ≥ 0 : Ĉ1, Ĉ2 ∈ C(x′(ϕ))}, (20)

can be explicitly characterized for hierarchical clustering. Importantly, we do not need to re-adapt the
work in [16] to the set (16), as its points are given by a scale transformation of the points in Ŝ:

Lemma 2.2. Let x be a realization of X and Ĉ1, Ĉ2 an arbitrary pair of clusters in C(x). Let Ŝ denote
the set (20) defined in [16, Equation (12)]. Then,

ŜVĈ1,Ĉ2
=

∥∥x̄Ĉ1
− x̄Ĉ2

∥∥
VĈ1,Ĉ2∥∥x̄Ĉ1

− x̄Ĉ2

∥∥
2

Ŝ, (21)

where ŜVĈ1,Ĉ2
is defined in (16).

Consequently, the work in [16, Section 3] can be applied here to characterize the set (16) and, therefore,
to compute the p-value defined in (13). An explicit characterization of (16) is possible when C is a
hierarchical clustering algorithm with squared Euclidean distance, along with either single linkage or
a linkage satisfying a linear Lance-Williams update [16, Equation 20], e.g. average, weighted, Ward,
centroid or median linkage. The efficient computation of (16) can also be extended to k-means clustering,
as shown in Section 4. Otherwise, the p-value (13) can be approximated with a Monte Carlo procedure,
adapting the importance sampling approach presented in [16, Section 4.1]. Following the same notation,
we sample

ω1, . . . , ωN
i.i.d.∼ N

(∥∥x̄Ĉ1
− x̄Ĉ2

∥∥
VĈ1,Ĉ2

, 1
)

and approximate (13) as

pVĈ1,Ĉ2
(x; {Ĉ1, Ĉ2}) ≈

∑N
i=1 πi 1

{
ωi ≥

∥∥x̄Ĉ1
− x̄Ĉ2

∥∥
VĈ1,Ĉ2

, Ĉ1, Ĉ2 ∈ C(x′(ωi))
}

∑N
i=1 πi 1

{
Ĉ1, Ĉ2 ∈ C(x′(ωi))

} , (22)

for πi = f1(ωi)/f2(ωi), where f1 is the density of a χp random variable, and f2 is the density of a
N (
∥∥x̄Ĉ1

− x̄Ĉ2

∥∥
VĈ1,Ĉ2

, 1) random variable.

3 Unknown dependence structures

The selective inference framework introduced for model (2) in Section 2 assumes that both scale matrices
U and Σ are known, which is a quite unrealistic scenario. Under the independence assumption made
in [16], where Σ = σ2Ip and U = In, the authors showed in Theorem 4 that over-estimating σ yields
asymptotic control of the selective type I error, and provided such an estimator σ̂ that can be used in
practice. Under the general model (2), the scale matrices U and Σ are non-identifiable:

X ∼ MN np(µ, U, Σ) ⇔ X ∼ Nnp(µ, aU ⊗ a−1Σ) for any a > 0, (23)

so different parametrizations can yield the same distribution. This makes their simultaneous estimation
an arduous task in practice. Non-unique Maximum Likelihood Estimates (MLE) exist for U and Σ [13],
which depend on each other and can be computed through an iterative algorithm. However, even in the
unlikely scenario where we had access to enough realizations of X, the interdependence of the computed
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MLEs would still prevent us from assessing the control of selective type I error after estimation. In this
Section, we investigate the situation where only one of the scale matrices is known, and assess theoretical
conditions that allow asymptotic control of the selective type I error when estimating the other one. We
also provide an estimator that satisfies these conditions for some common dependence models.

Let us recall that, for the model (2), we have

X ∼ MNn×p(µ, U, Σ) ⇔ XT ∼ MNp×n(µT , Σ, U). (24)

Therefore, the methods presented in this Section can be equally applied to estimate U or Σ when the
other is known, by transposing X if needed. From now on, we assume that the dependence structure
between observations U is known, and study under which conditions we can suitably estimate Σ. In
other words, if Σ̂(x) is an estimate of Σ for a given realization x of X, we study under which conditions
the p-value

pV̂G1,G2
(x; {G1, G2}) = 1 − Fp

(
∥x̄G1 − x̄G2∥V̂G1,G2

; SV̂G1,G2
(x; {G1, G2})

)
, (25)

where V̂G1,G2 = DG1,G2(UG1,G2 ⊗ Σ̂(x))DT
G1,G2

, asymptotically controls the selective type I error. Theo-
rem 3.1 generalizes Theorem 4 in [16] for the estimation of Σ under model (2) by relying on the Loewner
partial order, defined below. The proof is included in Appendix B.

Definition 3.1 (Definition 7.7.1 in [19]). Let A, B be two square matrices of equal size. The binary
relation A ⪰ B if and only if A, B are Hermitian and A − B is positive semidefinite is called the Loewner
partial order between square matrices.

Theorem 3.1. For n ∈ N, let X(n) ∼ MNn×p(µ(n), U(n), Σ). Let x(n) be a realization of X(n) and
Ĉ

(n)
1 , Ĉ

(n)
2 a pair of clusters estimated from x(n). If Σ̂

(
X(n)) is a positive definite estimator of Σ such

that
lim

n→∞
P

H
{Ĉ

(n)
1 ,Ĉ

(n)
2 }

0

(
Σ̂
(

X(n)
)

⪰ Σ
∣∣∣∣ Ĉ(n)

1 , Ĉ
(n)
2 ∈ C

(
X(n)

))
= 1, (26)

then, for any α ∈ [0, 1], we have

lim sup
n→∞

P
H

{Ĉ
(n)
1 ,Ĉ

(n)
2 }

0

(
pV̂

Ĉ
(n)
1 ,Ĉ

(n)
2

(
X(n);

{
Ĉ

(n)
1 , Ĉ

(n)
2

})
≤ α

∣∣∣∣ Ĉ(n)
1 , Ĉ

(n)
2 ∈ C

(
X(n)

))
≤ α, (27)

where pV̂
Ĉ

(n)
1 ,Ĉ

(n)
2

is defined in (25).

Note that the Loewner partial order is a natural extension to Hermitian matrices of the usual order
in R. If we replace Σ by σ2Ip in Theorem 3.1, the condition Σ̂ ⪰ Σ becomes σ̂ ≥ σ, as in [16,
Theorem 4]. We aim now at providing an estimator of Σ satisfying the conditions in Theorem 3.1. The
asymptotic properties of such an estimator strongly depend on the asymptotic dependence structure
between observations, given by the sequence of matrices {U(n)}n∈N of Theorem 3.1. First, let us consider

Σ̂ = Σ̂ (X) = 1
n − 1

(
X − X̄

)T U−1 (X − X̄
)

, (28)

where X̄ is a n × p matrix having as rows the mean across rows of X, i.e.

X̄ = 1n ⊗ 1
n

n∑
k=1

Xk, (29)
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where 1n is a column n-vector of ones. We can also write (28) element-wise:

Σ̂ij = 1
n − 1

n∑
l,s=1

(
Xli − X̄i

) (
U−1)

ls

(
Xsj − X̄j

)
, ∀ i, j ∈ {1, . . . , p}, (30)

where X̄i = 1
n

∑n
k=1 Xki. Note that the estimator Σ̂ is a positive definite matrix if the matrix X − X̄ has

full rank. In that case, (28) satisfies the conditions of Theorem 3.1 if we make some assumptions about
how the matrices µ(n) and U(n) in Theorem 3.1 grow up as n increases. We first adopt the assumptions
about {µ(n)}n∈N made in [16] to prove the counterpart of Theorem 3.1 for the independence scenario.

Assumption 3.1 (Assumptions 1 and 2 in [16]). For all n ∈ N, there are exactly K∗ distinct mean
vectors among the first n observations, i.e.{

µ
(n)
i

}
i=1,...,n

= {θ1, . . . , θK∗}. (31)

Moreover, the proportion of the first n observations that have mean vector θk converges to πk > 0, i.e.

lim
n→∞

1
n

n∑
i=1

1{µ
(n)
i = θk} = πk, (32)

for all k ∈ {1, . . . , K∗}, where
∑K∗

k=1 πk = 1.

If observations are independent and we set U(n) = In, Assumption 3.1 is the only requirement for (28)
to asymptotically over-estimate Σ in the sense of Theorem 3.1. However, for general U(n), the quantities

1
n

n∑
l,s=1

(
U (n)

)−1

ls
1{µ

(n)
l = θk}1{µ(n)

s = θk′} (33)

are also required to converge as n tends to infinity. Furthermore, we need to know its limit explicitly
to assess whether Σ̂ ⪰ Σ asymptotically. This requires relatively strong conditions on the sequence
{U(n)}n∈N, which can be difficult to verify for a given model of dependence, as well as an additional mild
condition on the sequence {µ(n)}n∈N, needed for non-diagonal U(n). Let’s begin by stating the latter.

Assumption 3.2. If U(n) is non-diagonal for all n ∈ N, for any k, k′ ∈ {1, . . . , K∗}, the proportion
of the first n observations at distance r ≥ 1 in X(n) having means θk and θk′ converges, and its limit
converges to πkπk′ when the lag r tends to infinity. More precisely,

lim
n→∞

1
n

n−r∑
i=1

1{µi = θk}1{µi+r = θk′} = πr
kk′ −→

r→∞
πk πk′ . (34)

Note that we are requiring the proportion of pairs of observations having a given a pair of means
to approach the product of individual proportions (32) when both observations are far away in X(n).
Stronger conditions need to be imposed to the sequence {U(n)}n∈N in order for (33) to converge with
tractable limit.

Assumption 3.3. Let {U(n)}n∈N be a sequence of real positive definite matrices, and let
(
U (n))−1

ij
denote

the i, j entry of
(
U(n))−1 for any n ∈ N. Then, every superdiagonal of

(
U(n))−1 defines asymptotically
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a convergent sequence, whose limits sum up to a real value. More precisely, for any i ∈ N and any r ≥ 0,

lim
n→∞

(
U (n)

)−1

i i+r
= Λi i+r, where lim

i→∞
Λi i+r = λr and

∞∑
r=0

λr = λ ∈ R. (35)

Moreover, for each r ≥ 0, the sequence {
(
U (n))−1

i i+r
}n∈N satisfies any of the following conditions:

(i) It is dominated by a summable sequence i.e.
∣∣∣(U (n))−1

i i+r
− Λi i+r

∣∣∣ ≤ αi ∀ n ∈ N, with {αi}∞
i=1 ∈ ℓ1,

(ii) For each i ∈ N, it is non-decreasing or non-increasing.

If Assumptions 3.1, 3.2 and 3.3 hold for a given pair of sequences {µ(n)}n∈N, {U(n)}n∈N, the following
result ensures that Σ̂ asymptotically over-estimates (in the sense of the Loewner partial order) the
dependence structure Σ between features.

Proposition 3.2. Let X(n) ∼ MNn×p(µ(n), U(n), Σ), where µ(n) and U(n) satisfy Assumptions 3.1, 3.2
and 3.3 for some K∗ > 1. Let Σ̂ be the estimator defined in (28). Then,

lim
n→∞

P
(

Σ̂
(

X(n)
)

⪰ Σ
)

= 1. (36)

Our proof of Proposition 3.2 relies of the following Lemma, which makes use of Assumptions 3.1, 3.2
and 3.3 explicitly. Both results are proved in Appendix B.

Lemma 3.3. Let X(n) ∼ MNn×p(µ(n), U(n), Σ), where µ(n) and U(n) satisfy Assumptions 3.1, 3.2 and
3.3 for some K∗ > 1. Then,

lim
n→∞

1
n

n∑
l,s=1

(
U (n)

)−1

ls
1{µ

(n)
l = θk}1{µ(n)

s = θk′} = 2(λ − λ0)πkπk′ + λ0πkδkk′ , (37)

for any k, k′ ∈ {1, . . . , K ′}, and where πk, πk′ and λ0, λ are defined in Assumptions 3.1 and 3.3 respec-
tively.

Finally, it suffices to estimate Σ using an independent and identically distributed copy of X(n) to
have (26) provided (36). Combined this observation with Proposition 3.2, we obtain our final result:

Proposition 3.4. Let X(n) ∼ MNn×p(µ(n), U(n), Σ), where µ(n) and U(n) satisfy Assumptions 3.1, 3.2
and 3.3 for some K∗ > 1. Let x(n) be a realization of X(n) and Ĉ

(n)
1 , Ĉ

(n)
2 a pair of clusters estimated from

x(n). Let Y(n) an independent and identically distributed copy of X(n). Then, the estimator Σ̂
(
Y(n))

defined in (28) satisfies the conditions of Theorem 3.1, i.e.

lim
n→∞

P
H

{Ĉ
(n)
1 ,Ĉ

(n)
2 }

0

(
Σ̂
(

Y(n)
)

⪰ Σ
∣∣∣∣ Ĉ(n)

1 , Ĉ
(n)
2 ∈ C

(
X(n)

))
= 1. (38)

Assessing whether a model of dependence satisfies the hypotheses of Proposition 3.4 (more precisely,
Assumption 3.3) is not trivial as it requires full knowledge of how the inverse matrices

(
U(n))−1 grow up

when dimension increases. However, we are able to show that Assumption 3.3 is satisfied for some simple
dependence models and, consequently, that selective type I error can be controlled when Σ is estimated
in such cases. The following remarks are proved in Appendix B.

Remark 3.1 (Diagonal). Let U(n) = diag(λ1, . . . , λn). If the sequence {λn}n∈N is convergent, then the
sequence {U(n)}n∈N satisfies Assumption 3.3.
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Remark 3.1 trivially covers the case of independent observations. Besides, if the matrix X is trans-
posed, any general dependence structure between observations U can be estimated if independent features
with known variances are provided. Another simple model that satisfies Assumption 3.3 is the one defined
by constant variances and covariances (also known as compound symmetry). In that case, U(n) is the
sum of a constant and a diagonal matrix.

Remark 3.2 (Compound symmetry). Let a, b ∈ R with b ̸= a ≥ 0. If U(n) = b1n×n + (a − b) In, where
1n×n is a n × n matrix of ones, then {U(n)}n∈N satisfies Assumption 3.3.

We can extend the complexity of U(n) to auto-regressive covariance structures of any lag. This is
mainly thanks to the fact that the inverses of such matrices are tractable and banded, i.e. their non-zero
entries are confined to a centered diagonal band. Under model (2), assuming that U(n) is the covariance
matrix of an auto-regressive process of order P means that

1√
Σjj

X
(n)
ij = 1√

Σjj

P∑
s=1

βs X
(n)
i−s j + εi, ∀ j ∈ {1, . . . , p}, (39)

where {εi}i=1,...,n are i.i.d univariate centered normal variables and {βs}s=1,...,P ⊂ R are the model
coefficients. Then, for any j ∈ {1, . . . , p}, the entries of U(n) would be given by

Uii′ = Cov
(

Xij√
Σjj

,
Xi′j√

Σjj

)
, ∀i, i′ ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , p}. (40)

If the model (39) is assumed, the covariance matrix U(n) and its inverse have a tractable structure. For
example, for the simplest auto-regressive process where P = 1, and the i-th observation depends linearly
only on the (i − 1)-th one, the entries of U(n) have the form U

(n)
ij = σ2ρ|i−j|, for σ > 0. To ensure the

the positive definiteness of U(n), we need |ρ| < 1 (see the form of eigenvalues in [37]). This is equivalent
to ask the the process to be stationary. Then, the inverse of U(n) is a tridiagonal matrix of the form

(
U(n)

)−1
= 1

σ2(1 − ρ2)



1 −ρ

−ρ 1 + ρ2 −ρ

−ρ
. . . . . .
. . . . . . . . .

. . . 1 + ρ2 −ρ

−ρ 1


. (41)

The super and sub-diagonals trivially satisfy condition (i) in Assumption 3.3 with λ±1 = −ρ/(1−ρ2).
Then, the entries of the main diagonal define the sequences

σ2(1 − ρ2)
{(

U (n)
)−1

ii

}
n∈N

=
{

{1, 1, . . .} if i = 1,

{ξ1, . . . , ξi−1, 1, 1 + ρ2, 1 + ρ2, . . .} if i > 1,

for every i ∈ N, where the entries σ2(1 − ρ2) (U (n))−1
ii = ξn for i > n can be chosen as needed. Note that

these sequences do not satisfy condition (i) in Assumption 3.3, but they are non-decreasing (choosing
appropriately the ξk). Consequently, Assumption 3.3 holds and we have Λ11 = 1/(σ2((1 − ρ2)), Λii =
λ0 = (1+ρ2)/(σ2((1−ρ2)) for all i > 1 and, finally, λ = (1−ρ)2/(σ2((1−ρ2)). For any P ≥ 1, the inverse
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matrices are banded with 2P + 1 non-zero diagonals and we can follow the same reasoning. However, for
P > 2, we need to require the coefficients β1, . . . , βP to have the same sign.

Remark 3.3 (Auto-regressive). Let U(n) be the covariance matrix of an auto-regressive process of order
P ≥ 1 such that, if P > 2, βkβk′ ≥ 0 for all k, k′ ∈ {1, . . . , P}. Then, the sequence {U(n)}n∈N satisfies
Assumption 3.3.

Combined with Theorem 3.1, the above remarks imply that the selective type I error is controlled in
the above-studied diagonal, compound symmetry and auto-regressive models.

4 Non-maximal conditioning sets

The methodology presented in Section 2 sets up the framework to perform selective inference after
hierarchical clustering. Exploring its adaptation to further clustering algorithms involves, as shown
in [9], the redefinition of p-values by constraining the conditional event that define (7) and (13). In this
Section, we revisit the procedure of post-clustering inference introduced in Section 2 and rewrite it in a
more general form that allows its straightforward adaptation to the scenario where more conditioning is
imposed.

When defining a p-value for (5) that controls the selective type I error (6), one may think of condi-
tioning only on having selected the pair of clusters that define the null hypothesis, i.e. on the event

M̂12(X) = M12(X; {Ĉ1, Ĉ2}) = {Ĉ1, Ĉ2 ∈ C(X)}. (42)

However, this is generally not enough to ensure the analytical tractability of the p-value. When consider-
ing a matrix normal distribution for the p-dimensional observations, two further conditions are imposed
as shown in [16]. Following Section 2, this corresponds to conditioning on the event

M̂12(X) ∩
{

π⊥
ν(Ĉ1,Ĉ2)X = π⊥

ν(Ĉ1,Ĉ2)x , dirVĈ1,Ĉ2

(
X̄Ĉ1

− X̄Ĉ2

)
= dirVĈ1,Ĉ2

(
x̄Ĉ1

− x̄Ĉ2

)}
, (43)

which is the maximal event for which any analytically tractable p-value has been shown to control (6)
under the general model (2). If we denote by T̂12(X) = T12(X; {Ĉ1, Ĉ2}) the second set in (43), we can
rewrite (13) as

pVĈ1,Ĉ2
(x; {Ĉ1, Ĉ2}) = P

H
{Ĉ1,Ĉ2}
0

(∥∥X̄Ĉ1
− X̄Ĉ2

∥∥
VĈ1,Ĉ2

≥
∥∥x̄Ĉ1

− x̄Ĉ2

∥∥
VĈ1,Ĉ2

∣∣∣∣ M̂12(X) ∩ T̂12(X)
)

.

(44)
Then, from Theorem 2.1 and its proof we can rewrite the truncation set in (14) as

SVĈ1,Ĉ2
(x; {Ĉ1, Ĉ2}) =

{
ϕ ∈ R : M̂12

(
x′

VĈ1,Ĉ2
(ϕ)
)}

, (45)

where x′
VĈ1,Ĉ2

(ϕ) is defined in (17). Consequently, (13) is analytically tractable as

pVĈ1,Ĉ2
(x; {Ĉ1, Ĉ2}) = 1 − Fp

(∥∥x̄Ĉ1
− x̄Ĉ2

∥∥
VĈ1,Ĉ2

,
{

ϕ ≥ 0 : M̂12

(
x′

VĈ1,Ĉ2
(ϕ)
)})

, (46)

where Fp is defined in Theorem 2.1. Uncoupling M̂12(X) and T̂12(X) in (44) allows us to characterize
the null distribution of the p-value in terms of the conditioning event (42). This is useful to study the
scenarios where, for technical reasons, subsets of (42) are chosen to define the p-value for (5). This is the
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case in [9], where the framework of [16] under model (1) has been adapted to perform selective inference
after k-means clustering. To allow the efficient computation of their truncation set, the authors condition
on T̂12(X) but also on all the intermediate clustering assignments for the n observations [9, Equation (9)],
which is a subset of (42). In accordance with (45) and (46), this more restrictive conditioning yielded
the same p-value (7) as in [16] except from a different truncation set, based on the finer conditioning
event. The following result characterizes this framework under our general model (2) and for an arbitrary
non-maximal conditioning event. As such, it is a generalization of Theorem 2.1.

Theorem 4.1. Let x be a realization of X and G1, G2 ∈ P({1, . . . , n}) with G1 ∩ G2 = ∅. Let ∅ ̸=
E12(X) ⊂ M12(X) = M12(X; {G1, G2}), T12(X) = T12(X; {G1, G2}) and

pVG1,G2
(x; {G1, G2}; E12) = P

H
{G1,G2}
0

(∥∥X̄G1 − X̄G2

∥∥
VG1,G2

≥ ∥x̄G1 − x̄G2∥VG1,G2

∣∣∣∣E12(X) ∩ T12(X)
)

.

(47)
Then, pVG1,G2

(x; {G1, G2}; E12) is a p-value for the test H
{G1,G2}
0 : µ̄G1 = µ̄G2 that controls the selective

type I error for clustering (6) at level α. Furthermore, it satisfies

pVG1,G2
(x; {G1, G2}; E12) = 1 − Fp

(
∥x̄G1 − x̄G2∥VG1,G2

,
{

ϕ ≥ 0 : E12

(
x′

VG1,G2
(ϕ)
)})

, (48)

where Fp(t, S) is the cumulative distribution function of a χp random variable truncated to the set S and
x′

VG1,G2
(ϕ) is defined in (17).

Note that, following (46), replacing E12(X) by M12(X) yields exactly Theorem 2.1. The proof of (48)
is omitted as it is identical to that of (14) in Theorem 2.1. The control of the selective type I error is
proved in Appendix C.

Once again, the efficient computation of (48) depends on the efficient computation of the truncation
set E12(x′

VG1,G2
(ϕ)). As shown for the maximal conditioning event in Lemma 2.2, it suffices to characterize

the truncation set when the perturbed data set x′ is defined with respect to any norm.

Lemma 4.2. Let x be a realization of X and Ĉ1, Ĉ2 an arbitrary pair of clusters in C(x). Let x′ denote
the set (19) defined in [16, Equation (12)]. Then,

E12

(
x′

VĈ1,Ĉ2
(ϕ)
)

=

∥∥x̄Ĉ1
− x̄Ĉ2

∥∥
VĈ1,Ĉ2∥∥x̄Ĉ1

− x̄Ĉ2

∥∥
2

E12 (x′(ϕ)) . (49)

The proof of Lemma 4.2 is omitted as it is identical to that of Lemma 2.2. In [9], the authors
characterized E12(x′(ϕ)) when E12 corresponds to all intermediate clustering assignments of a k-means
algorithm. Therefore, we can benefit from their efficient computation procedure and compute the trun-
cation set under model (2) using Lemma 4.2. As such, we are able to perform selective inference after
k-means clustering when observations and features have arbitrary dependence structures. The estimation
procedure presented in Section 3 remains identical for this case.

5 Numerical experiments

In this section, we assess the numerical performance of the proposed test for the difference of cluster
means in several scenarios simulated with synthetic data. The following three settings are considered for
the scale matrices U and Σ:
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Figure 2: Empirical cumulative distribution functions (ECDF) of p-values (13) with C being a
hierarchical clustering algorithm with average linkage. The ECDF were computed from M = 2000

realizations of (2) under the three dependence settings (a), (b) and (c) with µ = 0n×p, n = 100 and
p ∈ {5, 20, 50}.

(a) U = In and Σ is the covariance matrix of an AR(1) model, i.e. Uij = σ2ρ|i−j|, with σ = 1 and
ρ = 0.5.

(b) U is a compound symmetry covariance matrix, i.e. U = b + (a − b)In, with a = 0.5 and b = 1. Σ
is a Toeplitz matrix, i.e. Σij = t(|i − j|), with t(s) = 1 + 1/(1 + s) for s ∈ N.

(c) U is the covariance matrix of an AR(1) model with σ = 1 and ρ = 0.1. Σ is a diagonal matrix with
diagonal entries given by Σii = 1 + 1/i.

We simulated matrix normal data in settings (a), (b) and (c) and performed k-means and hierarchical
agglomerative clustering (HAC) with average, centroid, single and complete linkages. In Section 5.1 we
illustrate the uniformity of the p-values (13) under a global null hypothesis, assuming that both scale
matrices are known. In Section 5.2, we consider the case where the dependence between observations is
known and the covariance matrix between features Σ is estimated. We show, as proved in Section 3, that
p-values are super-uniform for large enough sample sizes. Finally, in Section 5.3, we assess the relative
efficiency of the four linkages in terms of power, for the three dependence scenarios considered.

5.1 Uniform p-values under a global null hypothesis

To illustrate the null distribution of p-values, we followed the same steps as in [16, Section 5.1]. For
n = 100 and p ∈ {5, 20, 50}, we simulated M = 2000 samples drawn from model (2) in settings (a), (b)
and (c) with µ = 0n×p a zero matrix, so that the null hypothesis (5) holds for any pair of clusters in C(X).
For each simulated sample, we used k-means and HAC to estimate three clusters and tested (5) for two
randomly selected clusters. Results for HAC with average linkage are displayed in Figure 2, where the
empirical cumulative distribution functions (ECDF) of the simulated p-values are shown. The results for
k-means and HAC with centroid, single and complete linkage are analogous to those for average linkage
and we present them in Appendix D.2. The p-values for HAC with complete linkage were computed
as their Monte Carlo approximation (22) with N = 2000 iterations. In all cases, the p-values follow a
uniform distribution when the null hypothesis (5) holds, excluding a slight deviation from uniformity
found for HAC with complete linkage under (c). This deviation may be explained by the difficulty of
simulating independent realizations of auto-regressive processes (see Appendix D.2).
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Figure 3: Empirical cumulative distribution functions (ECDF) of p-values (13) with C being a
hierarchical clustering algorithm with average linkage. The ECDF are computed from M = 5000

realizations of (2) under the three dependence settings (a), (b) and (c) with n = 500, p = 10 and µ
given by (50) with δ ∈ {4, 6}. Only samples for which the null hypothesis held were kept, as described

in Section 5.2.

5.2 Super-uniform p-values for unknown Σ

In this section, we illustrate that p-values (25) are asymptotically super-uniform when Σ is asymptotically
over-estimated in the sens of Loewner partial order, as proved in Theorem 3.1. We use the estimator (28)
that asymptotically over-estimates Σ if Assumptions 3.1, 3.2 and 3.3 hold. This is indeed the case for the
three dependence scenarios (a), (b) and (c), following Remarks 3.1, 3.2 and 3.3 respectively. The estimate
is computed using an independent and identically distributed copy of the sample where the clustering
was performed, following Proposition 3.4.

We follow the same steps as in [16, Section D.1]. For n = 500 and p = 10, we simulate M = 5000
samples drawn from (2) in settings (a), (b) and (c) with µ being divided into two clusters:

µij =
{

δ
j if i ≤ n

2 ,

− δ
j otherwise,

∀ i ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , p}, (50)

with δ ∈ {4, 6}. For k-means and HAC with average, centroid, single and complete linkage we set C to
chose three clusters. The samples for which (5) held when comparing two randomly selected clusters are
kept. Results for HAC with average linkage are presented in Figure 3. The results for k-means and HAC
with centroid, single and complete linkage are analogous and we present them in Appendix D.3. All
simulations illustrate the asymptotic super-uniformity of p-values (13) under the null hypothesis, when
Σ is asymptotically over-estimated using (28). Moreover, as the distance between clusters δ decreases,
the over-estimation is less severe and the null distribution of p-values approaches the one of a uniform
random variable.

It is important to remark that Figure 3 serves only to illustrate the validity of Theorem 3.1, but
in no way to interpret the conservativeness of p-values when Σ is over-estimated. The deviation from
uniformity of the null distribution of (25) or, equivalently, the power of the corresponding test, depends
on the measure of the conditioning set, which in Figure 3 is determined by the frequency of iterations
satisfying (5).
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5.3 Power analysis

We conclude the numerical simulations on synthetic data by assessing the relative efficiency of the five
clustering algorithms considered in terms of power. As in [16, Section 5.2], we consider the conditional
power of the p-value (13), which is the probability of rejecting the null (5) for a randomly selected pair
of clusters when it holds. To estimate the conditional power, we simulate M = 5000 samples drawn from
(2) under the three settings (a), (b) and (c) with µ dividing the n = 50 observations into three true
clusters:

µij =


− δ

2 if i ≤ ⌊ n
3 ⌋,

√
3δ
2 if ⌊ n

3 ⌋ < i ≤ ⌊ 2n
3 ⌋,

δ
2 otherwise,

∀ i ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , p}, (51)

for p = 10 and for 14 evenly-spaced values of δ ∈ [4, 10.5]. Then, we estimate the conditional power as
the proportion of rejections at level α = 0.05 among the samples for which the null hypothesis (5) did
not hold (which were above the 90% of n in all settings). The conditional power as a function of δ is
shown in Figure 4 for the three scenarios (a), (b) and (c) and the five considered clustering algorithms.
The p-values for HAC with complete linkage are estimated using the approximation (22) with N = 2000
iterations.

Figure 4 shows that, in all cases, conditional power increases with the distance between true clusters.
Regarding HAC, we observe that average linkage presents the best relative efficiency among the four
considered linkages in all the dependence settings, followed closely by complete linkage, which seems to
weaken in (b). This might suggest that conditional power depends on the scale matrices and some scenarios
might strongly differ from the overall observed behavior. Indeed, the qualitative difference between
average or complete linkage and centroid or single linkage that is observed in (a) and (c) considerably
lessens in (b). In (a) and (c), the performance of single linkage is undoubtedly the lowest, and large
differences between clusters are required to attain satisfactory levels of conditional power. However,
single linkage achieves the second best performance in (b).

The relative efficiency of the k-means algorithm in terms of conditional power is one of the worst among
all the considered algorithms. This behavior was already pointed out by the authors in [9], who referred
to the fact that conditioning on too much information entails a loss of power [8, 15, 20, 25]. Recall that
the truncation set for k-means post-clustering inference defined in [8] is non-maximal to allow its efficient
computation (see Section 4 and [9, Equation (9)]). This approach, although respecting the selective type
I error as shown in Theorem 4.1, sacrifices the efficiency in terms of power of the corresponding test, as
illustrated in Figure 4.

6 Application to clustering of protein structures

Proteins are essential molecules in all living organisms. Many of their numerous functions are closely
related to their non-static structure, which exhibits high variability within numerous protein fami-
lies [14, 24, 30]. The characterization of such intrinsic structural complexity represents a highly active
area of research in the field of Structural Biology. In this pursuit, clustering methods applied to protein
conformations have provided valuable insights into this challenging problem [3, 10]. One of the most
commonly-chosen descriptors to characterize a protein conformation is the set of pairwise Euclidean dis-
tances between every pair of amino acids along the sequence [22, 28, 33], usually referred to as distance
maps. As these distances are strongly correlated, assuming a constant diagonal covariance matrix as
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Figure 4: Conditional power for the test proposed in Section 2 under model (2) with the three
dependence settings (a), (b) and (c) and the mean matrix defined in (51). The conditional power is

estimated as the proportion of rejection at level α = 0.05 among the subset of the M = 5000
realizations of (2) for which the null hypothesis (5) holds.

in [16] seems very unrealistic. Instead, we opt for the more convenient model

X ∼ MN n×p(µ, In, Σ), (52)

where Σ can be estimated using (28). Each row of X corresponds to a protein conformation, featured
by a vector of Euclidean distances between every pair of amino acids, which constitute the columns of
X. We perform hierarchical agglomerative clustering with average linkage (as it showed the best relative
efficiency in Section 5.3) to estimate k = 6 clusters among n = 2000 conformations of a disordered protein
called Histatin-5 (Hst5). The number of clusters was chosen arbitrarily. The corresponding sequence is 24
amino acids long, so p = 23·24/2 = 276. The conformations were generated using Flexible-Meccano [6,31]
and refined using previously reported small-angle X-ray scattering (SAXS) data [35]. Note that Flexible-
Meccano is a sampling algorithm that generates an independent conformation at each iteration, contrary
to Molecular Dynamics simulation techniques that present temporal dependence between samples. This
justifies our choice of U = In. Moreover, we had access to an independent replica of the simulated
ensemble that we used to estimate Σ, as it is usual for generated protein ensembles. Figure 5 shows
the average distance map across all conformations in a given cluster or, in other words, the empirical
cluster means X̄Ĉ1

, . . . , X̄Ĉ6
as defined in (4). Table 1 presents the p-values corresponding to every pair

of clusters, corrected for multiple testing using the Bonferroni-Holm adjustment [18].

Cluster 1 2 3 4 5

2 2.187589·10−4

3 3.039844·10−11 1.41·10−3

4 1.070993·10−10 0.300540 2.98464·10−4

5 3.038979·10−16 0.093018 6.015797·10−5 0.105446
6 1.729616·10−6 0.010612 9.290826·10−9 2.105·10−3 5.624624·10−5

Table 1: p-values (13) computed under model (52) retrieved after testing (5) on the protein data
presented in Section 6. The hierarchical clustering algorithm was set to find six clusters using average

linkage. In blue, adjusted p-values for which the null is not rejected at level α = 0.05.

The p-values presented in Table 1 show significant differences between the most part of the average
distance maps depicted in Figure 5. The non-rejecting pairs of clusters at level α = 0.05, marked in blue
in Table 1, suggest that clusters 2, 4 and 5 could be merged into a single group. Indeed, when looking
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Figure 5: Average pairwise distances between every pair of amino acids across the conformations of each
cluster. The clusters were found after performing hierarchical clustering with average linkage on the

protein data presented in Section 6.

at the corresponding empirical means X̄Ĉ2
, X̄Ĉ4

in Figure 5, we appreciate that these three clusters
are characterized by large distances between pairs of amino acids that are far apart in the sequence,
which indicates a lack of interactions between the sequence termini and a more extended structure of
the corresponding conformations. This feature appears as an exclusive and prominent characteristic of
clusters 2, 4 and 5, which might explain the non-rejection of the corresponding nulls. For the rest of
rejecting pairs of clusters, clear differences in distance patterns are retrieved in Figure 5, accounting for
significant changes on Hst5 structure between the corresponding groups. The results presented in Table 1
are coherent with the HAC dendrogram, presented in Figure 6, showing that clusters 2, 4, and 5 form a
subgroup that is promptly separated from the rest.

7 Discussion

The seminal work by Gao et al. [16] has laid the foundation for selective inference after clustering by
introducing the theoretical framework allowing to test differences between cluster means, conditioning
on having estimated those clusters. Furthermore, the authors have tackled the problem of estimating
unknown parameters while controlling the selective type I error, which had been overlooked in previous
works [23,34], but which is crucial for the practical application of this theory. Their contribution motivates
extensions of post-clustering inference to more general frameworks that arise in complex real applications,
where observations or features present non-negligible dependence structures. In this work, we generalize
the model considered in [16] to non-independent observations and features, as well as the adequate
estimation of the dependence structure, from the uni-dimensional case in [16] to the matrix framework
presented here. These extensions, presented in Sections 2 and 3 respectively, and numerically illustrated
in Sections 5 and 6, represent the main contributions of this work.
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Figure 6: HAC dendrogram for the Hst5 protein ensemble data, with the six estimated clusters marked
with colored rectangles.

The theoretical framework presented in Section 2 covers any known dependence structure for ob-
servations and features. The main idea is to replace the Euclidean norm in [16] by the Mahalanobis
distance with respect to the null distribution of the difference of means (9) to define the test statistic
(Theorem 2.1). This removes the information about the variance from the statistic null distribution,
which becomes independent of U and Σ. Although the joint estimation of both scale matrices Σ and
U is difficult to manage under (2), we have set the framework allowing the estimation of one of them
when the other one is known. The key idea is to redefine the asymptotic over-estimation in terms of the
Loewner partial order, which maintains the asymptotic control of the selective type I error (Theorem 3.1).
Following Proposition 3.4, an i.i.d. copy of X is required to estimate Σ. Resorting to data splitting here
is unfeasible if U is not block diagonal with identical blocks. Several copies of X are naturally available in
some applications, as is the case in the analysis of simulated protein ensembles presented in Section 6. To
allow valid post-clustering inference in real scenarios, we provide an estimator of Σ that asymptotically
over-estimates Σ when U satisfies Assumptions 3.1, 3.2 and 3.3. Future work could focus on showing
that these assumptions are satisfied for new models of dependence between observations, besides the one
presented in Remarks 3.1, 3.2 and 3.3.

Clustering is a multidimensional method that incorporates information from p descriptors to classify
n observations. However, the estimated groups are often distinguished by a subset of variables, whose
determination is essential in various fields of application [29,39]. The framework presented in [16] has been
adapted to feature-level post-clustering inference in [17], testing for the difference of the g-th coordinate
of cluster means, for a fixed g ∈ {1, . . . , p}. In that case, clustering is performed on the complete data set
X but inference is carried out on the g-th column, modeled by a n-dimensional Gaussian of covariance
matrix σ2

gIn, for a σg > 0. Note that the possible dependence structure between features is not taken
into account for inference, but only the covariance between observations. Following a similar reasoning
as in [16], the authors in [17] define a p-value that controls the selective type I error. However, no
efficient analytic computation is not proposed, and a Monte Carlo approximation is used. Following the
strategy presented here, adapting the framework of [17] to arbitrary dependence between observations
is straightforward, but it would entail the same limitations regarding the efficient computation of the
p-value. The analytical determination of the truncation set in that framework would be an important
contribution. Additionally, the non-trivial extension of the over-estimation strategy presented in Section 3

18



to this framework would be essential to allow the practical implementation of the feature-level selective
test.

Another potential avenue for exploration is the adaptation of the efficient computation of the trunca-
tion set, as presented in [9, 16], to other clustering algorithms. The combination of dimension reduction
algorithms, such as t-SNE [38] and UMAP [27], with clustering techniques has gained immense popularity
in various fields of Biology due to its remarkable empirical efficiency [1, 3, 5, 10–12]. As such, it would
be useful to develop methods that avoid computationally expensive Monte Carlo approximations and
efficiently compute the truncation set in scenarios where, for example, C represents the composition of a
dimension reduction algorithm with hierarchical or k-means clustering.

As discussed in Section 4, performing analytically tractable post-clustering inference requires the
addition of technical events to the conditioning set, which implies a reduction in power. Investigating
whether these conditions might be relaxed is an interesting path for future research. The problem of power
loss due to extra conditioning is not exclusive to this method. Techniques like data fission [23] need to
calibrate the conditioning information and consequences in terms of power are analogous. However, it is
still unknown whether power loss is more drastic in one method or the other. An interesting contribution
would be to establish a framework allowing for a proper comparison of this effect when performing post-
clustering inference using data fission and the approach proposed in [16]. Nevertheless, extending this
comparison to practical applications would be unfeasible as long as the estimation of the covariance
structure with statistical guarantees cannot be carried out in both methods.

Code availability

The methods introduced in the present work were implemented in the R package PCIdep, available at
https://github.com/gonzalez-delgado/PCIdep. The package makes use of the R package clusterpval,
providing the approaches of [16], and the R package KmeansInference, providing the approaches of [9].
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A Proofs of Section 2

Proof of Theorem 2.1. We follow the steps of the proof of Theorem 1 in [16]. We begin by deriving the
null distribution of the test statistic

∥∥X̄G1 − X̄G2

∥∥
VG1,G2

under the null H
{G1,G2}
0 . First, we have

X ∼ MNn×p(µ, U, Σ) ⇔ XT ∼ MNp×n(µT , Σ, U) ⇔ vec(XT ) ∼ Nnp(vec(µT ), U ⊗ Σ), (53)

where vec(XT ) is a column vector concatenating the n vectors of p-dimensional observations that consti-
tute X. If we restrict vec(XT ) to the observations (10) in G1 ∪ G2 , we have

XG1,G2 ∼ Np(|G1|+|G2|)(µ̄G1,G2 , UG1,G2 ⊗ Σ) (54)
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where µ̄G1,G2 = (vec(µ̄T
G1

), vec(µ̄T
G2

)). Then, we can apply the linear transformation DG1,G2 (11) to obtain
the difference of means and get

X̄G1 − X̄G2 = DG1,G2XG1,G2 ∼ Np

(
µ̄G1 − µ̄G2 , DG1,G2(UG1,G2 ⊗ Σ)DT

G1,G2

)
, (55)

that, under H
{G1,G2}
0 , gives

X̄G1 − X̄G2

H
{G1,G2}
0 ∼ Np (0, VG1,G2) , (56)

where we replaced VG1,G2 by its definition (12). UG1,G2 is positive definite as it is a principal submatrix
of U. The Kronecker product of two positive definite matrices is also positive definite and, as DG1,G2 is
a full rank linear operator, VG1,G2 is positive definite [19, Observation 7.1.8]. Consequently, VG1,G2 is
invertible and defines the norm (9) in Rp. This, together with (56), yields

∥∥X̄G1 − X̄G2

∥∥2
VG1,G2

H
{G1,G2}
0 ∼ χ2

p. (57)

Let us now build the p-value for H
{G1,G2}
0 , by slightly adapting the reasoning in [16]. On one hand, for

any ν ∈ Rn, we have

X = π⊥
ν X + (In − π⊥

ν X) = π⊥
ν X +

(∥∥XT ν
∥∥

VG1,G2

∥ν∥2
2

)
ν dirVG1,G2

(XT ν)T . (58)

Following (8), XT ν(G1, G2) = X̄G1 − X̄G2 and ∥ν(G1, G2)∥2
2 = 1/ |G1| + 1/ |G2|. Thus, we can write

X = πν(G1, G2)⊥X +

∥∥X̄G1 − X̄G2

∥∥
VG1,G2

1
|G1| + 1

|G2|

 ν(G1, G2) dirVG1,G2
(X̄G1 − X̄G2)T . (59)

On the other hand, from the proof in [16] we have πν(G1, G2)⊥X ⊥⊥ XT ν(G1, G2), which implies∥∥X̄G1 − X̄G2

∥∥
VG1,G2

⊥⊥ πν(G1, G2)⊥X (60)

and, from the independence of the length and direction (in any norm) of a centered multivariate normal
vector (56), we have ∥∥X̄G1 − X̄G2

∥∥
VG1,G2

⊥⊥ dirVG1,G2
(X̄G1 − X̄G2). (61)

We can now plug (59) in the definition of our p-value (13) and, applying (60) and (61), we can derive

pVG1,G2
(x; {G1, G2}) = P

H
{G1,G2}
0

(∥∥X̄G1 − X̄G2

∥∥
VG1,G2

≥ ∥x̄G1 − x̄G2∥VG1,G2

∣∣∣∣∥∥X̄G1 − X̄G2

∥∥
VG1,G2

∈ SVG1,G2
(x; {G1, G2})

)
, (62)

where the set SVG1,G2
(x; {G1, G2}) is defined in (15). Consequently, if we denote by Fp(t, S) the cumulative

distribution function of a χp random variable truncated to the set S, from (62) and (57) we have

pVG1,G2
(x; {G1, G2}) = 1 − Fp

(
∥x̄G1 − x̄G2∥VG1,G2

, SVG1,G2
(x; {G1, G2})

)
, (63)

which proves the first statement (14). The control of selective type I error is proved identically to the
reasoning in the proof of [16, Theorem 1].
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Proof of Lemma 2.2. Let us first show that the perturbed data sets x′(ϕ), defined in [16, Equation (13)]
and x′

VĈ1,Ĉ2
(ϕ), defined in (17) are the same up to a scale transformation, i.e. that

x′
VĈ1,Ĉ2

(ϕ) = x′

 ∥∥x̄Ĉ1
− x̄Ĉ2

∥∥
2∥∥x̄Ĉ1

− x̄Ĉ2

∥∥
VĈ1,Ĉ2

ϕ

 ∀ ϕ ≥ 0. (64)

Note first that we can write ∥∥x̄Ĉ1
− x̄Ĉ2

∥∥
2∥∥x̄Ĉ1

− x̄Ĉ2

∥∥
VĈ1,Ĉ2

ϕ −
∥∥x̄Ĉ1

− x̄Ĉ2

∥∥
2

 dir(x̄Ĉ1
−x̄Ĉ2

) =
(

ϕ −
∥∥x̄Ĉ1

− x̄Ĉ2

∥∥
VĈ1,Ĉ2

)
dirVĈ1,Ĉ2

(x̄Ĉ1
−x̄Ĉ2

),

(65)
where dir(u) = u/ ∥u∥2 1{u ̸= 0}. Replacing (65) in (19), we have (64). Finally, it suffices to remark that

ŜVĈ1,Ĉ2
=
{

ϕ ≥ 0 : Ĉ1, Ĉ2 ∈ C
(

x′
VĈ1,Ĉ2

(ϕ)
)}

=

ϕ ≥ 0 : Ĉ1, Ĉ2 ∈ C

x′

 ∥∥x̄Ĉ1
− x̄Ĉ2

∥∥
2∥∥x̄Ĉ1

− x̄Ĉ2

∥∥
VĈ1,Ĉ2

ϕ


=


∥∥x̄Ĉ1

− x̄Ĉ2

∥∥
VĈ1,Ĉ2∥∥x̄Ĉ1

− x̄Ĉ2

∥∥
2

ϕ : Ĉ1, Ĉ2 ∈ C(x′(ϕ))

 =

∥∥x̄Ĉ1
− x̄Ĉ2

∥∥
VĈ1,Ĉ2∥∥x̄Ĉ1

− x̄Ĉ2

∥∥
2

Ŝ,

which concludes the proof.

B Proofs of Section 3

Proof of Theorem 3.1. We follows the steps of the proof of Theorem 4 in [16]. For simplicity, we use p̂n

to denote pV̂
Ĉ

(n)
1 ,Ĉ

(n)
2

(
X(n);

{
Ĉ

(n)
1 , Ĉ

(n)
2

})
, pn to denote pV

Ĉ
(n)
1 ,Ĉ

(n)
2

(
X(n);

{
Ĉ

(n)
1 , Ĉ

(n)
2

})
, V̂n to denote

V̂
Ĉ

(n)
1 ,Ĉ

(n)
2

and Vn to denote V
Ĉ

(n)
1 ,Ĉ

(n)
2

. If we show that

Σ̂
(

X(n)
)

⪰ Σ ⇒ p̂n ≥ pn, (66)

then the result follows using the same reasoning as in the proof of [16, Theorem 4], replacing the usual
order ≥ in R by the Loewner partial order ⪰ between matrices. Consequently, we only need to prove
(66). First note that, as the Kronecker product is distributive, we have

Σ̂
(

X(n)
)

⪰ Σ ⇒ V̂n ⪰ Vn. (67)

Next, by Corollary 7.7.4(a) and Theorem 7.7.2(a) in [19], we can write

V̂n ⪰ Vn ⇔ V−1
n ⪰ V̂−1

n

⇒
(

X(n)
Ĉ

(n)
1

− X(n)
Ĉ

(n)
2

)T

V−1
n

(
X(n)

Ĉ
(n)
1

− X(n)
Ĉ

(n)
2

)
≥
(

X(n)
Ĉ

(n)
1

− X(n)
Ĉ

(n)
2

)T

V̂−1
n

(
X(n)

Ĉ
(n)
1

− X(n)
Ĉ

(n)
2

)
⇔
∥∥∥X(n)

Ĉ
(n)
1

− X(n)
Ĉ

(n)
2

∥∥∥
Vn

≥
∥∥∥X(n)

Ĉ
(n)
1

− X(n)
Ĉ

(n)
2

∥∥∥
V̂n

. (68)
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Let us then state that, if Fp(t, c, S) denotes the cumulative distribution function of a c · χp distribution
truncated to the set S, for c > 0, it follows that

Fp(t, c, a S) = Fp

(
t

a
,

c

a
, S
)

, (69)

for any a > 0. We prove (69) as a technical lemma after the proof. With a slight abuse of notation we
write Fp(t, 1, S) = Fp(t, S) where Fp(t, S) is the CDF involved in (14). Consequently, taking

a =

∥∥∥X(n)
Ĉ

(n)
1

− X(n)
Ĉ

(n)
2

∥∥∥
V̂n∥∥∥X(n)

Ĉ
(n)
1

− X(n)
Ĉ

(n)
2

∥∥∥
Vn

≤ 1, (70)

we have

1 − p̂n = Fp

(∥∥∥X(n)
Ĉ

(n)
1

− X(n)
Ĉ

(n)
2

∥∥∥
V̂n

, SV̂n

)
= Fp

(∥∥∥X(n)
Ĉ

(n)
1

− X(n)
Ĉ

(n)
2

∥∥∥
V̂n

, a SVn

)
= Fp

(
1
a

∥∥∥X(n)
Ĉ

(n)
1

− X(n)
Ĉ

(n)
2

∥∥∥
V̂n

,
1
a

, SVn

)
= Fp

(∥∥∥X(n)
Ĉ

(n)
1

− X(n)
Ĉ

(n)
2

∥∥∥
Vn

,
1
a

, SVn

)
≤ Fp

(∥∥∥X(n)
Ĉ

(n)
1

− X(n)
Ĉ

(n)
2

∥∥∥
Vn

, 1 , SVn

)
= 1 − pn, (71)

where the last inequality follows from Lemma A.3 in [16]. This shows (66).

Lemma B.1. For c > 0 and ∅ ̸= S ⊂ R, let Fp(t, c, S) denote the cumulative distribution function of a
c · χp distribution truncated to S. Then, for any a > 0, it holds

Fp(t, c, a S) = Fp

(
t

a
,

c

a
, S
)

.

Proof of Lemma B.1. First, if we denote by f(t, c, S) the probability density function of a c·χp distribution
truncated to the set S, we have

f(t, c, a S) = 1
a

f

(
t

a
,

c

a
, S
)

. (72)

Indeed, following the first lines of the proof of [16, Lemma A.3], we can rewrite f(t, c, a S) as

f(t, c, a S) = tp−1 1{t ∈ a S}∫
up−1 exp(− u2

2c2 ),1{t ∈ a S} du
exp

(
− t2

2c2

)
, (73)

that we can easily express in terms of t/a as

f(t, c, a S) =
(

t
a

)p−1
1{ t

a ∈ S}∫ (
u
a

)p−1 exp(− (u/a)2

2(c/a)2 ),1{ t
a ∈ S} du

exp
(

− (t/a)2

2(c/a)2

)
= 1

a
f

(
t

a
,

c

a
, S
)

, (74)

where the last equality follows from taking the variable change y = u/a in the integral. Finally, we have

Fp(t, c, a S) =
∫ t

0
f(x, c, a S) dx = 1

a

∫ t

0
f
(x

a
,

c

a
, S
)

dx =
∫ t

a

0
f
(

u,
c

a
, S
)

du = Fp

(
t

a
,

c

a
, S
)

,

which concludes the proof.
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Proof of Remark 3.1. The case of diagonal matrices is straightforward as both U(n) and
(
U(n))−1 are

defined by a sequence {λi}i∈N. Every diagonal entry of the inverse satisfies
(
U (n))−1

ii
= 1

λi
for all n ∈ N

and, as we asked the λi to converge to λ, which is strictly positive due to the positive definiteness of
U(n), Assumption 3.3 is satisfied.

Proof of Remark 3.2. Let U(n) = b1n×n+(a−b) In. Note that, as U(n) is positive definite, the coefficients
a, b verify a > b. This follows the fact that maxi,j |Aij | ≤ maxii Aii for any positive definite matrix A.
Following the Sherman–Morrison formula [4], we can derive an explicit expression for the sequence of
inverse matrices: (

U(n)
)−1

= 1
a − b

In + −b

(a − b)(nb + a − b) , ∀ n ∈ N. (75)

Consequently, for every r ≥ 0 and every i ∈ N, we have

(
U(n)

)−1

i i+r
=

 1
a−b + −b

(a−b)(nb+a−b) if r = 0,

−b
(a−b)(nb+a−b) if r > 0,

which are monotone, so condition (ii) in Assumption 3.3 is satisfied. Then, we have

Λi i+r =
{

1
a−b if r = 0,

0 if r > 0,

for all i ∈ N, λ0 = 1/(a − b) and λr = 0 for r > 0. Consequently, Assumption 3.3 holds.

Proof of Remark 3.3. The inverse of an auto-regressive covariance matrix of lag P ≥ 1 is banded with
2P − 1 non-zero diagonals. Its explicit form is derived in [40] for a stationary process of any lag, and the
cases P ≤ 3 are discussed in detail in [41]. From these results we can derive the behavior of the sequences
{
(
U (n))−1

i i+r
} as n increases. The diagonal elements define the sequences

σ2
{(

U (n)
)−1

ii

}
n∈N

=
{

{1 +
∑i−1

k=1 β2
k, 1 +

∑i−1
k=1 β2

k, . . .} if i ≤ p + 1,

{0, i−1. . ., 0, 1, 1 + β2
1 , 1, 1 + β2

1β2
2 , . . . , 1 +

∑p
k=1 β2

k, 1 +
∑p

k=1 β2
k, . . .} if i > p + 1,

where the sums are taken as zero if the upper limit of summation is zero. Note that these sequences
do not satisfy condition (i) in Assumption 3.3 as, even if each sequence reaches its limit after a finite
number of terms, the index of the term where the limit is reached diverges with i. In other words, we can
dominate the sequence, but not by a summable one. However, for all i ∈ N the series are non-decreasing
so condition (ii) is satisfied and we have

σ2 Λii =
{

1 +
∑i−1

k=1 β2
k if i ≤ p + 1

1 +
∑p

k=1 β2
k if i > p + 1.

Then, σ2 λ0 = 1 +
∑p

k=1 β2
k. The sequences outside the main diagonal show a similar behavior, but

they are not positive in general. As, following the same reasoning, they do not satisfy condition (i) in
Assumption 3.3, we force them to satisfy condition (ii). For any 0 < r ≤ P , we have

σ2
{(

U (n)
)−1

i i+r

}
n∈N

=


{−βr +

∑i−(r+1)
k=1 βkβk+r, −βr +

∑i−(r+1)
k=1 βkβk+r, . . .} if i ≤ p + 1,

{0, i−1. . ., 0, −βr + β1β1+r, −βr + β1β1+r + β2β2+r, . . . ,

−βr +
∑p−r

k=1 βkβk+r, −βr +
∑p−r

k=1 βkβk+r, . . .} if i > p + 1.

(76)
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For these sequences to satisfy condition (ii) we need them to be non-decreasing or non-increasing. For
P ≤ 2 this is always satisfied but, for P > 2, we need to require all the βk to have the same sign. In that
case, condition (ii) holds and we have

σ2Λi i+r =
{

−βr +
∑i−(r+1)

k=1 βkβk+r ifi ≤ p + 1,

−βr +
∑p−r

k=1 βkβk+r ifi > p + 1,

and, consequently, σ2λr = −βr +
∑p−r

k=1 βkβk+r. As the sequence {λr}∞
r=1 is non-zero for for a finite

number of terms (due to the bandedness of the inverse matrix), its sum converges and Assumption 3.3 is
satisfied.

Proof of Lemma 3.3. We start by rewriting the sum in (37) as a sum along each diagonal. Using the
symmetry of

(
U(n))−1 we have,

lim
n→∞

1
n

n∑
l,s=1

(
U (n)

)−1

ls
1{µ

(n)
l = θk}1{µ(n)

s = θk′}

= lim
n→∞

1
n

n−1∑
r=1

n−r∑
i=1

(
U (n)

)−1

i i+r
1{µ

(n)
i = θk}1{µ

(n)
i+r = θk′} (77)

+ lim
n→∞

1
n

n−1∑
r=1

n−r∑
i=1

(
U (n)

)−1

i i+r
1{µ

(n)
i+r = θk}1{µ

(n)
i = θk′} (78)

+ lim
n→∞

1
n

n∑
i=1

(
U (n)

)−1

i i
1{µ

(n)
i = θk}1{µ

(n)
i = θk′}, (79)

where (77),(78) and (79) are respectively the sums along all the superdiagonals, subdiagonals and along
the main diagonal. Let us detail the general reasoning that we use to show that the three quantities
converge. Let {a

(n)
i }i∈N be a double sequence such that limn→∞ a

(n)
i = ai ∈ R, and let {b

(n)
i }i∈N be a

binary Cesàro summable double sequence, i.e. such that limn→∞
1
n

∑n
i=1 b

(n)
i = b and b

(n)
i ∈ {0, 1} for all

i, n ∈ N. Let us first show that, if {a
(n)
i }n∈N satisfies any of the conditions (i) or (ii), and the sequence

{a
(1)
i − ai}∞

i=1 ∈ ℓ1, we can write

lim
n→∞

1
n

n∑
i=1

a
(n)
i b

(n)
i = lim

n→∞

1
n

n∑
i=1

ai b
(n)
i . (80)

First, note that

lim
n→∞

1
n

n∑
i=1

a
(n)
i b

(n)
i = lim

n→∞

1
n

n∑
i=1

(
a

(n)
i − ai

)
b

(n)
i + lim

n→∞

1
n

n∑
i=1

ai b
(n)
i . (81)

Therefore, it suffices to show that the first term in (81) is zero to have (80). Using Hölder’s inequality,
we have

lim
n→∞

1
n

∣∣∣∣∣
n∑

i=1

(
a

(n)
i − ai

)
b

(n)
i

∣∣∣∣∣ ≤ lim
n→∞

1
n

n∑
i=1

∣∣∣(a
(n)
i − ai

)
b

(n)
i

∣∣∣
≤ lim

n→∞

(
n∑

i=1

(
a

(n)
i − ai

)2
) 1

2

lim
n→∞

1
n

(
n∑

i=1
b

(n)
i

) 1
2

.
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On one hand,

lim
n→∞

1
n

(
n∑

i=1
b

(n)
i

) 1
2

= lim
n→∞

1√
n

lim
n→∞

(
1
n

n∑
i=1

b
(n)
i

) 1
2

= 0.

On the other hand, let us show that

lim
n→∞

n∑
i=1

(
a

(n)
i − ai

)2
= 0 (82)

if {a
(n)
i }n∈N satisfies any of the conditions (i) or (ii). If {a

(n)
i }n∈N satisfies (i), the sequence {(a(n)

i −
ai)2}n∈N is dominated by the sequence {α2

i }i∈N, which is summable as ℓ1 ⊂ ℓ2. Then, (80) holds
following the Dominated Convergence Theorem [42, Theorem 9.20]. If {a

(n)
i }n∈N is non-increasing, then

a
(n+1)
i − ai ≤ a

(n)
i − ai implies (a(n+1)

i − ai)2 ≤ (a(n)
i − ai)2 and ã

(n)
i := (a(n)

i − ai)2 is a non-increasing
and non-negative sequence. Similarly, if {a

(n)
i }n∈N is non-decreasing, then a

(n+1)
i − ai ≥ a

(n)
i − ai implies

(a(n+1)
i − ai)2 ≤ (a(n)

i − ai)2 and ã
(n)
i is again a non-increasing and non-negative sequence. Then,

the sequence z
(n)
i := ã

(1)
i − ã

(n)
i is non-negative and non-decreasing. Thus, following the Monotone

Convergence Theorem [42, Theorem 8.5], we have

lim
n→∞

n∑
i=1

z
(n)
i = lim

n→∞

n∑
i=1

(a(1)
i − ai)2, (83)

which implies (82) if the limit in the right side of (83) exists and is finite. This is guaranteed if we ask the
sequence {a

(1)
i −ai}∞

i=1 to be summable. This always holds in our case as we can arbitrarily define the en-
tries

(
U (n))−1

i i+r
for i > n. Consequently, if we write {

(
U (1))−1

i i+r
}∞

i=1 = {
(
U (1))−1

1 1+r
, Λ2 2+r, Λ3 3+r, . . .},

the sequence {
(
U (1))−1

i i+r
− Λi i+r}∞

i=1 is trivially summable. This proves (80).

Now, if we have that lim
i→∞

ai = a, let us show that

lim
n→∞

1
n

n∑
i=1

ai b
(n)
i = ab. (84)

First, let separate the sum in (84) as

1
n

n∑
i=1

ai b
(n)
i = 1

n

n∑
i=1

(ai − a) b
(n)
i + a

n

n∑
i=1

b
(n)
i . (85)

The right term tends to ab when n → ∞. Let’s show that the first term tends to zero. For any i0 ∈ N,
we can write ∣∣∣∣∣ 1n

n∑
i=1

(ai − a) b
(n)
i

∣∣∣∣∣ ≤

∣∣∣∣∣ 1n
i0−1∑
i=1

(ai − a) b
(n)
i

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=i0

(ai − a) b
(n)
i

∣∣∣∣∣ (86)

≤ sup
i<i0

|ai − a| 1
n

i0−1∑
i=1

b
(n)
i + sup

i≥i0

|ai − a| 1
n

n∑
i=i0

b
(n)
i ≤ C

n
+ sup

i≥i0

|ai − a| 1
n

n∑
i=i0

b
(n)
i , (87)
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where C is a real constant. Then, following the definition of limit, when can choose i0 as the one such
that for all i ≥ i0 we have |ai − a| ≤ 1

n . Therefore,∣∣∣∣∣ 1n
n∑

i=1
(ai − a) b

(n)
i

∣∣∣∣∣ ≤ C

n
+ 1

n2

n∑
i=i0

b
(n)
i , (88)

which tends to zero when n → ∞ using that {b
(n)
i }i ∈ N has Cesàro sum b. Thus, we have (84). As

the sequences
(
U (n))−1

i i+r
have limits Λi i+r when i → ∞, following Assumption 3.2, and the products of

indicator functions are Cesàro summable thanks to Assumptions 3.1 and 3.2, we can use (80) and (84)
to rewrite the three limits in (77), (78), (79) as

lim
n→∞

1
n

n∑
l,s=1

(
U (n)

)−1

ls
1{µ

(n)
l = θk}1{µ(n)

s = θk′}

= lim
n→∞

n−1∑
r=1

λr (πr
kk′ + πr

k′k) + λ0πkδkk′ = 2(λ − λ0)πkπk′ + λ0πkδkk′ , (89)

where the last limit is derived following the same reasoning as to prove (84). This concludes the proof.

Proof of Proposition 3.2. We start by proving the element-wise convergence in probability of (28). More
precisely, we show that

Σ̂(n)
ij

p→ Σij + λ0

K∗∑
k=1

πk

(
θki − θ̃i

) (
θkj − θ̃j

)
, (90)

for all i, j ∈ {1, . . . , p}, where Σ̂(n)
ij is the ij entry of Σ̂

(
X(n)) and we have defined θ̃i =

∑K∗

k=1 πkθki.
Recall that all the quantities in (90) have been defined in Assumptions 3.1 and 3.3. To prove (90), it
suffices to show, following the same reasoning as in the proof of [16, Lemma C.1], that

lim
n→∞

E
(

Σ̂(n)
ij

)
= Σij + λ0

K∗∑
k=1

πk

(
θki − θ̃i

) (
θkj − θ̃j

)
and Var

n→∞

(
Σ̂(n)

ij

)
= 0. (91)

Indeed, (91) implies convergence in mean of Σ̂(n)
ij towards the limit of its expectation and, following

Markov’s inequality, convergence in probability. Let start by rewriting Σ̂(n)
ij . Following (30), we can write

Σ̂(n)
ij = 1

n − 1

n∑
l,s=1

X
(n)
li X

(n)
js

(
U (n)

)−1

ls
− 1

n − 1 X̄
(n)
j

n∑
l,s=1

X
(n)
li

(
U (n)

)−1

ls

− 1
n − 1 X̄

(n)
i

n∑
l,s=1

X
(n)
sj

(
U (n)

)−1

ls
+ 1

n − 1 X̄
(n)
i X̄

(n)
j

n∑
l,s=1

(
U (n)

)−1

ls
. (92)
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For simplicity, we denote as A
(n)
ij , B

(n)
ij , C

(n)
ij and D

(n)
ij the four terms in (92) respectively. First, let us

derive their asymptotic expectations.

E
(

A
(n)
ij

)
= 1

n − 1

n∑
l,s=1

(
U (n)

)−1

ls
E
(

X
(n)
li X

(n)
sj

)
= 1

n − 1

n∑
l,s=1

(
U (n)

)−1

ls
µ

(n)
li µ

(n)
sj + Σij

n − 1

n∑
l,s=1

(
U (n)

)−1

ls
U

(n)
sl

=
K∗∑

k,k′=1

1
n − 1

n∑
l,s=1

(
U (n)

)−1

ls
1{µ

(n)
l = θk}1{µ(n)

s = θk′} θkiθk′j + n

n − 1Σij .

Using Lemma 3.3, we have

lim
n→∞

E
(

A
(n)
ij

)
= 2(λ − λ0)

K∗∑
k=1

πkθki

K∗∑
k=1

πkθkj + λ0

K∗∑
k=1

πkθkiθkj + Σij . (93)

Then,

E
(

B
(n)
ij

)
= 1

n(n − 1)

n∑
l,s,r=1

(
U (n)

)−1

ls
E
(

X
(n)
li X

(n)
rj

)
= 1

n(n − 1)

n∑
l,s,r=1

(
U (n)

)−1

ls
µ

(n)
li µ

(n)
rj + Σij

n − 1 = 1
n

n∑
r=1

µ
(n)
rj

1
n − 1

n∑
l,s

(
U (n)

)−1

ls
µ

(n)
li + Σij

n − 1

=
K∗∑
k=1

1
n

n∑
r=1

1{µ(n)
r = θk}θkj

K∗∑
k=1

1
n − 1

n∑
l,s=1

(
U (n)

)−1

ls
1{µ

(n)
l = θk}θki + Σij

n − 1 .

Using the same reasoning as to prove Lemma 3.3, we have

lim
n→∞

1
n − 1

n∑
l,s=1

(
U (n)

)−1

ls
1{µ

(n)
l = θk} = (2(λ − λ0) + λ0)πk.

This, together with Assumption 3.1, yields

lim
n→∞

E
(

B
(n)
ij

)
= lim

n→∞
E
(

C
(n)
ij

)
= (2(λ − λ0) + λ0)

K∗∑
k=1

πkθkj

K∗∑
k=1

πkθki, (94)

where B
(n)
ij and C

(n)
ij have the same expectation by symmetry. Finally,

E
(

D
(n)
ij

)
= 1

n2(n − 1)

n∑
l,s=1

(
U (n)

)−1

ls

n∑
r,r′=1

E
(

X
(n)
ri X

(n)
r′j

)
1

n − 1

n∑
l,s=1

(
U (n)

)−1

ls

 1
n2

n∑
r,r′=1

µ
(n)
ri µ

(n)
r′j + Σij

n2

n∑
r,r′=1

U
(n)
rr′

 .

Using the same reasoning as to prove Lemma 3.3, we have

lim
n→∞

1
n − 1

n∑
l,s=1

(
U (n)

)−1

ls
= 2(λ − λ0) + λ0. (95)
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Moreover, we state that

lim
n→∞

1
n2

n∑
l,s=1

U
(n)
ls = 0. (96)

We prove (96) at the end of the proof. This claim, together with (95) and Assumption 3.1, yields

lim
n→∞

E
(

D
(n)
ij

)
= (2(λ − λ0) + λ0)

K∗∑
k=1

πkθki

K∗∑
k=1

πkθkj . (97)

Consequently, following (93), (94) and (97), we have

lim
n→∞

E
(

Σ̂(n)
ij

)
= Σij + λ0

[
K∗∑
k=1

πkθkiθkj −
K∗∑
k=1

πkθki

K∗∑
k=1

πkθkj

]

= Σij + λ0

K∗∑
k=1

πk

(
θki − θ̃i

) (
θkj − θ̃j

)
. (98)

This is the first statement in (91). To prove the second one, we show that the variance of each term in
(92) tends to zero. To do so, we need the explicit form of the non-centered 4-th moments of a Gaussian
distribution. More precisely, if X1, . . . , X4 are four Gaussian random variables with E(Xi) = µi and
Cov(Xi, Xj) = σij , for i, j ∈ {1, . . . , 4}, we need the explicit form of the quantity

E (X1 X2 X3 X4) − E (X1 X2) E (X3 X4) . (99)

The first term can be derived using the moment generating function of a 4-dimensional normal distribution

M(X1,...,X4)(t1, . . . , t4) = exp

 4∑
i=1

µi ti + 1
2

n∑
i,j=1

σij ti tj

 ,

and computing

E (X1 X2 X3 X4) =
∂M(X1,...,X4)(t1, . . . , t4)

∂ t1 · · · ∂ t4

∣∣∣∣∣
0

.

Doing so, and using E(Xi Xj) = µiµj + σij , we can derive

E (X1 X2 X3 X4) − E (X1 X2) E (X3 X4) = σ13σ24 + σ14σ23 + µ1µ4σ23 + µ1µ3σ24 + µ2µ3σ14 + µ2µ4σ13.

(100)
We are ready to prove that Var

(
Σ̂(n)

ij

)
tends to zero. First, using Var(X) = E(X2) − E(X)2, we have

Var
(

A
(n)
ij

)
= 1

(n − 1)2

n∑
l,s,k,r=1

(
U (n)

)−1

sl

(
U (n)

)−1

kr
[E (Xli Xsj Xri Xkj) − E (Xli Xsj)E (Xki Xrj)] .

(101)
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Using (100), we can separate (101) into the following six terms:

Var
(

A
(n)
ij

)
= ΣiiΣjj

(n − 1)2

n∑
l,s,k,r=1

(
U (n)

)−1

ls

(
U (n)

)−1

kr
U

(n)
lk U (n)

sr (102)

+
Σ2

ij

(n − 1)2

n∑
l,s,k,r=1

(
U (n)

)−1

ls

(
U (n)

)−1

kr
U

(n)
lr U

(n)
sk (103)

+ Σjj

(n − 1)2

n∑
l,s,k,r=1

(
U (n)

)−1

ls

(
U (n)

)−1

kr
U (n)

sr µ
(n)
li µ

(n)
ki (104)

+ Σij

(n − 1)2

n∑
l,s,k,r=1

(
U (n)

)−1

ls

(
U (n)

)−1

kr
U

(n)
sk µ

(n)
li µ

(n)
rj (105)

+ Σij

(n − 1)2

n∑
l,s,k,r=1

(
U (n)

)−1

ls

(
U (n)

)−1

kr
U

(n)
lr µ

(n)
ki µ

(n)
sj (106)

+ Σii

(n − 1)2

n∑
l,s,k,r=1

(
U (n)

)−1

ls

(
U (n)

)−1

kr
U

(n)
lk µ

(n)
sj µ

(n)
rj . (107)

Each of these terms tend to zero when n → ∞. For (102), we have

ΣiiΣjj

(n − 1)2

n∑
l,s,k,r=1

(
U (n)

)−1

ls

(
U (n)

)−1

kr
U

(n)
lk U (n)

sr = ΣiiΣjj

(n − 1)2

n∑
l,s,r=1

(
U (n)

)−1

ls
U (n)

sr δlr

= ΣiiΣjj

(n − 1)2

n∑
l,s=1

(
U (n)

)−1

ls
U

(n)
sl = ΣiiΣjj

(n − 1)2

n∑
l=1

δll = n

(n − 1)2 ΣiiΣjj −→
n→∞

0.

Identically we can show that (103) tends to zero. For (104), we have

Σjj

(n − 1)2

n∑
l,s,k,r=1

(
U (n)

)−1

ls

(
U (n)

)−1

kr
U (n)

sr µ
(n)
li µ

(n)
ki

= Σjj

(n − 1)2

n∑
l,k,r=1

(
U (n)

)−1

kr
δlr µ

(n)
li µ

(n)
ki = Σjj

(n − 1)2

n∑
l,k=1

(
U (n)

)−1

kl
µ

(n)
li µ

(n)
ki

=
K∗∑

r,r′=1

Σjj

(n − 1)2

n∑
l,k=1

(
U (n)

)−1

kl
1{µ

(n)
l = θr}1{µ

(n)
k = θr′} µ

(n)
li µ

(n)
ki θri θr′i −→

n→∞
0,

where the limit is derived using Lemma 3.3. The same reasoning is used to show that (105), (106) and
(107) tend to zero when n → ∞. Therefore, we have limn→∞ Var

(
A

(n)
ij

)
= 0. The same strategy, together

with (95) and (96), is used to show that lim
n→∞

Var
(

B
(n)
ij

)
= lim

n→∞
Var

(
C

(n)
ij

)
= lim

n→∞
Var

(
D

(n)
ij

)
= 0.

Consequently, we have (90). Note that the sum in (90) can be written as the ij term of a matrix. Indeed,
we have

Σ̂(n)
ij − Σij

p→ λ0
(
ΘT diag(π1, . . . , πK∗) Θ

)
ij

, (108)

where Θ is a p × K∗ matrix having as entries Θij = θij − θ̃j . As λ0, π1, . . . , πK∗ ≥ 0, the matrix
λ0(ΘT diag(π1, . . . , πK∗) Θ) is positive semi-definite, so the entries of Σ̂

(
X(n))−Σ converge in probability

to the entries of a positive semi-definite matrix. Note that, as both Σ̂
(
X(n)) and Σ are positive definite,

the eigenvalues of their difference are real. Finally, since the eigenvalues depend continuously on the
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entries of the matrix, the eigenvalues of Σ̂
(
X(n)) − Σ converge in probability to the eigenvalues of a

positive semi-definite matrix, which are non-negative. Therefore, we have (36).

Let us conclude by showing (96). To do show, note that we can write,

1 = 1
n

n∑
k,l,s=1

(
U (n)

)−1

lk
U

(n)
ks = 2

n

n∑
s=1

n−1∑
r=1

n−r∑
i=1

(
U (n)

)−1

i i+r
U

(n)
i+r s + 1

n

n∑
s,i=1

(
U (n)

)−1

i i
U

(n)
i s .

Using the same reasoning as in the proof of Lemma 3.3, we have

1 = 2 lim
n→∞

n−1∑
r=1

λr

 lim
n→∞

1
n

n∑
i,s=1

U
(n)
i+r s

+ λ0 lim
n→∞

1
n

n∑
i,s=1

U
(n)
i s ,

which diverges unless the third limit is finite, which implies (96).

C Proofs of Section 4

Proof of Theorem 4.1. As mentioned after Theorem 4.1, we omit the proof of (48) as it is identical
to the one of (14). Here, we show that the p-values defined using a non-maximal conditioning set
E12(X) ⊂ M12(X) as (47) control the selective type I error for clustering (6). First, note that we have

P
H

{G1,G2
0

(
pVG1,G2

(x; {G1, G2}; E12) ≤ α

∣∣∣∣E12(X) ∩ T12(X)
)

= α (109)

following (47), for any α ∈ (0, 1). For simplicity, we will denote

A = 1
{

pVG1,G2
(x; {G1, G2}; E12) ≤ α

}
. (110)

Then, following a similar reasoning as in the proof of [16, Theorem 1] and the tower property of conditional
expectation, we can write

P
H

{G1,G2}
0

(
pVG1,G2

(x; {G1, G2}; E12) ≤ α

∣∣∣∣M12(X)
)

= E
H

{G1,G2}
0

(
A

∣∣∣∣M12(X)
)

(111)

= E
H

{G1,G2}
0

[
E

H
{G1,G2}
0

(
A

∣∣∣∣M12(X) ∩ E12(X) ∩ T12(X)
) ∣∣∣∣M12(X)

]
(112)

= E
H

{G1,G2}
0

[
E

H
{G1,G2}
0

(
A

∣∣∣∣E12(X) ∩ T12(X)
) ∣∣∣∣M12(X)

]
= E

H
{G1,G2}
0

[
α

∣∣∣∣M12(X)
]

= α, (113)

where the third equality follows from the fact E12(X) ⊂ M12(X) and the last equality follows from
(109).

D Additional numerical simulations

In this Section we describe the numerical experiment presented in Figure 1 and present the results of
the simulations described in Sections 5.1 and 5.2 when C is a k-means or a hierarchical agglomerative
clustering (HAC) algorithm with centroid, single and complete linkages.
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D.1 Numerical simulation of Figure 1

Figure 1 simulates the null distribution of p-values defined in [16] when data present dependence structures
between observations and features, and p-values are computed assuming (1). We consider the general
matrix normal model X ∼ MN n×p(µ, U, Σ), where we set µ = 0n×p, that is, the global null hypothesis.
The matrices U ∈ Mn×n(R) and Σ ∈ Mp×p(R) encode the dependence structure between observations
and features respectively. We choose U the covariance matrix of a stationary auto-regressive process of
first order, AR(1), whose entries are given by Uij = ϕρ|i−j|, for ϕ > 0 and |ρ| < 1. The dependence
between features is given by a Toeplitz matrix with entries Σij = 1 + 1/ |i − j|. We choose ϕ = 1, ρ = 0.2
and generate M = 2000 realizations of X. For each one, we set the HAC algorithm with average linkage
to choose three clusters and test for the difference in means of a pair of randomly selected clusters. The
p-values are computed using the approach defined in [16] assuming that X follows (1) with σ2 = 2, that
is, neglecting the off-diagonal entries of the covariance matrices U and Σ.

D.2 Uniform p-values under a global null hypothesis

Figure 7 is the counterpart of Figure 2 for k-means and HAC with centroid, single and complete linkage.
As mentioned in Section 5.1, the empirical distributions obtained for the p-value (13) match the one of
a uniform random variable in all cases, excluding HAC with complete linkage and dependence setting
(c) (panel (i) in Figure 7). We postulate that the slight deviation from uniformity is an artifact coming
from the noise that appears when simulating independent samples from an auto-regressive process. To
illustrate so, we simulated M samples of size n = 10 drawn from a univariate AR(1) process with σ = 1
and ρ = 0.9, concatenated the M samples into a sample of size nM and computed its auto-correlation.
Results are presented in Figure 8 for M ∈ {103, 5 · 103, 104, 5 · 104}. They show how, when M is not large
enough, the observed auto-correlation at lags higher than n exceeds the confidence intervals, although the
corresponding observations have been independently simulated. Consequently, either large sample sizes
or number of simulations are required to reduce the noise, that make the simulated p-values in Figure 7(i)
deviate from perfect independence and thus prevent their ECDF to match the CDF of a uniform random
variable. The same effect is illustrated in Figure 9, where the ECDF of the p-values (13) is displayed
after performing HAC with average linkage in the setting of Section 5.1, for the dependence scenario (c)
and different number of simulations M ∈ {200, 500, 1000, 2000}. In Figure 9 we observe how increasing
the number of iterations -and thus reducing the noise illustrated in Figure 8- makes the computed ECDF
approximate to the diagonal. As it is appreciated in Figure 7, the encountered noise seems to have
a more substantial effect when p-values are computed by Monte Carlo approximation. Note that this
phenomenon does not contradict the fact that p-values are uniformly distributed under the global null,
but shows that in some cases the noise effect prevents us from correctly simulating their distribution.

D.3 Super-uniform p-values for unknown Σ

Figure 10 is the counterpart of Figure 3 for k-means and HAC with centroid, single and complete linkage.
As mentioned in Section 5.2, the obtained p-values (13) are stochastically larger than a uniform random
variable in all cases. Note that the empirical distribution for HAC with complete linkage and dependence
setting (c) (panel (i) in Figure 7) shows a more severe separation from the diagonal. This is explained
due to the noise effect discussed in Section D.2. Regarding the simulation for k-means clustering, a larger
sample size was needed to illustrate a super-uniform null distribution. We set n = 1000 and δ = {10, 12}
in that case. For computational speeding-up we chose p = 2.
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Figure 7: Empirical cumulative distribution functions (ECDF) of p-values (13) with C being a
hierarchical agglomerative clustering algorithm (HAC) with centroid (a-c), single (d-f) and complete

(g-i) linkage and a k-means algorithm (j-l). The ECDF were computed from M = 2000 realizations of
(2) under the three dependence settings (a), (b) and (c) with µ = 0n×p, n = 100 and p ∈ {5, 20, 50}.
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Figure 8: Auto-correlation functions of M concatenated samples of size n = 10 drawn from an AR(1)
process with σ = 1 and ρ = 0.1, as described in Section D.2.
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Figure 9: Empirical cumulative distribution functions (ECDF) of p-values (13) computed from M
iterations of hierarchical clustering with average linkage in the conditions described in Section D.2.
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Figure 10: Empirical cumulative distribution functions (ECDF) of p-values (13) with C being a
hierarchical clustering algorithm with average linkage. The ECDF were computed from M = 5000
realizations of (2) under the three dependence settings (a), (b) and (c) with n = 500, p = 10 and µ

given by (50) with δ ∈ {4, 6}. Only samples for which the null hypothesis held were kept, as described
in Section 5.2.
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