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Bayesian inference of fog visibility from LiDAR point clouds
and correlation with probabilities of detection

Karl Montalban1,2,3, Christophe Reymann1, Dinesh Atchuthan1,
Paul-Edouard Dupouy2, Nicolas Rivière2 and Simon Lacroix3

Abstract— Degraded visual environments have strong im-
pacts on the quality of LiDAR data. Experiments in artificial
fog conditions show that noise points caused by water par-
ticles present various distance distributions which depend on
visibility. This article introduces a mathematical framework
based on Bayesian inference and Markov Chain Monte-Carlo
sampling to infer optical visibility from point clouds. The
visibility estimation is cast as a classification problem based
on the identification of the distance distributions. Contrary
to deep learning methods, our approach is model-based and
focuses on the design of a full probabilistic framework, more
comprehensible, which is critical for autonomous driving. Ul-
timately, the impact of the optical visibility on the probability
of detection of standard targets is assessed, which can yield
improvements on autonomous vehicles performances in adverse
weather conditions.

I. INTRODUCTION

Autonomous Vehicles (AVs) rely on a variety of sensors,
among which LiDAR (Light Detection and Ranging) sensors
play a growing role. But Degraded Visual Environments
(DVE) significantly impact LiDAR data, whatever the wave-
lengths used, the type of emission (beam steering, flash
emission) and detection (single pixel or focal plane array,
full waveform or single photon detection). In presence of
fog or rain, the proximity between the laser wavelength and
the water particle sizes causes interactions that degrade the
overall quality of LiDAR data [1]. Scattering and absorption
effects generate artifacts in the point clouds, non detections,
reduces the signal to noise ratio and limits the maximum
range of detection, which all obviously have significant
consequences on the AVs’ behavior.

Although weather events are complex (distribution of the
droplets diameter, speed, density, etc.), common metrics
exist to quantify them. For example, rainfall intensity is
given in mm/h and fog opacity can be estimated as the
optical visibility in meters (the International Civil Aviation
Organization defines the visibility or meteorological optical
range as ”the greatest distance at which a black object of
suitable dimensions, situated near the ground, can be seen
and recognized when observed against a bright background”
– see details in [2]).
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Fig. 1. Schematic representation of the extraction of points inside a sensor
to target frustum. Water particles generate artifacts and non-detections.

Be it for rain, snow, or fog, visibility is prone to rapid
changes, and so its impact on the LiDAR data. Information
on the weather conditions are essential to adapt data pro-
cessing algorithms and improve the performances of AVs.
Knowing the impact of weather conditions on the sensor
probabilities of detection (POD), the input parameters of fil-
tering algorithms can be adjusted according to the properties
of rain, snow or fog [3], [4], [5], [6], [7].

Weather conditions assessment with LiDARs: Various
work focus on the recovery of weather conditions with the
use of automotive LiDARs. They consider the problem as a
classification one, and most propose a statistical analysis of
the impacts of the water particles. [8], [9], [10] estimate the
nature of the weather conditions (clear, rain, fog, snow), us-
ing machine learning techniques (KNN, SVM with different
feature vectors, or convolutional neural networks).

A probabilistic hierarchical Bayesian model is proposed
in [11] to predict rainfall intensity. The model is trained
using point cloud data acquired in artificial rain and a
disdrometer to assess the rainfall ground truth. Artifacts
caused by rain are used to train and test the model, which
yields a measurement error of 2.89 mm/h, similar to the
error of the disdrometer itself. The considered scene is free
of obstacles (with the exception of the walls of the climatic
chamber), and the whole point cloud is used, which results
in a high number of artifact points. But the model may not
be applicable in realistic scenes with a variety of structures
of different reflectivity surrounding the sensor.

In fog conditions, Miclea et al. [12] propose methods to
evaluate visibility in artificial conditions using the physical
equations of light extinction in fog (Mie theory) and visual
observations. In [13], [14], a machine learning approach
focuses on LiDAR point clouds taken in artificial fog con-



ditions. A statistical analysis of the impacts of fog on range
measurements is used to build a Gaussian process regression
model. Given a certain visibility, the model predicts the range
at which an object can be detected by the LiDAR.

Contribution and outline: This article focuses on the
inference of optical visibility from automotive LiDAR point
clouds in fog conditions. It proposes a method based
on Bayesian estimation and Markov Chain Monte-Carlo
(MCMC) sampling technique [15], [16]. We advocate a
probabilistic approach yields a more controllable and com-
prehensible solution than a deep learning approach. This
explicability is crucial to guarantee operational safety of
an AV. The model is trained on point cloud data taken in
artificial fog conditions, using a transmissiometer for the
visibility ground truth. Distance distributions of echoes at
close range for a specific LiDAR sensor are used. The
Gamma distribution models the likelihood of fog echoes
distances. The classification model is trained and tested for
a series of visibility classes. Finally, the inferred visibility
classes are used to assess the visibility impact on the POD
of several standard targets.

The next section presents the experimental conditions
in which data have been acquired. Section III introduces
the inference model, and experimental results of visibility
classification and POD estimations are presented in section
IV.

II. EXPERIMENTAL SETUP

The LiDAR used for this study is the OUSTER OS1-
128 spinning 3D-LiDAR [17]. It uses 865 nm wavelength
vertical cavity surface emitting laser (VCSEL) and single-
photon avalanche diode detectors (SPAD). Two columns of
128 emitters and detectors spinning around a vertical axis
provide the 360◦ field-of-view (FOV) with 128 point layers.
The minimum range of the sensor is around 0.25 m and a
single echo can be returned for each laser shot.

Fig. 2. Targets of interest inside the climatic chamber.

Data has been acquired in the CEREMA1 climatic cham-
ber in Clermont-Ferrand, France, in which artificial fog and
rain conditions can be produced [18]. We focus on fog
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conditions and the experiment is as follows : the climatic
chamber is saturated with fog particles and point clouds are
recorded as fog dissipates while visibility is being measured
by a transmissiometer.

TABLE I
TARGETS PROPERTIES IN CLEAR CONDITIONS

Target back a1 b1 b2 b3 c1 c2 c3
Distance 29 m 23 m 17 m 11 m
Surface 1.5 m2 1 m2 0.25 m2 0.09 m2

# Points 109 86 45 35

Different Lambertian targets of calibrated reflectance are
located in the climatic chamber, as shown Fig. 2. Table I lists
their characteristics with the number of returned data points
in clear fog-less conditions. Fig. 1 illustrates the extraction
process performed on the point clouds, where the frustum is
defined by a target. In fog conditions, knowing a target size
and position, all points that lie within the associated frustum
at a distance closer than the target distance correspond to
artifacts caused by water particles. This extraction process
allows us to assess the POD of a target along with the
associated noise generated by the sensor.

The back target is used to train and test the visibility
inference model, and targets a1, b1, b2, b3, c1, c2 and c3
are considered to analyze the impacts of inferred visibility
on the POD of standard targets at different distances and
reflectivities. The back target is chosen because its properties
(tab. I) give more frustum detections and thus more data for
the inference model. Ideally, one would consider frustum
points from a FOV free of target but it is not available in
the considered experimental conditions and the back target
is the best approximation available.

III. METHODOLOGY
We seek to infer the current optical visibility by using

the distribution of echoes distances located in the frustum
between the sensor and a target. We choose a Bayesian
inference approach to assess in which class of visibility the
sensor is being operated. A Monte-Carlo sampling technique
is used to learn the parameters of Gamma distributions which
best fit the distance distributions of echoes in each class of
visibility. The model produces probabilities for each visibility
class which offer means to assess the solution quality and
could be extended with external and/or a priori knowledge.
The next section explains why the Gamma distribution can
be used as an appropriate sensor model. Then, the equations
describing the Bayesian inference framework are detailed.

A. Gamma distribution

The Gamma distribution is introduced in the context of
AVs sensors in [4] to model the distance repartition of
echoes from LiDAR point clouds in snowfall conditions.
Also under snow conditions, Michaud et al. [19] expose
similar distance distributions of echoes, but suggest to use the
Log-normal distribution to fit the distance histograms. They
also state that the shapes of the distance distributions arise
from the product between an ”optical detection” function and



a ”building shielding effect” because the sensors are located
at a building window. Sata et al. [20] study the properties
of light reflected from fog particles and objects captured by
SPAD detectors in a LiDAR design. They showcase that the
time profiles of fog and objects photon returns respectively
have Gamma and Gaussian distributions. This allows them
to extract real targets inside fog and reconstruct the 3D
scene. Considering the application of laser pulses in fog
conditions, the resulting signal on the LiDAR detector is a
combination of the laser pulse shape, considered as Gaussian,
an atmospheric extinction function, which can be modeled
as a decreasing exponential function, and of the detector
response. This yields a product similar to a Gaussian function
restricted to the positive domain, and therefore with a longer
decreasing tail. In the absence of a more refined model and
according to the literature, both Gamma and Log-normal
distributions seem valid candidates to model the distance
distribution of fog echoes returned by a LiDAR.

Fig. 3. Normalized distance histograms of frustum fog points detected
with the back target for each visibility class from [5, 10] to [95, 100] by
steps of 5m. Color refers to visibility in m.

Fig. 3 displays the distance histograms of the frustum
points detected by the LiDAR for different fog visibility
classes (more details in section IV) where colors reflect
visibility values. Their shape convinced us to use the Gamma
distribution to model this likelihood. The probability density
function (PDF) of the Gamma likelihood of measuring a fog
echo at range x, parametrized with shape γ and scale β , is
defined by :

G(x) =
1

Γ(γ)β γ
xγ−1e−

x
β (1)

with Γ(γ) the Gamma function evaluated at γ .

B. Inference model

A LiDAR is aiming at a target and operating in fog
conditions. At a given time, a set of echoes distances E =
{e1,e2, ...,en} from the sensor to target frustum containing
noise points is received. Let Y = {(Ei,vi)} for i ∈ [1,m], be
the training dataset built from the experiments in artificial
fog conditions. It consists of distances Ei = {e1,e2, ...,el}i
and discrete optical visibilities vi.

Extract frustum points E
for each visibility class

Learn model parameters θ

using MCMC (eq.7)

Extract frustum points E

Learning

Testing

Load learned
parameters θ

for each class V

Compute likelihood
f (E|θ) (eq.4)

Compute f (E|Y,V ) probability (eq.3)
using Monte Carlo integration and samples

from MCMC for each class V

Compute P(V |E,Y ) probability (eq.2)
to obtain the probability of each

visibility class V

Fig. 4. Schematic diagram of the Bayesian inference framework.

The probability of having a visibility value v knowing a
set E and the dataset Y is P(v|E,Y ). Using Bayes’ theorem,
we have:

P(v|E,Y ) = f (E|Y,v).P(v|Y )
m

∑
i=1

f (E|Y,vi).P(vi|Y )
(2)

where f (E|Y,v) is the likelihood of the continuous echoes
distances E for a specific visibility v, and P(v|Y ) is the
prior probability on the discrete visibility value, which is
considered uniform.

Let θ be a pair of shape γ and scale β parameters which
describes the Gamma likelihood distribution of our sensor
model. We introduce θ as a hidden variable of the system,
linking E to (Y,v) through marginalization over θ , f (E|Y,v)
becomes :

f (E|Y,v) =
∫

θ

f (E|θ) f (θ |Y,v)dθ (3)

The density distribution f (E|θ) is the likelihood of the
echoes given the parameters θ . The events of receiving
echoes are independent, thus this likelihood is a product of
probabilities following a Gamma distribution.

f (E|θ) = ∏
e∈E

G(e|θ) (4)

The continuous density f (θ |Y,v) represents the learned
model parameters of the Gamma distributions generated by



the fog echoes observed at a given visibility v. Considering
that the pairs (Ei,vi) in Y are also independent, f (θ |Y,v)
becomes

f (θ |Y,v = vi) = f (θ |Ei,v = vi) (5)

This means that θ only depends on the part of the training
dataset Y acquired at the specific visibility v. We use Bayes’
theorem again to expose the likelihood of Ei knowing θ :

f (θ |Ei,vi) =
f (Ei|θ ,vi)P(θ |vi)∫

θ
f (Ei|θ ,vi)P(θ |vi)dθ

(6)

Similarly to the PDF f (E|θ), f (Ei|θ ,vi) can be modelled
by a Gamma distribution with independent events so that,

f (θ |Ei,vi) =
∏e∈Ei G(e|θ)P(θ ,vi)∫

θ ∏e∈Ei G(e|θ)P(θ ,vi)dθ
(7)

Equation (7) can then be used directly to learn a model of
θ for each visibility level.

During the inference phase, equation (2) is used to infer
a probability for each visibility level using the learned
models through (3). To best approximate f (θ |Ei,vi) during
the training phase, we sample it using a MCMC method
and save the sampled representation of the distribution for
each visibility level. When frustum echoes are received, these
trained samples are used to compute the probabilities of
each visibility level. Using the sampled representation of
equation (3), f (θ |Ei,vi), can easily be computed by Monte-
Carlo integration. Fig.4 gives a schematic representation the
total inference framework.

IV. EXPERIMENTAL RESULTS

A. Distance distribution of LiDAR echoes in fog conditions

The dataset used in this study is composed of time-
stamped point clouds and visibility values. Fig. 5 shows the
rise of visibility captured by the transmissiometer over time
as fog dissipates in the chamber.

Fig. 5. Visibility over time measured by the transmissiometer during the
fog dissipation.

On Fig. 6 the evolution of the POD of the back target
(in circles) and frustum (in crosses) points is shown. These
POD are calculated by dividing the number of points found
in the scans with the average number of points nclear found
in clear conditions on the back target (see Table I).

Fig. 6. Probability of detections of target (circles) and frustum (crosses)
points over visibility, color refers to visibility. The sum of target and frustum
PODs may not equal to 1 as some laser shots may not produce any echo.

As Ouster spinning LiDARs always shoot their laser
beams with the same heading, nclear is treated as the number
of laser beams fired towards the target, considering that the
sensor works in single return mode. Thus, this normalization
is suitable for both frustum and target points. Frustum points
are dominant when visibility is the lowest with almost 100%
of detections. Their number decreases as fog dissipates while
the number of points detected on the target increases. The
visibility measurements range from 5 m (lower limit of the
transmissiometer) to 145 m (no points in the frustum) with
a precision of 1m. Finally, the dataset used for training and
testing the inference model is composed of 3419 LiDAR
scans, which amounts to a total of 239261 frustum points.
Fig.3 shows that the majority of the frustum points are
located around 0.3 m. Beyond 0.4 m, white noise can be
observed in the data but it is negligible and does not impact
our results. The vicinity of these points makes them usable
for inference in realistic scenes because it is unlikely for
solid targets to be located at such small distances in a classic
urban AV scenario. One can see that as visibility increases,
the number of frustum points decreases and they tend to get
closer to the sensor. This evolution in distance may be due
to unknown signal processing internal to the sensor.

B. Classification results

To evaluate our proposed model and for the sake of sim-
plicity, we convert the inference problem to a classification
one and use our model as a multi-class classifier. Instead of
visibility values we infer visibility intervals, which we treat
as discrete classes. The wideness of the visibility classes is
constrained by our dataset, to ensure enough data is available
to train the prior model on each class. During the inference,
the inferred class is the most probable one. The dataset is
split into a training set (2/3 of the scans) and a test set (1/3
of the scans). Fig. 6 indicates that the number of frustum
points (in crosses) decreases with the dissipation of fog.
When this number is too low, the data is insufficient to
perform the test nor the training calculations. A threshold
of 10 points is chosen and this sets a maximum value
of visibility for the inference to 100 m. The inference is
performed on 19 visibility classes set from 5 to 100 m by
steps of 5 m. Classification results are shown on Fig. 9 as a
confusion matrix. Each row corresponds to the classification
result for a ground truth class, where results are normalized



by the number of tests for that class. The results show that
the method is capable of inferring classes close to the ground
truth. However the model results in a null probability to infer
some classes. While this should be investigated, given the
low amount of data available for this study and the inference
of neighbouring classes in these worst cases, the proposed
method still remains relevant.
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Fig. 7. Number of LiDAR scans used for the test phase for each visibility
class.

Although converting the inference problem to a classi-
fication one and discarding the probabilistic information
is bound to yield a degradation in performance, most of
inferred classes are close to the ground truth class, without
significant outliers. To more finely evaluate inference quality,
we may compute a root mean squared error (RMSE) from
the confusion matrix using the following equation:

RMSEv =
∑

N
i=1 (vi− v̂i)

2

N
s (8)

where vi is the ground truth class number, v̂i is the inferred
class number, s is the visibility step of each class and N is the
number of classes. Computed on the confusion matrix (fig.9),
RMSEv = 6.3 m, which is barely above the 5 m discretization
size.

The visibility and number of frustum points do not evolve
constantly during the acquisition, as shown in figures 5 and 6.
Therefore the number of LiDAR scans and thus the number
of LiDAR points available for the classification differ for
each class. Fig.7 shows the number of scans for each class
available for the test phase. Results of the classification are
mitigated by this non-uniformity in the dataset. Considering
this non-uniformity, the 1 m precision of the transmissiome-
ter and the 5 m range of our visibility classes, our model
remains robust and shows relatively good performances.
However, no conclusion can be made on its generalization
capabilities, as training and testing is performed on data from
one single climatic chamber.

C. Impact on the probability of detection of standard targets

In terms of AV’s operability, visibility is less meaningful
than the sensors’ capacity of detection. Information about
a sensor’s POD can help to adapt the speed of an AV or
parameters of perception algorithms. Using the influence of
visibility over POD (shown in fig.6 for the back target), the
inferred visibility classes can be used to indicate the resulting
sensor’s POD of a target.

Fig. 8. Retrieval of a1 target POD from the inferred visibility classes
and targeted classes [65,70] (top) and [45,50] (bottom). For a ground truth
visibility class, the inferred classes are represented with vertical purple bands
and the level of transparency shows the probability value of inference. Target
POD values can then be extracted using the points inside the purple bands,
highlighted in red.Yellow lines and points indicate the results drawn from
the ground truth.

Fig.8 shows two examples of the impacts the inferred
visibility classes have on the a1 target’s POD where the tar-
geted visibility classes are respectively [65,70] and [45,50]. It
illustrates that the 5 m size of visibility class can lead to high
errors in the retrieval of POD for specific visibility classes.
Especially for classes containing high variations in POD
values, such as the [40,45] class for which the POD range
from 0.2 to 0.6 and the class is inferred with probability
p = 0.5 when targeting class [45,50].

Finally, the total classification results and different targets
can be used to evaluate RMSEPOD errors over the POD of
targets at different distances and reflectivity values. It is
calculated with the following equation :

RMSEPOD =
M

∑
j=1

(PODgt,i−min(PODin f , j))
2 pin f , j (9)

where M is the number of inferred classes and i the
targeted class. PODgt,i is the average POD from ground
truth, PODin f , j is the POD data points from the inferred
classes, and pin f , j is the probability of each inferred class j.
Fig.10 showcases the mean POD with associated RMSEPOD
from all visibility classes inferred during the test phase and
two different target configurations. The top and bottom plots
respectively show the corresponding values for the three
available high reflectivity targets a1, b1 and c1 and for the
three Lambertian targets b1, b2 and b3 located at 17 m. It
should first be noted that errors are of the same order of
magnitude for all targets. As expected, the slope of the POD
curve strongly influences the resulting RMSEPOD of each
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Fig. 9. Confusion Matrix from visibility classification using the back target in fog dissipation. Visibility classes range from [5, 10] to [95, 100] by steps
of 5m.

target. Errors made on the POD are quite low when the POD
slope is also low, and inversely higher RMSEPOD values are
seen when the POD increases. This is partly due to the 5 m
step of our visibility classes: smaller classes would lead to
higher precision of POD.

Fig. 10. Evolution of POD and corresponding RMSEPOD for each visibility
class and different targets. Top: result for three high reflectivity targets at
different ranges. Bottom: results for three targets at the same distance but
with different reflectivities.

V. CONCLUSION

Physical interactions between fog particles and laser
beams shot by the Ouster OS1-128 LiDAR create identifiable

distance distributions in the point clouds at close range.
Trained on artificial conditions with a transmissiometer as
ground truth, the presented Bayesian inference model is able
to infer optical visibility from the identification of Gamma
distance distributions. Inferred classes of visibility range
from 5 to 100 meters by steps of 5 m and classification
shows an RMSE error of 6.3 m over visibility. This result
is satisfying considering the small size of the dataset, its
non-homogeneity and the ground truth measurement errors
from the transmissiometer. The method is generic and can
be easily adapted to different classes of visibility to better
match the user’s needs. Resulting probabilities of detections
are drawn from the visibility classification and the results can
be used to improve the operability of AVs in classic urban
scenarios. The enforced presence of a solid object in the
FOV is a limitation of the climatic chamber. The presented
model is trained on the OS1-128 LiDAR data. Its use with
another LiDAR sensor requires a specific training due to
different distance distributions results. Future work includes
the expansion of the dataset since additional data from the
same artificial conditions are expected to strengthen the
accuracy of the model. Data from outdoor acquisitions are
then needed to verify the reliability of the inference in real-
world fog conditions. In operational outdoor conditions, a
FOV free of target could be used with the same methodology.
Additionally, the model can be completed by considering
the amplitude of the distance distributions along with their
shape, using Random Finite Sets (RFS) models. Finally, the
classification of visibility and correlation with probabilities
of detection using a probabilistic method could be used
to comply with certification standards and reach higher
Automotive Safety Integrity Level (ASIL).
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