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Adaptive Two-Degrees-of-Freedom Current
Control for Solenoids: Theoretical Investigation

and Practical Application
Michael Schwegel*, Tobias Glück, Member, IEEE , Vitaly Shaferman, Luca Zaccarian, Fellow, IEEE ,

Andreas Kugi, Senior Member, IEEE

Abstract— In this paper, an adaptive two-degrees-of-
freedom current control algorithm for solenoids is pre-
sented comprising an adaptive pole placement controller
in combination with a regularized least-squares parameter
estimation law. An additional adaptive feedforward con-
troller takes advantage of the estimated plant parameters
to further enhance the tracking performance. The stability
of the overall closed-loop system is rigorously proven.
The proposed solution differs from existing approaches
by the adaptive feedforward controller and the way the
parameter estimation is performed. The control concept is
applied with the same controller parametrization to three
solenoids from different applications, with substantially
differing parameters. The experimental results show high
tracking performance and fast parameter convergence even
with poor initial estimates and despite the nonlinear depen-
dence of the inductance on the current and position. The
experimental results are also compared to two benchmark
control design paradigms known from the literature, i.e.
a second-order sliding mode controller and a nonlinear
model reference adaptive control solution, which are both
outperformed by the proposed controller.

Index Terms— Adaptive control, Least-squares identifi-
cation, Solenoid control, Two-degrees-of-freedom control

I. INTRODUCTION

ADAPTIVE control can be used to mitigate control per-
formance degradation due to manufacturing tolerances.

In contrast to robust control, adaptive control aims at achiev-
ing high control performance even with varying, uncertain
or unknown system parameters. Moreover, adaptive control
allows for the same controller to be employed within a
class of structurally comparable systems. Due to the adaptive
scheme no manual adjustment of the controller parameters is
necessary.
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Parameter variations are common for solenoids, which are
widely used in pneumatic and hydraulic drive systems for
utility vehicles such as excavators and cranes as well as in
vehicle powertrains and braking systems, see, e.g., [1]–[5].
In these applications, an adaptive controller can be employed
to alleviate individual tuning procedures for different types
of solenoid valves without compromising the tracking perfor-
mance.

In the literature, different control approaches such as clas-
sical proportional integral (PI) or proportional integral deriva-
tive (PID) control, internal model control (IMC) or sliding
mode control (SMC) were investigated for the current control
problem of solenoid valves. PID control and IMC are well-
known standard control methods, which result in equivalent
output control structures and are thus comparable in terms of
their robustness and tracking performance. The main idea of
SMC is to drive the solutions (or some regularized version
of it) of a system to a submanifold of the state space (the
sliding surface) by a discontinuous feedback such that the
dynamics along this manifold are stable and converge to the
desired equilibrium, see, e.g., [6]–[9]. Some SMC approaches
achieve guaranteed finite-time convergence of the control error,
however, these controllers typically require a tailored tuning to
balance robustness and tracking performance. This challenge
can be met by using adaptive control.

The adaptive output feedback control design problem for
linear systems is well established and was solved in the late
90s, see, e.g., the textbooks [10]–[13]. Therein, three main
approaches are distinguished: The first one is model reference
adaptive control (MRAC) which is the adaptive version of
the well-known model reference control (MRC) design. Here,
the objective is to design a feedback controller that seeks to
eliminate the output error between a reference model and
the plant. The other two main approaches refer to direct
and indirect adaptive control [10]. In direct adaptive control,
the control parameters are adjusted directly to improve the
control performance. Direct adaptive control approaches have
the drawback that the parameters typically used for adaptation
can hardly be interpreted from a physical point of view. In
contrast, in indirect adaptive control the plant parameters are
estimated online and the control parameters are adjusted based
on these estimates. These estimated plant parameters are not
only instrumental for the parametrization of the controller
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but can also be employed for fault diagnosis and monitoring.
New advances in hybrid and event-triggered adaptive control
have targeted specific system classes such as systems with
exogenous inputs in [14] or provided nonlinear methods which
are numerically more expensive compared to classical control
schemes, including the adaptive control strategy proposed in
this paper, see, e.g., [15].

The main purpose of adaptive control is to achieve high
tracking performance despite unknown and/or changing sys-
tem parameters. A well-known strategy to improve the tracking
performance is based on the idea of adding a feedforward
path to an existing feedback control algorithm. Feedforward
control is widely adopted, in particular in nonlinear adaptive
control based on feedback linearization, see, e.g., [12], [16].
In these approaches, the parameter adaptation is mostly based
on Lyapunov’s theory, which guarantees convergence from a
theoretical point of view but often results in an unsatisfactory
slow convergence behavior in practical applications. Parameter
adaptation based on least-squares methods ensures a balanced
convergence rate across all parameters, see, e.g., [15]. These
methods exhibit faster (second-order) convergence than typi-
cal Lyapunov-based approaches. Regularized recursive least-
squares algorithms, see, e.g., [17], [18], mitigate the effect of
noise on the parameter estimates by modifying the objective
function and thus the gain matrix update to prevent the blow-
up due to insufficient excitation [19], [20]. In recent works
on robust least-squares system identification, non-asymptotic
confidence intervals were computed [21]–[24]. In addition,
modifications of the least-squares algorithm known from the
literature can be used to account for problem-specific chal-
lenges, such as structural uncertainties or unknown constraints,
see, e.g., [18], [25], [26].

A. Contribution

This paper aims at presenting a flexible and high-
performance current control method for solenoids without
position measurements at low computational costs. In par-
ticular, an indirect adaptive two-degrees-of-freedom control
scheme for solenoids is presented. It consists of an adaptive
feedforward and feedback path to fully take advantage of the
estimated plant parameters. The plant parameters are estimated
using a regularized least-squares adaptation law. Here, a refor-
mulation and a modification of an adaptive control scheme are
proposed to avoid the practical problems encountered when
using the classical approach known from the literature, i.e.
indirect adaptive control, see, e.g., [11], [12]. These modi-
fications ultimately lead to a significant improvement of the
control performance while maintaining the flexibility and ease
of tuning of the original method.

The flexibility and the performance of the control scheme
is experimentally demonstrated using three different solenoid
types. Moreover, the proposed current control method is ex-
perimentally compared to other benchmark control methods
known from the literature. It is shown that a robust second-
order sliding mode controller requires retuning to achieve
adequate control performance across multiple solenoid types.
Furthermore, a nonlinear model reference adaptive control

method serves as a benchmark for the assessment of the pro-
posed control concept. It is demonstrated by the experimental
results that this benchmark controller is outperformed by the
proposed control scheme in both parameter convergence and
control performance.

Summarizing, the main contribution of this paper is three-
fold: First, an indirect adaptive control strategy known from
the literature is reformulated to account for practical problems
and enhance the parameter convergence. Second, the adap-
tive control strategy is extended by an adaptive feedforward
controller. The stability of the overall closed-loop system
is proven. Third, an experimental validation underlining the
practical value of the proposed control scheme is demonstrated
by comparing the performance with two benchmark controllers
from the literature.

B. Outline
The remainder of this paper is organized as follows: In

Section II, the problem is stated and the model of the solenoid
current dynamics is presented. The adaptation framework and
the necessary filtering is discussed in Section III-A, and the
adaptive control law is given in Section III-B. The main stabil-
ity theorems are summarized in Section IV. In Section V, two
benchmark control approaches for the considered application
are presented. An experimental validation and a comparison of
the proposed control scheme with the benchmark controllers
are presented in Section VI, followed by concluding remarks in
Section VII. In Appendix A, the stability proof of the adaptive
two-degrees-of-freedom controller is given and Appendix B
contains the discrete-time implementation of the constrained
bounded-gain forgetting least-squares algorithm, which is used
for the parameter adaptation.

II. PROBLEM FORMULATION

An adaptive current controller for solenoids is designed.
A key concern is the achievable control performance without
knowledge of the solenoid parameters. To reduce the costs,
only the current i is measured, whereas the plunger position
is not measured. Furthermore, since the nonlinear effects of a
solenoid strongly depend on the respective design, these effects
are not modeled.

Fig. 1 shows the simplified mechanical and electrical
schematics of a solenoid. The setup comprises the moving
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Fig. 1: Mechanical and electrical schematics of a solenoid.

plunger and the magnetic core with the associated coil. Both
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the plunger and the magnetic core are made of highly-
permeable material with a relative permeability µr � 1. The
coil of the electromagnet is attached to the core and has N
windings. Applying a voltage v to the terminals of the coil
results in a current i, which in turn yields a magnetic field in
the air gap g between the core and the position of the plunger.
The coil voltage is typically provided by a high-side driver
circuit. The generated pulse-width modulated (PWM) voltage
signal switches between the supply voltage vbat and 0 V.
Mathematically, the pulse-width modulated (PWM) voltage
reads as

v(t) =

{
vbat for kTpwm < t ≤ (k + δ)Tpwm

0 V for (k + δ)Tpwm < t ≤ (k + 1)Tpwm
(1)

for k = 1, 2, 3, . . ., where 0 ≤ δ ≤ 1 is the duty cycle and
Tpwm is the fixed modulation period.

For the magnetic flux linkage

ψ = L(g, i)i , (2)

Faraday’s law yields

dψ(g, i)

dt
= v −Ri, (3)

with the inductance L(g, i) and the electrical terminal resis-
tance R. Substituting (2) in (3) results in the current dynamics(

L(g, i) +
∂L(g, i)

∂i
i

)
︸ ︷︷ ︸

L̄

di

dt
= v −

(
R+

∂L(g, i)

∂g
ġ

)
︸ ︷︷ ︸

R̄

i . (4)

In practice, L̄ and R̄ are unknown nonlinear functions of the
current i and the air gap g, which depend on the specific
solenoid design. Recall that the objective of this paper is to
design an adaptive control strategy for (4) that exhibits the
same closed-loop performance independent of L̄ and R̄. Since
we do not have any information about the exact characteristics
of L̄ and R̄, we assume for the controller design that L̄ and
R̄ are unknown but constant. Note that this is a common
assumption in the context of adaptive control in the literature,
see, e.g., [27], [28] and the references therein. Thus, in the
following, we focus on the simplified controller design model

L̄
dy

dt
= u− R̄y , (5)

with the average input voltage u(t) = vbatδ(t), the unknown
constant parameters L̄ and R̄, and the measured output current
y(t), which corresponds to the current i(t) averaged over one
modulation period.

Remark 1. It is worth noting that an adaptive controller
that ensures stability and the desired closed-loop performance
for (5) does not guarantee that this also holds true for (4).
However, in this work an adaptive two-degrees-of-freedom
control concept is presented where the feedforward part
strongly predominates over the feedback part of the control
input signal, see also the experimental results in Section VI-
C. This shows that the simplified model (5) together with the
proposed parameter estimation approach is able to closely
capture the dynamics of the original system (4). Note that

it is well known from the literature, see, e.g., [29], [30], that
parameter estimation schemes based on least-squares concepts
with exponential forgetting exhibit a certain robustness to
unmodeled nonlinear dynamics and time-varying parameters.

III. ADAPTIVE CONTROL CONCEPT

The proposed overall adaptive control structure is depicted
in Fig. 2. The input u and the output y are filtered by the linear
low-pass filter Λa to generate the signals for the parameter
adaptation. The reference signal r, which is assumed to be
two-times continuously differentiable, specifies the desired
time evolution of the output current y. The estimated pa-
rameters ϑ are fed back to parametrize the feedforward and
feedback controller, denoted by Cff and Cfb, respectively.
Note, that we do not consider any disturbances affecting the
plant in our setting, shown in 2.

r

−

ϑ

u yufb

uff

Cfb

Cff Λa Λa

Adaptation

ua ya

(14)

Solenoid

(6) (6)

(5)(15)

(18)

Fig. 2: Overall adaptive control structure with the filter Λa, the
adaptive feedfoward controller Cff , and the feedback controller
Cfb.

A. Adaptation Scheme
To compute the time derivative of the current y = x and

to mitigate high-frequency measurement noise and unmodeled
effects, (5) is filtered by the linear low-pass filter

Λa(s) =
λa

s+ λa
, (6)

with the Laplace variable s and the filter constant λa > 0. The
input-output behavior of the plant is preserved by filtering both
signals

ua = Λau and ya = Λay . (7a)

To apply a recursive least-squares algorithm, the model (5)
is rewritten in the standard form with ua as the scalar least-
squares output, namely

ua = ϕTϑ∗ =
[

d
dtya ya

] [L̄
R̄

]
, (8)

where ϑ∗ ∈ R2 is the true parameter vector and ϕ ∈ R2 is
the regression vector

ϕ =
[

d
dtya ya

]T
, ϑ∗ =

[
L̄ R̄

]T
. (9)
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Remark 2. In the classical formulation of adaptation algo-
rithms, the highest derivative of the system is chosen as the
adaptation output, i.e. ϕTϑ∗ = d

dt ia, see, e.g., [11], [12],
which simplifies the mathematical treatment. In this case, the

parameter vector reads as ϑ∗ =
[
1/L̄, R̄/L̄

]T
. Practical

experiments showed that the resulting coupling between the
inductance and resistance parameters drastically degrades the
estimation performance. Compared to other formulations, in
ϑ∗ of (9) the resistance and inductance can be estimated
independently. In particular, since the resistance can be es-
timated in steady-state conditions, this formulation leads to a
significant improvement of the robustness to parameter drifts
caused by low excitation. Additionally, projection methods can
be employed to guarantee strict bounds on the individual
parameters.

Using the estimated parameter vector

ϑT =
[
L̂ R̂

]
, (10)

the estimation error ε can be introduced, based on (8) and
(10), as

ε =
ϕTϑ∗ −ϕTϑ

m2
=
ua −ϕTϑ

m2
, (11)

with the normalization factor m2 = 1 +ϕTϕ, see, e.g., [11].
Note that the normalization can be omitted if ϕ ∈ L∞, i.e.,
the vector function ϕ is essentially bounded. However, using
the normalization factor m the adaptation speed is normalized,
which facilitates parameter tuning of the adaptation algorithm.
In addition, to guarantee feasible limits of the parameter
estimates, such as positive values for the inductance and resis-
tance estimates, projection allows to handle convex parameter
constraints ϑ ∈ S. Given a convex set S, the orthogonal
projection of ϑ on the set S is the solution of the optimization
problem

Pϑ(ϑ) = arg min
v∈S
‖v − ϑ‖22 . (12)

One can define the projection of a vector z by, see [31],

Πϑ(ϑ, z) = lim
η→0

Pϑ(ϑ+ ηz)− ϑ
η

, (13)

with the convex set S = {ϑ ∈ R2|g(ϑ) ≤ 0}, its boundary δS
and interior S◦. Herein the inequality g(ϑ) ≤ 0 describes the
set S in the parameter space. To estimate the parameter vector
ϑ, the so-called continuous-time constrained bounded-gain
forgetting least-squares algorithm from [17] is augmented with
the projection algorithm described above. Following similar
steps to those in [18], this yields

d

dt
ϑ = Πϑ (ϑ,Pϕε) , ϑ(0) = ϑ0 , (14a)

d

dt
P = ΠP

(
ϑ, βP−P

ϕϕT

m2
P

)
, P(0) = P0I , (14b)

with

ΠP(ϑ, ·) =

· ifϑ ∈ S◦or
(

ifϑ ∈ δS and (Pϕε)T∇g ≤ 0
)

0 otherwise .
(14c)

Herein, P is the positive definite gain matrix, ϑ0 and P0I > 0
are the initial conditions, and I denotes the identity matrix. The
(time-dependent) forgetting factor

β = βmax

(
1− ‖P‖

Pmax

)
, (14d)

with Pmax being an arbitrary positive constant, in (14b)
guarantees an upper and lower bound on the gain matrix P
and a maximum forgetting factor of βmax, see [17]. For a
more detailed analysis of least-squares adaptation algorithms,
see, e.g., [18], [32], further a practical implementation is
given in Appendix B. The upper bound on the norm of the
gain matrix can be specified by Pmax > 0. The parameters
βmax, Pmax, and the filter constant λa in (6) allow for
an independent tuning of the adaptation algorithm. Hence,
strong filtering can be used to suppress noise and to filter
unmodeled system dynamics. Analogous to a conventional
discrete-time least-squares forgetting factor λ ∈ (0, 1], see,
e.g., [33], the continuous-time forgetting factor can be found
by βmax = (1− λ)/Ts, with the sampling time Ts, cf. (48e).
The maximum gain Pmax allows limiting the gradient of the
estimated parameters.

B. Feedback and Feedforward Control

Using the certainty equivalence principle, adaptive pole
placement control, see, e.g., [11], allows to derive the adaptive
PI-feedback controller

ufb = k̂pe+ k̂ixc (15a)
ẋc = e, (15b)

with the control error

e = r − y , (16)

and the known reference signal r. The adaptive feedback
controller (15) constitutes a PI controller with time-varying
proportional and integral gains parametrized by adaptive pole
placement according to

k̂p = L̂α∗1 − R̂ and k̂i = L̂α∗0 , (17)

respectively, with constant coefficients α∗1 > 0 and α∗0 > 0.
To enhance the tracking performance, the adaptive feedforward
controller

uff = L̂ṙ + R̂r (18)

is introduced. Finally, the adaptive two-degrees-of-freedom
control input is given by

u = uff + ufb . (19)

Applying (19), with (15)-(18), to (5) and assuming that the
certainty equivalence holds, i.e. the estimated parameters L̂
and R̂ correspond to their real values L̄ and R̄, respectively,
the closed-loop error system

ë+ α∗1ė+ α∗0e = 0 (20)

is obtained. Clearly, with the constants α∗0 and α∗1 the closed-
loop poles of the error dynamics (20) can be chosen to achieve
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an exponentially stable behavior with a desired rate of decay.

Now the feedforward and feedback control (19) with (15)-
(18) is combined with the parameter adaptation algorithm (14)
to form the overall adaptive control scheme of Fig. 2.

IV. STABILITY PROOF IN A NUTSHELL

In this section, the main points of the stability proof of the
overall closed-loop system comprising adaptation, controller
and plant are outlined. The only assumptions made are that the
ideal parameter vector ϑ∗ is constant and that the reference
signal r is sufficiently smooth, i.e., r, ṙ, r̈ ∈ L∞. Under
these assumptions, we can state Theorem 1, which guarantees
bounds on certain signals of the adaptation algorithm.

Theorem 1. The least-squares algorithm (14) guarantees that
(i.) ε, ϑ̇,ϑ, εm,P ∈ L∞

(ii.) ε, ϑ̇, εm ∈ L2

(iii.) g(ϑ) ≤ 0 ,
with L2 being the space of quadratically integrable functions
and L∞ the space of essentially bounded functions.

Proof. The proof of Theorem 1 is similar to what is
shown in [11] and follows by analyzing the function V =(
ϑ− ϑ∗

)T
P−1

(
ϑ− ϑ∗

)
.

Finally, Theorem 2 establishes the asymptotic stability of
the overall adaptive control scheme of Fig. 2.

Theorem 2. For the parameter estimation algorithm presented
in (14), all signals in the closed-loop adaptive two-degrees-of-
freedom control system (14)-(19) are uniformly bounded and
the control error e converges asymptotically to zero.

Proof. The proof of Theorem 2 is performed in 4 steps:
1) First, the estimation error and control law are expressed

as a linear time-varying (LTV) system.
2) Second, exponential stability of the LTV system is

shown.
3) Third, the boundedness of all signals in the closed-loop

system is established by using the Bellman-Gronwall
lemma.

4) Finally, the control error convergence is proven using
Barbalat’s lemma.

More details of the proof are given in Appendix A.

Remark 3. Assuming persistence of excitation of the regres-
sion vector ϕ, the adaptation algorithm converges exponen-
tially to the ideal parameter vector, see [18]. However, for
the convergence of the control error e neither persistence
of excitation nor convergence of the parameters to the ideal
parameter vector are necessary, as stated in Theorem 2.

V. BENCHMARK APPROACHES FROM THE LITERATURE

In the following sections, two benchmark control ap-
proaches from the literature are presented and their perfor-
mance is compared with the adaptive two-degrees-of-freedom
control algorithm presented in this paper. First, in Section V-A,
a second-order sliding mode controller is given as an example

of a robust control method commonly employed in solenoid
control. Second, a model reference adaptive controller serving
as a benchmark for an adaptive control method is discussed in
Section V-B. In industrial applications, further measures are
taken to avoid practical problems like the parameter drift under
steady-state conditions, e.g. deadzone, dynamic normalization,
or anti-windup, see, e.g., [11, chap. 8] for more details. In the
following, for the sake of a fair and meaningful comparison,
we refrain from implementing such measures because they can
be used independently of the respective control method.

A. Second-Order Sliding Mode Controller

A second-order sliding mode controller with dynamic pole
placement is proposed in [6]. The control input

u = α1

√∣∣σ(t)
∣∣ sign(σ(t)) + α0

∫ t

0

3

√∣∣σ(τ)
∣∣ sign

(
σ(τ)

)
dτ ,

(21a)

with the constant tuning parameters α0 > 0 and α1 > 0 and
the control error e(t) = r(t) − y(t) is used to stabilize the
sliding surface

σ (e) =

(
d

dt
+ λ0 − λ1 |e|

)
e , (21b)

with the constant tuning parameters λ1 > 0 and λ0 > 0.
The bounds |e| < emax and λ0 > λ1emax guarantee a stable
closed-loop system.

B. Model Reference Adaptive Controller

As a benchmark for a well-known adaptive controller, the
nonlinear model reference adaptive control scheme from [12],
see also e.g., [34], is applied to (5), which yields

ϑ̇ = −λ
[

y

R̂y + L̂(ṙ +Kpe)

]
e (22a)

u = R̂y + L̂(ṙ +Kpe) , (22b)

with the control error e = r−y, the parameter estimate vector
(see Remark 2)

ϑT =
[
1/L̂ R̂/L̂

]
, (23)

and the constant tuning coefficients Kp > 0 and λ > 0,
respectively. The control law (22b) consists of a feedforward
part using the time derivative of the reference signal ṙ, a static
compensation of the estimated voltage caused by the resistance
of the solenoid and a proportional control term. As stated in
the introduction, the control law is typically augmented by
an adaptation algorithm to guarantee a decreasing Lyapunov
function. Here, the commonly used quadratic functions lead
to a gradient-type adaptation law. Note, however, that in this
case the adaptation (22a) is driven by the control error e, rather
than the estimation error ε.
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VI. EXPERIMENTAL VALIDATION

In this section, experimental results of the benchmark con-
trol approaches from Section V are presented and compared
with the adaptive control scheme proposed in this paper. For
this purpose, three different solenoids, henceforth referred to
as solenoid A, B, and C, are used for the experiments, see
Fig. 3. The nominal current of solenoid A is denoted by iA.

A

B

C

Fig. 3: Photographs of the solenoids used for the experimental
validation.

Solenoid A Solenoid B Solenoid C
R̄ RA 0.47RA 0.82RA

L̄ LA 0.15LA 0.23LA

TABLE I: Nominal parameters of the solenoids of Fig.3.

The three solenoids were taken from different fields of
application and feature different mechanical and electromag-
netic designs. In particular, solenoid A is used in a pressure
control valve, solenoid B is part of a pilot valve of a hydraulic
two-stage valve, and solenoid C is employed in an automatic
transmission gear. Hence, there are significant differences in
their nominal resistance and inductance parameters. Their
nominal parameter values are given in Tab. I.

All experiments were conducted on a dSpace MicroLab
Box at a sampling time of Ts = 1 ms and a modulation
period of Tpwm = 50 µs. The current is sampled at a rate
of 10 µs and averaged over 100 measurements in order to
mitigate the effects of the current ripple caused by switching
the transistor. The battery voltage vbat is used with a calibrated
power electronics circuit to generate the PWM voltages across
the solenoid terminals.

A. Sliding Mode Control Experiments

In this section, experimental results of the sliding mode
control law from [6], as outlined in Section V-A, are presented
as a baseline for comparing the proposed method with a
common approach in solenoid control. Fig. 4 and 5 show
the experimental results achieved by the control input (21a)
applied to the solenoids A and B. The tuning parameters are
listed in Tab. II for both cases.

The peaks in the current error at 3.1 s and 5.7 s in Fig. 4
are a consequence of the lack of a feedfoward part in this

Control Sliding surface
α1 0.35 λ1 20
α0 0.04 λ0 100

TABLE II: Parameters used for the sliding mode controller
experiments.

Control & adaptation Initial conditions
Kp 10 R̂0 0.68RA

λ 20 L̂0 2.0LA

TABLE III: Parameters used for the nonlinear model reference
adaptive control experiment.

control approach. This leads to a significant delay between
the reference and the controlled current, which causes large
control errors. The general performance of the well-tuned
sliding mode controller for solenoid A, however, is very good.
In contrast, Fig. 5 shows the experimental result for the same
sliding mode controller applied to solenoid B. Even though
the sliding mode controller is a robust control approach, the
control performance is severely degraded by the poor tuning
for this solenoid. In particular, the smaller inductance results
in overshoots and persistent oscillations of the current. Fur-
thermore, the nonlinearity of the solenoid inductance leads to
a larger control error at higher current levels. It becomes clear
from Fig. 4 and 5 that the sliding mode controller provides
good results when properly tuned, but the performance may
degrade significantly if a retuning is not possible.

B. Model Reference Adaptive Control Experiments
In this section, experimental results of the nonlinear model

reference adaptive control scheme from [12], as outlined in
Section V-B, are presented. Fig. 6 shows the solenoid current
and the control error of the algorithm from (22a) and (22b)
applied to solenoid A. The tuning parameters used in the
experiment can be found in Tab. III. The nominal parameters
of the solenoid are given in Tab. I. The reference trajectory was
selected to show the performance of the algorithm for rapid
setpoint changes and for periods with insufficient excitation.
During these periods at about 6 s and 10 s the reference signal
is constant, hence, the inductance and the resistance cannot be
identified simultaneously. Additionally, the inductance varies
significantly with the different current levels of the reference
signal. This current- and position-dependence of the induc-
tance is an unmodeled nonlinear effect. The current trajectory
in Fig. 6 clearly shows that the adaptation algorithm cannot
estimate the inductance and the resistance of the solenoid to
achieve a satisfactory tracking performance. During periods
of low excitation, the gradient-based adaptation law only
converges slowly. Hence, in steady state, the control error is
slowly reduced, but the reference is not reached even after 1 s.
The control error shows a large mean error with peaks over
0.2iA. Furthermore, the repeating reference signal at 11 s is
not improved as compared to the tracking performance with
the initial parameters at 0.1 s. Both cases show a peak error
of 0.15iA.

Fig. 7 shows the estimated parameters of this experiment.
Note that according to (22a), the parameter vector is updated
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Fig. 4: Experimental results of the sliding mode controller
for solenoid A. The values are normalized to iA and vbat,
respectively.
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Fig. 5: Experimental results of the sliding mode controller
for solenoid B. The values are normalized to iA and vbat,
respectively.

proportionally to the control error. Hence, large control errors
are necessary for the parameters to converge, which makes this
approach sensitive to model uncertainties such as the nonlinear
inductance effects. Furthermore, the parameter update has a
constant gain λ. These two properties lead to a fluctuating
update of the estimated parameters and rapid changes, when-
ever a large control error occurs. The estimated inductance
values and the lack of dynamic feedback lead to high current
overshoots.

As discussed in Section III-A, projection bounds cannot
be formulated tightly for the coupled parameter vector (23)
which leads to estimates exceeding the desired bounds Lmax

and Rmax. At 3 s the resistance exceeds the desired bound
of Rmax = 1.36RA. During periods of low excitation at
6 s and 10 s both parameters are used by the algorithm to
counteract the steady-state error. During this time, however,
only one independent parameter can be identified, i.e. there
is no persistence of excitation. Hence, the parameters drift
on a one-dimensional subspace of the parameter space. This
drift is caused by the loss of observability of the parameters
and methods such as the dead-zone have been proposed to

mitigate the drift. However, it will be shown that the drift is
much slower for the proposed method. Note that the estimated
parameters strongly depend on the control error and therefore
exhibit a very similar trajectory.

C. Proposed Indirect Adaptive Control Scheme

In this section, the proposed indirect adaptive two-degrees-
of-freedom control strategy is experimentally validated for
all three investigated solenoids. To this end, the controller is
initialized with the same parameters for all three solenoids
depicted in Fig. 3. The constrained forgetting least-squares
adaptation algorithm in (14) was discretized following [13],
[35], [36] as detailed in Appendix B. The control parameters
and initial values can be found in Tab. IV. The controller
parameters α∗0 and α∗1 were chosen for a time constant of
10 ms and a damping ratio of 0.5 for the closed-loop error
system (20). The initial parameters R0 and L0 were set to
typical nominal values within the parameter range of the
considered solenoids. The time constant λa of the low-pass
filter (6) is essentially determined by the measurement noise
when calculating the time derivative of the current y. The
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initial and maximum gain matrix, P0 and Pmax, and the
forgetting factor βmax were tuned according to the procedure
presented in [18] and can be treated similar to the classical
least-squares tuning factors. The bounds for the inductance
estimate, Lmin and Lmax, and for the resistance estimate,
Rmin and Rmax, reported in Table IV, are selected to restrict
the parameters to physically meaningful values. These bounds
do not influence the transient performance of the overall
algorithm.

Control Adaptation Projection
α0

∗ 10 000 s−2 L0 2.0LA Lmin 0.2LA

α1
∗ 100 s−1 R0 0.68RA Lmax 5.0LA

λa 0.2 s−1 Rmin 0.34RA

P0 60 Rmax 1.36RA

βmax 0.6
Pmax 150

TABLE IV: Parameters used for the experiment with the
proposed indirect adaptive controller.

In direct comparison with the model reference control and
the sliding mode control scheme, Fig. 8 shows experimental
results of the indirect adaptive control algorithm (14)-(19)
applied to solenoid A. Here, the control error decays quickly
after an initial convergence of the estimated plant parameters.
The large contribution of the feedforward controller uff to
the overall control input u suggests that the parametrized
model accurately describes the physical plant. Hence, the
feedback controller is used around the reference trajectory
and can be tuned independently of the reference tracking
control task. The repeated pattern of the reference signal at
11 s underlines the improvement of the control performance
achieved by the adaptation. Here, the control performance

is significantly improved compared to the reference signal
controlled using the initial parameters at 0.1 s. At 3 s the
feedback controller shows an increased activity caused by the
high current, which entails a decrease of the inductance. This
effect is compensated by the feedback controller and does
not significantly impact the control performance. Hence, the
interaction between adaptation and integral feedback control
combines fast convergence of the parameters with robustness
to model uncertainties and unmodeled effects. Additionally,
the least-squares adaptation algorithm from (14) uses the
estimation error and can be adapted even without a control
error. Thus, control errors due to disturbances are compensated
by the feedback controller, whereas the parameters are updated
when an estimation error occurs.

The estimated parameters, the normalized estimation error
(11) and the norm of the gain matrix are depicted in Fig. 9.
The large estimation error and gain matrix norm in the
first second of the experiment leads to a rapid convergence
of the resistance and inductance estimates. The high initial
gain value is used to reduce the estimation error quickly,
while after this convergence phase the gain matrix of the
estimation algorithm (14) adapts to the current excitation.
During periods of low excitation at 6 s and 10 s, the gain matrix
is increased again by the exponential forgetting. Hereby, any
parameter errors accumulated during this period are rapidly
compensated for as soon as the parameters are excited again,
as indicated by the estimation error. In contrast, a least-squares
algorithm without exponential forgetting cannot neglect faulty
measurements, even if new correct data is collected afterwards.
Furthermore, the estimated parameters show only negligible
drift in steady state. In applications with long periods of
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Fig. 8: Experimental results of the indirect adaptive two-
degrees-of-freedom control algorithm for solenoid A. The
values are normalized to iA and vbat, respectively.
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Fig. 9: Parameter estimates of the indirect adaptive two-
degrees-of-freedom control algorithm for solenoid A. The
values are normalized to LA, RA, and vbat, respectively.

insufficient excitation, modifications like a dead zone can be
added to account for the lack of excitation in the reference
signal, see, e.g., [11].

Solenoid B has approximately half the resistance and a
drastically smaller inductance, as compared to solenoid A.
However, Fig. 10 shows that the adaptation algorithm of the
same controller as the one used for solenoid A applied to
solenoid B rapidly converges and establishes a small con-
trol error throughout the whole reference trajectory. Here,
again, the nonlinear effect of the change in inductance at
3 s is compensated by the feedback control term ufb. The
feedforward part already achieves precise reference tracking
after the initial convergence period. This is illustrated by the
small feedback control action ufb after about 5 s. Thereafter,
the control error stays well below 0.1iA even with rapid
changes of the reference signal and periods of low excitation.
Caused by the strong deviations of the initial conditions of the
parameters from the real values, the controller shows some
overshoots until the parameters have converged. Similar to
the results with solenoid A, the parameters quickly converge
and after 3 s excellent tracking performance and a low control

error are achieved, see Fig. 11. The experimental results for
solenoid C are depicted in Fig. 12. The large initial value of
the estimated inductance parameter causes overshoots during
the first second of the experiment and around 3 s due to the
nonlinear inductance. However, from Fig. 13 it can be seen
that the inductance estimate decreases and eventually leads
to excellent control performance. Furthermore, it should be
noted that the estimated resistance parameter changes between
3 s and 4 s, due to the excitation of the reference signal. The
small feedback control action ufb, again, shows a good match
between the adaptively parametrized model and the controlled
solenoid after the initial convergence phase.

VII. CONCLUSIONS

An indirect adaptive two-degrees-of-freedom control algo-
rithm for the current control of solenoids is proposed. The
contribution of this paper is threefold: First, the indirect
adaptive pole placement scheme known from the literature is
extended by an adaptive feedforward part and the formulation
is modified to improve its robustness. A thorough stability
proof is provided for the overall closed-loop system compris-
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Fig. 10: Control signals of the indirect adaptive two-degrees-
of-freedom control algorithm for solenoid B. The values are
normalized to iA and vbat, respectively.

0

2

4

6

in
du

ct
an

ce L̂

1

1.2

1.4

re
si

st
an

ce

R̂

−2
0

2

·10−2

es
tim

at
io

n
er

ro
r

ε

0 2 4 6 8 10 12 14
0

20

40

60

time in s

no
rm

(P
)

‖P‖

Fig. 11: Parameter estimates of the indirect adaptive two-
degrees-of-freedom control algorithm for solenoid B. The
values are normalized to LB , RB , and vbat, respectively.

ing the plant, the constrained bounded-gain forgetting least-
squares parameter estimation scheme and the adaptive two-
degrees-of-freedom control concept, both described in detail
in Section III. For rapidly changing reference trajectories, the
adaptive feedforward part turns out to essentially improve the
tracking performance also for time-varying parameters. The
constrained bounded-gain forgetting least-squares parameter
estimation scheme ensures fast convergence of the parameters
and does not suffer from excessive drift during periods of low
excitation. Since the control design model does not account
for the nonlinearity of the inductance and the time-varying
parameters, the derived stability proof does not ensure stability
for the nonlinear plant (4). However, the achieved closed-loop
control performance in the experiments justifies the proposed
approach.

Further research is to be conducted to improve the parameter
convergence in situations of low excitation, which is an active
field of research, see, e.g., [28]. The proposed adaptive control
scheme strongly benefits from its property that the control
error convergence does not rely on the convergence of the
parameters. This alleviates the need for a persistence of

excitation assumption and yields a good control performance
without persistence of excitation in the presented experiments.

The second contribution of this paper refers to the experi-
mental validation. The feasibility and the good performance of
the proposed approach is demonstrated by applying the control
concept with one nominal controller tuning to three different
solenoids from various applications, with strongly differing
parameters. Thus, for a whole range of different solenoids only
a single controller tuning is required and the proposed adap-
tation scheme shows a robust and high-performance operation
without further adjustments. This saves time and costs, in par-
ticular during commissioning, and ensures high performance
also under changing load and environmental conditions.

As a third point, experimental results of the performance
of the proposed solution are compared with two well-known
benchmark methods for solenoid control, taken from the lit-
erature, i.e. a robust second-order sliding-mode controller and
a nonlinear model reference adaptive control approach. The
sliding mode controller requires retuning for every solenoid
and the model reference adaptive controller exhibits a poor
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ī
r

−0.4

−0.2

0

0.2

0.4

co
nt

ro
l

er
ro

r

e

0 2 4 6 8 10 12 14

0

0.5

1

time in s

vo
lta

ge

u uff ufb

Fig. 12: Control signals of the indirect adaptive two-degrees-
of-freedom control algorithm for solenoid C. The values are
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degrees-of-freedom control algorithm for solenoid C. The
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adaptation performance.

APPENDIX

A. Proof of Theorem 2

The proof proceeds similarly to the proof presented in [11,
p. 471]. However, there are essential differences from the orig-
inal proof, such as the integral feedback path, the feedforward
controller, and the formulation of the least-squares problem.
Therefore in the following, the main aspects of the proof are
sketched.

The filtered system input and output can be written with (7)
as

u̇a = −λaua + λau , ua(0) = u0 , (24a)
ẏa = −λaya + λay , ya(0) = y0 , (24b)

with initial conditions u0 and y0.
Consequently, the least-squares estimation error is given by,

cf. (11),

ε =
ua − L̂ẏa − R̂ya

m2
, (25)

with the normalization factor m2 = 1 + y2
a + ẏ2

a and the
estimated parameters L̂ and R̂. In addition, the control input
from (19) can be written as

u = k̂p(r − y) + k̂ixc + L̂ṙ + R̂r , (26)

with the integral control error xc from (15b). The reference
trajectory has to be chosen such that r, ṙ ∈ L∞, which is
satisfied by the assumptions in Section IV.

The proof of Theorem 2 is performed in the 4 steps listed
in Section IV. Rearrangement of (24), (25), and (26) yield the
system

ψ̇ = A(t)ψ + b1(t)εm2 + b2(t)r + b3(t)ṙ , (27)

where

ψ =

uaya
xc

 , b1(t) =
1

L̂

 k̂p−1
1
λa

 , (28)

b2(t) =

λa(k̂p + R̂)
0
1

 , b3(t) =

λaL̂0
0

 (29)
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and

A(t) =


−λa − k̂p

L̂
−λak̂p + R̂

L̂
k̂p λak̂i

1
L̂

− R̂
L̂

0

− 1
λaL̂

R̂
L̂λa
− 1 0

 . (30)

The input and output of the plant can be written as an
output of this system by substituting (27) into (24a), and (24b),
yielding[

u
y

]
= C(t)ψ + d1(t)εm2 + d2(t)r + d3(t)ṙ , (31)

with the output matrix and vectors

C(t) =

− k̂p

λaL̂

k̂pR̂

λaL̂
− k̂p k̂i

1
λaL̂

1− R̂
λaL̂

0

 , d1(t) =

 k̂p

λaL̂

− 1
λaL̂

 (32)

d2(t) =

R̂+ k̂p

0

 , d3(t) =

[
L̂
0

]
. (33)

Due to the projection the adaptation algorithm (14) ensures
that R̂ and L̂ are bounded from below and above. In particular
0 < Lmin ≤ L̂, which guarantees that A(t),bi(t),C(t), and
di(t) i = 1, 2, 3 are bounded.

Next, it will be shown that the homogeneous part of (27)
is exponentially stable. This will be done by showing that
the eigenvalues of A(t), for all times t, are negative and the
induced norm ‖Ȧ(t)‖ ∈ L2. The characteristic polynomial of
A(t) reads as

det(A(t)− sI) = (s+ λa)(s2 + α∗1s+ α∗0) . (34)

Thus, the first pole of the system is determined by the filter
of the adaptation algorithm and the remaining two poles by
the desired closed-loop dynamics. If the poles of (20) are
chosen to be in the open left half plane and λa > 0, then
the eigenvalues of A(t) have a negative real part for all times
t.

According to Theorem 1, L̂, ˙̂
L, R̂,

˙̂
R ∈ L∞ and ˙̂

L,
˙̂
R ∈ L2.

This together with the bound 0 < Lmin ≤ L̂, which is
guaranteed by the projection (14), implies that ‖Ȧ(t)‖ ∈
L∞

⋂L2. Thus, based on [11, Theorem 3.4.11, p. 124] the
homogeneous part of (27) is exponentially stable.

In the next step, these results are used to establish bound-
edness of the system signals using the truncated exponentially
weighted L2δ norm and the Bellman-Gronwall Lemma. Here,
the procedure is similar to what is shown in [11, p.472]. Thus,
by applying the Bellmann-Gronwall Lemma (Lemma 3.3.9, p.
103 in [11]) we conclude that m, ya, ẏa ∈ L∞, for all times
t > 0. Substituting into (25) and using ε ∈ L∞ (by Theorem 1)
leads to ua ∈ L∞. It then follows that ψ, ψ̇, y, u ∈ L∞.

In the last step, the convergence of the control error will
be addressed. Here, the parameter estimator properties, the
boundedness of the system signals, and the plant dynamics
are used to prove convergence of the control error by using
Barbalat’s lemma. Given a vector signal t 7→ a(t) ∈ Rn
filtered component-wise by an LTI filter with the transfer

function W (s), we denote by W [a] the corresponding output
signal. With this notation, the following lemma is a corollary
of the swapping lemma [11, Lemma A.1, p 774].

Lemma 1. Given a stable proper transfer function W (s) and
two differentiable signals t 7→ a(t) and t 7→ b(t) such that
b ∈ L∞ and ȧ ∈ L∞

⋂L2, there exists a signal ρ ∈ L∞
⋂L2

such that
W [aTb] = aTW [b] + ρ . (35)

Using the aforementioned assumptions and theorems the
estimation error equation will now be bounded. Rearranging
(25) and taking the time derivative results in

d

dt
(εm2) = u̇a −

d

dt

(
L̂ẏa + R̂ya

)
= u̇a − L̂ÿa − R̂ẏa + ρ1 , (36)

with the rest term ρ1 ∈ L∞
⋂L2. Application of the filter

W =
λas

s+ λa
(37)

to (26) yields

u̇a = W

[ [
L̂ R̂

] [ṙ
r

]]
+W

[ [
k̂p k̂i

] [ e
xc

]]
. (38)

Rewriting this expression using Lemma 1 yields

u̇a =
[
L̂ R̂

]
W

[[
ṙ
r

]]
+
[
k̂p k̂i

]
W

[[
e
xc

]]
+ ρ2 + ρ3 ,

(39)
with ρ2, ρ3 ∈ L∞

⋂L2. Substituting (39) into (36) and using
(17) gives

d

dt

(
εm2

)
= L̂A∗Λae+ ρ̄, (40)

where A∗ = d
dt

2
+ α∗1

d
dt + α∗0 refers to the desired pole-

placement polynomial, see (20), and ρ̄ =
∑3
i=1 ρi ∈

L∞
⋂L2. Rearranging for the control error e and using the

product rule yields

e =
1

ΛaA∗

 d

dt

(
1

L̂
εm2

)
+

˙̂
L

L̂2
εm2 − ρ̄

L̂

 . (41)

Since L̂ ∈ L∞ as well as ˙̂
L, εm2 ∈ L∞

⋂L2, and A∗(s) is a
Hurwitz polynomial by design, it follows that e ∈ L∞

⋂L2.
Additionally from a special case of Barbalat’s lemma [11,
Lemma 3.2.5, p.76] it follows that ė ∈ L∞ and

lim
t→∞

e(t) = 0 . (42)

We will now show that the parameter rates converge to zero.
Eq. (36) can be expanded to

d

dt

(
εm2

)
= u̇a − ˙̂

Lẏa − L̂ÿa − ˙̂
Rya − R̂ẏa . (43)

Due to (6) ÿa ∈ L∞ holds and since ψ, ψ̇, R̂, L̂, ˙̂
R,

˙̂
L ∈ L∞,

it can be concluded that d
dt (εm2) ∈ L∞. This together with

εm2 ∈ L∞
⋂L2 and the uniform continuity of (43) leads via

Barbalat’s Lemma to εm2 → 0, as t→∞. Because m2 ≥ 1,
it can be further concluded that ε → 0 as t → ∞. By using
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the structure of the estimator in (14) and since the gain matrix
P ∈ L∞, it can be concluded that ˙̂

R,
˙̂
L → 0 as t → ∞. It

follows from (17) that ˙̂
ki → 0 and ˙̂

kp → 0 as t → ∞. This
concludes the proof.

Remark 4. It is guaranteed that the estimation error ε and
the plant and control parameter rates ˙̂

R,
˙̂
L,

˙̂
kp,

˙̂
ki converge to

zero. It is not guaranteed that the plant and control parameters
R̂, L̂, k̂p, k̂i will converge to the true values of R̄, L̄, k̄p, k̄i.
Indeed it is not ensured that the signals used in the estimation
algorithm are persistently exciting.

B. Discrete-Time Constrained Bounded-Gain Forgetting
Least-Squares Algorithm

Next, the discrete-time implementation of the constrained
bounded-gain forgetting least-squares algorithm from Sec-
tion III-A is summarized. We apply a time discretization for
t = kTs with the sampling time Ts and k ∈ 1, 2, . . . , N .
Subsequently, the index k refers to the sampling instant at
time kTs, i.e. fk = f(kTs). For the given application, we
consider box constraints of the form

S = [Lmin, Lmax]× [Rmin, Rmax] , (44)

with lower limits Lmin and Rmin and upper limits Lmax and
Rmax. In this case, an analytical solution to the orthogonal
projection of (12) is given by

Pϑ(ϑ) =

[
PL(L̂)

PR(R̂)

]
, (45)

with

PL(L̂k+1) =


Lmin if L̂k+1 < Lmin

Lmax if L̂k+1 > Lmax

L̂k+1 if Lmin ≤ L̂k+1 ≤ Lmax

(46)

and

PR(R̂k+1) =


Rmin if R̂k+1 < Rmin

Rmax if R̂k+1 > Rmax

R̂k+1 if Rmin ≤ R̂k+1 ≤ Rmax .

(47)

Hence, the parameters are constrained by using the
Goldstein-Levitin-Polyak projection algorithm, see, e.g., [36].
The discrete-time constrained bounded-gain forgetting least-
squares algorithm, with ϑk = ϑ(kTs) and Pk = P(kTs),
reads as [35, page 365] and [13, Chapter 3.7, page 91]

Lk =
Pk−1ϕk

λk +ϕT
kPk−1ϕk

(48a)

P′k =
1

λk

(
Pk−1 − LkϕT

kPk−1

)
(48b)

ϑk = Pϑ
(
ϑk−1 + Lk

(
zk −ϕT

kϑk−1

))
(48c)

Pk = Πp

(
ϑk,P

′
k

)
, (48d)

with the discrete-time forgetting factor

λk = 1− Tsβmax

(
1− ‖Pk‖

Pmax

)
(48e)

and the gain matrix projection operator

Πp(ϑk, ·) =

{
P′k if ϑk ∈ S
Pk−1 otherwise .

(48f)

REFERENCES

[1] X. Zhao, L. Li, J. Song, C. Li, and X. Gao, “Linear control of switching
valve in vehicle hydraulic control unit based on sensorless solenoid
position estimation,” Transactions on Industrial Electronics, vol. 63,
no. 7, pp. 4073–4085, 2016.

[2] L. Zhang, L. Liu, X. Zhu, and Z. Xu, “An electric load simulator for
engine camless valvetrains,” Applied Sciences, vol. 9, no. 8, p. 1591,
2019.

[3] J. R. M. van Dam, B. L. J. Gyser, M. Roes, and E. A. Lomonova,
“Comparison of soft-landing position control and energy minimization
performance of two fluid-control solenoid valves,” in European Confer-
ence on Power Electronics and Applications, 2018, pp. 1–9.

[4] B. Zardin, M. Borghi, G. Cillo, C. A. Rinaldini, and E. Mattarelli,
“Design of two-stage on/off cartridge valves for mobile applications,”
Energy Procedia, vol. 126, pp. 1123–1130, 2017.

[5] K. Ma, D. Sun, G. Sun, Y. Kan, and J. Shi, “Design and efficiency
analysis of wet dual clutch transmission decentralised pump-controlled
hydraulic system,” Mechanism and Machine Theory, vol. 154, p. 104003,
2020.

[6] C. Krimpmann, G. Schoppel, I. Glowatzky, and T. Bertram, “Perfor-
mance evaluation of nonlinear surfaces for sliding mode control of a
hydraulic valve,” in IEEE Conference on Control Applications, Sydney,
Australia, 2015, pp. 822–827.

[7] K. Laib, A. R. Meghnous, M. T. Pham, and X. Lin-Shi, “Averaged state
model and sliding mode observer for on/off solenoid valve pneumatic
actuators,” in American Control Conference, 2016, pp. 4569–4574.

[8] S. Hodgson, M. Tavakoli, M. T. Pham, and A. Leleve, “Nonlinear
discontinuous dynamics averaging and pwm-based sliding control of
solenoid-valve pneumatic actuators,” Transactions on Mechatronics,
vol. 20, no. 2, pp. 876–888, 2014.

[9] T. Braun, F. Straußberger, and J. Reuter, “State estimation for fast-
switching solenoid valves: A study on practical nonlinear observers and
new experimental results,” in International Conference on Methods and
Models in Automation and Robotics, 2015, pp. 862–867.

[10] P. Ioannou, Adaptive Control Tutorial (Advances in Design and Control).
Philadelphia, USA: Society for Industrial and Applied Mathematics,
2006.

[11] P. A. Ioannou and J. Sun, Robust Adaptive Control. New York, USA:
Dover, 2012.

[12] S. Sastry and M. Bodson, Adaptive control: stability, convergence and
robustness. New Jersey, USA: Courier Corporation, 1989.

[13] G. C. Goodwin and K. S. Sin, Adaptive filtering prediction and control.
New York, USA: Courier Corporation, 1984.

[14] M. Bin, L. Marconi, and A. R. Teel, “Results on adaptive output
regulation for linear systems by least-squares identifiers,” in Conference
on Decision and Control, 2018, pp. 1391–1396.

[15] I. Karafyllis and M. Krstic, “Adaptive certainty-equivalence control
with regulation-triggered finite-time least-squares identification,” Trans-
actions on Automatic Control, vol. 63, no. 10, pp. 3261–3275, 2018.

[16] M. S. Boroujeni, G. A. Markadeh, and J. Soltani, “Adaptive input-
output feedback linearization control of brushless dc motor with arbitrary
current reference using voltage source inverter,” in Power Electronics,
Drive Systems & Technologies Conference, 2017, pp. 537–542.

[17] J.-J. E. Slotine and W. Li, Applied nonlinear control. New Jersey, USA:
Prentice-Hall, 1991.

[18] V. Shaferman, M. Schwegel, T. Glück, and A. Kugi, “Continuous-
time least-squares forgetting algorithms for indirect adaptive control,”
European Journal of Control, vol. 62, pp. 105–112, 2021.

[19] G. Pillonetto, A. Carè, and M. C. Campi, “Kernel-based sps,” in
Symposium on System Identification, vol. 51, no. 15. Stockholm,
Sweden: Elsevier, 2018, pp. 31–36.

[20] Y. Sun, S. Oymak, and M. Fazel, “Finite sample system identification:
Improved rates and the role of regularization,” in Machine Learning
Research, vol. 120, 2020, pp. 1–10.

[21] S. Oymak and N. Ozay, “Non-asymptotic identification of lti systems
from a single trajectory,” in American Control Conference, 2019, pp.
5655–5661.



14 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017
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