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Abstract

We investigate the engineering scenario where the objective is to synchronize heterogeneous oscillators in a distributed fash-
ion. The internal dynamics of each oscillator are general enough to capture their time-varying natural frequency as well as
physical couplings and unknown bounded terms. A communication layer is set in place to allow the oscillators to exchange
synchronizing coupling actions through a tree-like leaderless network. In particular, we present a class of hybrid coupling rules
depending only on local information to ensure uniform global practical or asymptotic synchronization, which is impossible
to obtain by using the Kuramoto model customarily used in the literature. We further show that the synchronization set can
be made uniformly globally prescribed finite-time stable by selecting the coupling function to be discontinuous at the origin.
Novel mathematical tools on non-pathological functions and set-valued Lie derivatives are developed to carry out the stability
analysis. The effectiveness of the approach is illustrated in simulations where we apply our synchronizing hybrid coupling
rules to models of power grids previously used in the literature.

Keywords: Cyber-physical systems, synchronization, hybrid dynamical systems, multi-agent systems, uniform stability,
finite-time stability, Lyapunov methods.

1. Introduction

The Kuramoto model (Kuramoto (1975)) is used in var-
ious research fields to describe and analyze the dynamics
of a broad family of systems with oscillatory behavior (Ace-
bron et al. (2005)) including neuroscience (Aokii (2015);
Tass (2003); Cumin and Unsworth (2007)), chemistry (For-
rester (2015)), power networks (Dörfler and Bullo (2012))
and natural sciences (Leonard et al. (2012)), to cite a few
(see also (Strogatz (2003))). The many application areas
where Kuramoto dynamics emerged from physical consider-
ations motivated a detailed analysis of the synchronization
properties of the model, first for the all-to-all connection case
(Aeyels and Rogge (2004)), as originally described by Ku-
ramoto, then for a general interconnection layout (Jadbabaie
et al. (2004)), with a focus on the derivation of the least con-
servative lower bound for a stabilizing coupling gain (Jafar-
pour and Bullo (2019); Chopra and Spong (2009); Dörfler
and Bullo (2011)).
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Given its simple and accurate description of natural syn-
chronization phenomena, the Kuramoto model has also in-
spired the design of distributed communication protocols in
engineering applications where the coupling function among
different agents can be arbitrarily assigned to achieve syn-
chronization, as in the bio-inspired synchronization of mov-
ing particles in (Sepulchre et al. (2007)), the synchronized
acquisition of oceanographic data from Autonomous Under-
water Vehicles (Baldoni et al. (2007)), in clock synchro-
nization (Kiss (2018)), in mobile sensors networks mod-
eled as particles with coupled oscillator dynamics (Paley
et al. (2007)), in monotone coupled oscillators (Mauroy and
Sepulchre (2012)) or in other engineering applications sur-
veyed in (Dörfler and Bullo (2014)).

While the sinusoidal coupling of Kuramoto models pro-
vides a powerful tool to obtain synchronization in coupled
networks of oscillators, it also introduces some undesirable
properties for engineering applications. For example, when
the network comprises oscillators with the same natural fre-
quency, it is now well-known that a system of Kuramoto oscil-
lators admits, in addition to stable equilibria coinciding with
the synchronization set, equilibria that are unstable (see, e.g.,
(Strogatz (2000); Sepulchre et al. (2007))). The downside
of this result is that the closer a solution is initialized to an
unstable equilibrium, the longer it will take for phase syn-
chronization to arise: we talk of non-uniform convergence
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(Sepulchre et al. (2007)). Although non-uniform synchro-
nization may naturally characterize certain physical (Oud
(2006)) and biological systems, in general, it is not a de-
sirable property for engineering applications. Indeed, the
lack of uniformity may induce arbitrarily slow convergence
to the attractor set and poor robustness properties (Miller
and Pachter (1997)). Secondly, it may occur in the Kuramoto
model that the angular phase mismatch between adjacent
oscillators remains constant and different from zero indefi-
nitely: in this case we talk of phase locking (Aeyels and Rogge
(2004)), which hampers the capability to reach asymptotic
collective synchronization. Thirdly, in critical applications,
finite-time stability, instead of only asymptotic synchroniza-
tion, may be a mandatory requirement (Polyakov (2011)).

In this work, we investigate the engineering scenario
where the goal is to synthesize local coupling rules to syn-
chronize a set of heterogeneous oscillators. We assume the
model of the oscillators to be general enough to capture not
only their (time-varying) natural frequency but also physical
coupling actions and other unknown bounded terms, thus be-
ing able to represent, among many possibilities, networks of
Kuramoto oscillators with heterogeneous time-varying natu-
ral frequencies. Furthermore, without loss of generality, we
introduce suitable resets of the oscillators’ phase coordinates,
so that they are unwrapped to evolve in a compact set, which
includes [−π,π] consistently with their angular nature. Con-
sequently, we define hybrid 2π-unwinding mechanisms to
ensure the forward completeness of the oscillating solutions.

To achieve uniform global phase synchronization, thereby
overcoming the limitations of Kuramoto models, we equip
the oscillators with a leaderless tree-like communication net-
work to locally exchange coupling actions based on local
information. This approach has been already exploited in
the context of DC microgrids as in, e.g., (Cucuzzella et al.
(2018)), or (Giraldo et al. (2019)), for a network of Ku-
ramoto oscillators equipped with a leader. The selection
of a tree-like graph, which can always be derived in a dis-
tributed way by using the algorithms surveyed in (Panduran-
gan et al. (2018)), is also not new while addressing a prob-
lem of distributed cooperative control: see (Mayhew et al.
(2012b)) in the context of hybrid dynamical systems, or (Bai
et al. (2011)) and (Alagoz et al. (2012)) for continuous-time
networked systems and power grids, respectively. To de-
fine the coupling actions, we present novel hybrid coupling
rules for which a Lyapunov-based analysis ensures uniform
global (practical or asymptotic) phase synchronization. This
result overcomes both the lack of uniform convergence and
the phase-locking issues characterizing the Kuramoto model
(Sepulchre et al. (2007)). Interestingly, we can design the
coupling rules in such a way that the network of oscillators
behaves like the original Kuramoto models when the oscil-
lators are near phase synchronization. Furthermore, due to
the mild properties that we require for our hybrid coupling
function, discontinuous selections are allowed, like in (Cor-
aggio et al. (2020)). When the discontinuity is at the origin,
we prove finite-time stability properties. In particular, exact
synchronization can be reached in a prescribed finite-time

(Song et al. (2017)), and convergence is thus independent
of the initial conditions. Compared to the related works in
(Mauroy and Sepulchre (2012)) and (Wu and Li (2018)),
the finite-time stability property we ensure is global and the
convergence time can be arbitrarily prescribed, respectively.
We resort for this purpose to non-smooth Lyapunov theory,
in particular non-pathological Lyapunov functions and set-
valued Lie derivatives (Bacciotti and Ceragioli (2003)), for
which we provide new results and novel proof techniques
that are of independent interest. Due to the possible pres-
ence of discontinuities in the coupling function, the stability
analysis is carried out by focusing on the regularization of
the dynamics, as typically done in the hybrid formalism of
(Goebel et al., 2012, Ch. 4). Finally, simulations are provided
to illustrate the theoretical guarantees and demonstrate the
potential strength of our hybrid theoretical tools to address
both first and second-order oscillators modeling generators
in power grids considered in (Dörfler and Bullo (2012)).

The recent submission (Bosso et al. (2021a)) (see also
(Bosso et al. (2021b))) also uses hybrid tools to obtain uni-
form global synchronization guarantees in a Kuramoto set-
ting but in a different context, namely for second-order oscil-
lators (where the ωi ’s are states rather than external inputs)
and, most importantly, for a network with a leader, which
significantly changes the setting compared to the leaderless
scenario investigated in this work, where no oscillator is in-
sensible to the coupling actions from its neighbours. With
respect to the preliminary version of this work in (Bertollo
et al. (2020)), we include the next novel elements: relaxed
requirements on the coupling function, time-varying, phase-
dependent, (possibly) non-identical natural frequencies, gen-
eralizing the two-agents theorems of (Bertollo et al. (2020))
to the case of n oscillators in addition to establishing a set of
new stability results missing in (Bertollo et al. (2020)) (finite-
time, practical properties and other ancillary results).

The rest of the paper is organized as follows. Notation
and background material are given in Section 2. The local
hybrid coupling rules and oscillators network model are de-
rived in Section 3. In Section 4, we introduce the regular-
ized version of the dynamics presented in Section 3. In Sec-
tion 5, we present Lyapunov-based analysis tools establish-
ing the asymptotic properties of our model, while prescribed
finite-time results are given in Section 6. Numerical illustra-
tions are provided in Section 7, while most of the technical
aspects of our proofs requiring non-smooth analysis concepts
are gathered in Section 8. A few proofs of minor importance
are relegated to the Appendix.

2. Preliminaries

Notation. Let R := (−∞,∞), R≥0 := [0,∞), R>0 :=
(0,∞), Z≥0 := {0,1, . . . }, Z>0 := {1,2, . . . } and Z>1 :=
{2, . . . }. The notation Rn denotes the n-dimensional Eu-
clidean space with n ∈ Z>0 and ei is the i-th element of the
natural base of Rn, with i ∈ {1, . . . , n}. The notation Bn de-
notes the closed unit ball of Rn centered at the origin and we
write B when its dimension is clear from the context. We
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denote with ; the empty set. Given a vector x ∈ Rn, we
denote with x` its `-th element, with ` ∈ {1, . . . , n}, |x | is
its Euclidean norm and |x |1 is its 1-norm. The notation 0n
denotes a vector whose n ∈ Z>0 elements are all equal to
0. The notation 1n denotes a vector whose n ∈ Z>0 ele-
ments are all equal to 1. Given two vectors x1 ∈ Rn and
x2 ∈ Rm, we denote (x1, x2) := [x>1 x>2 ]

>. Given a matrix
A ∈ Rn×m, [A]` stands for its `-th column and (A)s for its s-
th row, where ` ∈ {1, . . . , m} and s ∈ {1, . . . , n}. Given a
vector x ∈ Rn and a non-empty set A ⊂ Rn with n ∈ Z>0,
|x |A := inf{|x − y| : y ∈ A} is the distance of x to A .
Given a set S ⊂ Rn, cl(S ) stands for its closure, ∂S is its
boundary, int(S ) is its interior and coS is its closed con-
vex hull. Given a finite set S ⊂ Rn, |S | denotes its cardinal
number. A function f : Rn → R≥0 is radially unbounded if
f (x)→∞ as |x | →∞. Let f : Rn → R and r ∈ R, we de-
note by f (r)−1 the set {x ∈ Rn : f (x) = r}. Let X and Y two
non-empty sets, T : X ⇒ Y denotes a set-valued map from
X to Y . We define the set-valued map sign : R ⇒ {−1, 1}
as sign(z) = −1 when z < 0, sign(z) = 1 when z > 0 and
sign(0) = {−1,1}. We refer to class K , K∞ and KL func-
tions as defined in (Goebel et al., 2012, Chap. 3). A function
f : R → R is piecewise continuous if for any given interval
[a, b], with a < b ∈ R, there exist a finite number of points
a ≤ x0 < x1 < x2 < · · · < xk−1 < xk ≤ b, with k ∈ Z≥0
such that f is continuous on (x i−1, x i) for any i ∈ {1, . . . , k}
and its one-sided limits exist as finite numbers. A function
f : R → R is piecewise continuously differentiable if for any
given interval [a, b], with a < b ∈ R, there exists a finite
number of points a ≤ x0 < x1 < x2 < · · · < xk−1 < xk ≤ b,
with k ∈ Z≥0 such that f is continuous, f is continuously
differentiable on (x i−1, x i) for any i ∈ {1, . . . , k} and its one-
sided limits of the difference quotient exist as finite numbers.
We define with uni([a, b]) the continuous uniform distribu-
tion over the compact interval [a, b] with a < b ∈ R.

Background on graph theory. We denote an unweighted
undirected graph as Gu = (V ,Eu), where V is the set of
vertices, or nodes, and Eu ⊆ V × V is the set of edges, or
arcs, composed by unordered pairs of nodes. If a pair (i, j)
of nodes belongs to Eu, we say that those nodes are adjacent
and that j is a neighbour of i and vice versa. Given two nodes
x and y of an undirected graph Gu, we define as path from
x to y a set of vertices starting with x and ending with y ,
such that consecutive vertices are adjacent. If there is a path
between any couple of nodes, the graph is called connected,
otherwise it is called disconnected. We define as subgraph of
Gu a graph Gs = (Vs,Es), where Vs ⊂ V and Es ⊂ Eu. An
induced subgraph of Gu that is maximal, subject to be con-
nected, is called a connected component of Gu. A cycle is a
connected graph where every vertex has exactly two neigh-
bours. An acyclic graph is a graph for which no subgraph is
a cycle. A connected acyclic graph is called a tree.

We denote an unweighted directed graph as G = (V ,E ),
where E ⊆ V ×V is composed of ordered pairs, therefore arcs
have a specific direction. An arc going from node i to node
j is denoted by (i, j) ∈ E . If a directed graph G is obtained

choosing an arbitrary direction for the edges of an undirected
graph Gu, we call it an oriented graph, and we say that G is
obtained from an orientation of Gu. If (i, j) ∈ E , we say that
i belongs to the set of in-neighbors I j of j, while j belongs
to the set of out-neighbors Oi of i. The union of Ii and Oi
gives the more generic set of neighbors Vi := Ii ∪Oi of node
i, containing all the nodes connected to it, in any direction.
With B ∈ Rn×m we denote the incidence matrix of graph G
such that each column [B]`, ` ∈ {1, . . . , m}, is associated to
an edge (i, j) ∈ E , and all entries of [B]` are zero except for
bi` = −1 (the tail of edge `) and b j` = 1 (the head of edge
`), namely [B]` = e j − ei .

3. Oscillators with hybrid coupling

3.1. Flow dynamics

Consider a networked system of n heterogeneous oscilla-
tors. To achieve synchronization, the oscillators locally ex-
change coupling actions through the unweighted undirected
tree1 Gu := (V ,Eu) made of n nodes and thus m = n − 1
edges, n ∈ Z>1. We assign an arbitrary orientation to Gu,
which leads to the oriented tree G = (V ,E ). In this scenario,
the oscillator phase corresponding to node i, with i ∈ V , is
denoted θi and has the next flow dynamics

θ̇i =ωi(θ , t) + κ
∑

j∈Oi

σ(θ j − θi + 2qi jπ)

−κ
∑

j∈Ii

σ(θi − θ j + 2q jiπ), (θ , q) ∈ C (1)

where ωi(θ , t) is a possibly an unknown term modeling the
dynamics of the i-th oscillator, which can capture physical
coupling actions, its time-varying natural frequency, and any
other unknown bounded dynamics affecting the oscillator;
see Section 7 for a numerical example. We assume that ωi
is locally bounded, measurable in t, piecewise continuous in
θ and such that ωi(θ , t) ∈ Ω := [ωm,ωM] for any time t ≥ 0
and (θ , q) ∈ C , with ωm ≤ ωM ∈ R, namely Ω is a compact
interval of values2. Since (1) possibly has a discontinuous
right-hand side, the notion of solution should be carefully
defined, and we postpone this discussion to Section 4 (where
we also prove the existence of solutions) to avoid overloading
the exposition. For now it suffices to say that a function θ is a
solution of (1) if it is absolutely continuous (i.e., it coincides
with the integral of its derivative) and satisfies (1) almost
everywhere.

Phase θi in (1) evolves in the set [−π − δ,π + δ], with
δ ∈ (0,π), which thus covers the unit circle corresponding to

1As mentioned in the introduction, we can obtain a spanning tree us-
ing any of the distributed, finite-time algorithms described in (Pandurangan
et al. (2018)).

2The assumption that ωi , for any i ∈ V , takes values in the compact
set Ω could be relaxed by only assuming boundedness of the mismatch

sup
(t,θ )∈R≥0×[−π−δ,π+δ]

|ωi(t,θ )−ω j(t,θ )| for any pair (i, j) ∈ E , and adapting

the proofs accordingly.
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phases taking values in [−π,π]. Parameter δ > 0 inflates the
set of angles [−π,π] to rule out Zeno solutions as explained
in the following, see Section 3.3. Thus, δ is a regularization
parameter chosen to be the same for each oscillator. Variable
qi j , with (i, j) ∈ E , is a logic state taking values in {−1,0, 1},
which is constant during flows. Its role is to unwind the dif-
ference between the two phases θ j and θi through jumps. In-
deed, since θ j and θi are angles, to evaluate their mismatch,
loosely speaking, we have to consider their minimum mis-
match modulo 2π: qi j is introduced for this purpose as clar-
ified in Section 3.2. The vectors θ and q collect all the states
θi , i ∈ V , and qi j , (i, j) ∈ E , respectively, as formalized in the
following, together with the formal definition of the flow set
C , namely a compact subset of the state-space where the so-
lutions are allowed to evolve continuously. The gain κ ∈ R>0
is associated with the intensity of each coupling action and
it is the same for each interconnection. Finally, the coupling
action between each pair of nodes (i, j) ∈ E is defined as
σ(θ j − θi + 2qi jπ), where σ is the function used to penalize
the phase mismatch θ j − θi + 2qi jπ between phases θ j and
θi , and it satisfies the next property.

Property 1. Function σ is piecewise continuous on domσ :=
[−π−δ,π+δ] and satisfies

a) σ(s) = −σ(−s) for any s ∈ domσ,

b) there exists α ∈ K such that sign(s)σ(s) ≥ α(|s|) for any
s ∈ domσ \ {0}. �

Item a) of Property 1 ensures thatσ is an odd function and
thus implies σ(0) = 0, while item b) of Property 1 guaran-
tees that σ(s) can only be zero at s = 0. Notice that the sine
function, customarily used in the classical Kuramoto model,
satisfies item a) but not item b) of Property 1, which is fun-
damental to establish the global uniform stability result of
this work. Examples of functions σ satisfying Property 1 are
depicted in Figure 1, together with the sine function for the
sake of comparison. We emphasize that the mild assump-
tions of Property 1 allow considering, among others, intu-
itive discontinuous selections such as the sign function of Fig-
ure 1, which leads to an interesting parallel between (1) and
the ternary controllers considered in (De Persis and Frasca
(2013)). Another possible example of σ enjoying Property 1
is σ(s) = sin(s)+u(s), where u is such that items a) and b) of
Property 1 hold. Note that when u is negligible compared to
sin in a neighborhood of the origin, the model behaves locally
like the classical Kuramoto network. Also, Property 1 comes
with no loss of generality as we consider the scenario where
we have the freedom to design the coupling rules among the
oscillators and thus σ.

Function σ is only defined on domσ = [−π − δ,π + δ]
according to Property 1. We ensure in the sequel that the
argument ofσ in (1), namely θ j−θi+2qi jπ, belongs to domσ
for all (i, j) ∈ E , whenever x ∈ C , so that (1) is well-defined,
see Section 3.2.

Collecting in the vector σ(x) ∈ Rm all the coupling actions
σ(θ j − θi + 2qi jπ), with (i, j) ∈ E , using the same order as

Figure 1: Examples of functions σ satisfying Property 1, together with the
sine function (which does not satisfy Property 1).

the columns of B, the flow dynamics in (1) is written as

ẋ =

�

θ̇
q̇

�

= f (x ,ω(θ , t)) :=
�

ω(θ , t)− Bκσ(x)
0m

�

, x ∈ C ,

(2)

with θ := (θ1, . . . ,θn) ∈ [−π − δ,π + δ]n, ω(θ , t) :=
(ω1(θ , t), . . . ,ωn(θ , t)) ∈ Ωn, and where q ∈ {−1, 0,1}m is
the vector stacking all the qi j ’s for (i, j) ∈ E , ordered as in
σ(x). Thus, the overall state x := (θ , q) evolves in the com-
pact state space defined as

X := [−π−δ,π+δ]n × {−1,0, 1}m. (3)

The flow set C in (2) will be selected as the closed comple-
ment of the jump set D introduced next.

3.2. Jump dynamics

We introduce jump rules to constrain each phase θi to take
values in [−π − δ,π + δ] as well as to guarantee that the
argument θ j−θi+2qi jπ ofσ in (1) belongs to domσ = [−π−
δ,π + δ] when flowing. To guarantee the latter property,
define, for any (i, j) ∈ E , the jump set

Di j :=
�

x ∈ X : |θ j − θi + 2qi jπ| ≥ π+δ
	

, (4a)

and the associated difference inclusion

x+ =
�

θ+

q+

�

∈ Gext
i j (x) :=

�

θ
Gi j(x)

�

, x ∈ Di j , (4b)

where the entries of Gi j : X ⇒ {−1, 0,1}m are given by

(Gi j)(u,v):=

(

argmin
h∈{−1,0,1}

|θ j − θi + 2hπ|, if (u, v) = (i, j),

{quv}, otherwise,
(4c)

with (u, v), (i, j) ∈ E . Set Di j in (4a) enforces a jump when
θ j − θi + 2qi jπ is not in domσ for (i, j) ∈ E . Across a jump,
according to (4b), only qi j changes in such a way that |θ j −
θi + 2qi jπ| < π + δ after a jump as formalized in the next
lemma whose proof is given in Appendix A to avoid breaking
the flow of the exposition.
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Figure 2: Projection of the flow and jump sets on (θi ,θ j) for each value of qi j .

Lemma 1. For any (i, j) ∈ E and x ∈ Di j , any x+ ∈ Gext
i j (x)

as per (4b) satisfies x+ ∈ X and |θ+j −θ
+
i +2q+i jπ|< π+δ. �

A second jump rule is introduced for when one of the os-
cillators i ∈ V reaches |θi |= π+δ. In this case, a jump of 2π
is enforced so that the phase then belongs to (−π−δ,π+δ)
while remaining the same modulo 2π. We define for this
purpose

x+ =
�

θ+

q+

�

= gi(x) :=
�

gi,θ (x)
gi,q(x)

�

, x ∈ Di , (5a)

where the entries of gi,θ : X → [−π − δ,π + δ]n and gi,q :
X → {−1, 0,1}m are defined as

(gi,θ ) j :=

¨

θi − sign(θi)2π, if j = i,
θ j , otherwise,

(5b)

(gi,q)(u,v) :=







quv + sign(θi), if v = i,
quv − sign(θi), if u= i,
quv , otherwise,

(5c)

with j ∈ V and (u, v) ∈ E . The set Di , i ∈ V , is defined as

Di := cl
��

x ∈ X : x /∈ Duv for any (u, v) ∈ E ,

and |θi |= π+δ
	�

. (5d)

In view of (5d), the jump rule (5a) is allowed when both
|θi |= π+δ and x is not in the interior of Duv for any (u, v) ∈
E , where a jump may occur according to (4).

Note that each function gi is continuous on its (not con-
nected) domain because Di does not contain points with
θi = 0 for any i ∈ V .

Finally, switching/jumping ruled by (5) unwinds the phase
θi without changing the phase mismatches between neigh-
bours, defined as (θ j−θi+2qi j), as shown in the next lemma,
whose proof is given in Appendix A.

Lemma 2. For each i ∈ V and x ∈ Di , x+ = gi(x) implies
x+ ∈ X and, for all (u, v) ∈ E ,

¨

θ+v − θ
+
u + 2q+uvπ= θv − θu + 2quvπ,

|θ+i |= π−δ < π+δ.
(6)

�

3.3. Overall model
In view of Sections 3.1-B, the overall hybrid model is given

by
�

ẋ = f (x ,ω(t)), x ∈ C ,

x+ ∈ G(x), x ∈ D,
(7a)

where f is defined in (2), and using (4a) and (5d),

D :=
� n
⋃

i=1

Di

�

∪
�

⋃

(i, j)∈E
Di j

�

, (7b)

C = cl(X \ D), (7c)

with X defined in (3). The set-valued jump map G is defined
in terms of its graph, which is given by

gph G :=
� n
⋃

i=1

gph gi

�

∪
�

⋃

(i, j)∈E
gph Gext

i j

�

, (7d)

with gi and Gext
i j as per (4b), (5a)-(5c). Figure 2 shows three

projections of the state space X on the plane (θi ,θ j) for some
(i, j) ∈ E , which corresponds to a union of three squares, one
for each value of qi j .

Remark 1. Since we envision engineering applications, each
phase θi with i ∈ V may be reconstructed from the angular
measurements provided by sensors. Due to the wide variety
of outputs provided by commercial sensors, a relevant task
is to extrapolate a continuous measurement from a sensor
that may return values whose wrapping around 2π is un-
known; see, for example, (Reigosa et al. (2018)) and (Anan-
dan and George (2017)). In this scenario, we can imple-
ment an algorithm to extract a continuous measurement of
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the phase satisfying (2). In particular, following a rationale
similar to that proposed in (Mayhew et al., 2012a, Figure
1) for a setting with sampled measurements, we may con-
tinuously update an estimate θi,e of θi . Indeed, for each
sensor output θi,so, we may extract the lifted measurement
as the closest one to θi,e when performing 2π-wraps θ+i,e =
θi,so + 2π argmin

h∈{−1,0,1}
|θi,so − θi,e + 2hπ|. This rule parallels the

selection of (15) and (27b) of (Mayhew et al. (2012a)) for
the simpler case of S1 and scalar angular measurements. �

4. Regularized hybrid dynamics

Model (7) is a time-varying hybrid system with a possibly
discontinuous right-hand side, due to the mild properties of
σ, see Property 1. Hence, solutions may be understood in the
generalized sense of (Goebel et al. (2012)). We consider for
this purpose the regularization of (7), so that stability proper-
ties for the regularized system carry over to the nominal and
generalized solutions of (7). In particular, following (Goebel
et al., 2012, Page 79) we consider

�

ẋ ∈ F(x), x ∈ C ,

x+ ∈ G(x), x ∈ D,
(8a)

where C , D, and G coincide with those in (7), and the set-
valued map F regularizes f in (2) as

F(x) :=

�

bΩ− BκbΣ(x)
0m

�

, ∀x ∈ X , (8b)

with the sets bΩ := Ω × · · · × Ω = [ωm,ωM]n and bΣ be-
ing the Krasovskii regularization of the function σ in (2),
see for more details (Hájek, 1979, Page 4). More specifi-
cally, following (Goebel et al., 2012, Def. 4.13), bΣ(x) :=
⋂

s>0
coσ((x + sB) ∩ C). It is readily verified that, denoting

by bσ the Krasovskii regularization of the scalar function σ,
namely

bσ(θ̃ ) :=
⋂

s>0

coσ([θ̃ − s, θ̃ + s]∩ [−π−δ,π+δ]), (9)

for any θ̃ ∈ [−π− δ,π+ δ], then the set-valued map bΣ(x)
is the stacking (with the same ordering as in σ) of the set-
valued maps bσi j defined as

bσi j := bσ(θ̃i j), θ̃i j := θ j − θi + 2qi jπ, (10)

for all (i, j) ∈ E .
Since the jump set, flow set, and jump map of hybrid sys-

tem (8) coincide with those of (7), and for any x ∈ X and
ω ∈ bΩ, f (x ,ω) ∈ F(x), we study the stability properties
of solutions of (7) by concentrating on the regularized dy-
namics (8). In addition to clarifying the nature of solutions
of (7), which may, among other things, present sliding be-
havior (see Section 6), the advantage of using (8) instead
of (7) is that (8) satisfies the so-called hybrid basic condi-
tions (Goebel et al., 2012, As. 6.5), which ensure its well-
posedness (Goebel et al., 2012, Thm. 6.30).

Lemma 3. System (8) satisfies the hybrid basic conditions
(HBC) of (Goebel et al., 2012, As. 6.5). �

Proof: Sets C and D, as defined in (4a), (5d), (7b), (7c) are
closed, as required by (Goebel et al., 2012, As. 6.5 (A1)). On
the other hand, F is the Krasovskii regularization of a func-
tion, which satisfies the HBC in view of its locally bounded-
ness on C and (Goebel et al., 2012, Lemma 5.16) as shown
in (Goebel et al., 2012, Ex. 6.6), thus (Goebel et al., 2012,
As. 6.5 (A2)) is satisfied. Lastly, each gi and Gext

i j has a
closed graph, and so due to (7d) the graph of G is closed
as well. As consequence, according to (Goebel et al., 2012,
Lemma 5.10), G is outer semicontinuous and it is also lo-
cally bounded relative to D, thereby satisfying (Goebel et al.,
2012, As. 6.5 (A3)). �

Among other useful properties, Lemma 3 guarantees in-
trinsic robustness of the stability property established later
in Sections 5 and 6, see (Goebel et al., 2012, Ch. 7). To
conclude this section, we note that all maximal solutions to
(8) are complete3 and exhibit a (uniform) average dwell-time
property, thereby excluding Zeno phenomena. We emphasize
that, through Lemmas 1 and 2, the parameter δ plays a key
role in establishing that no complete discrete solution exists.
In particular, the fact that δ 6= 0 and δ 6= π is key for being
able to exclude Zeno solutions.

Proposition 1. All solutions to (8) enjoy a uniform average
dwell-time property. Namely, there exist τD ∈ R>0 and J0 ∈
Z≥0 such that, for any solution x to (8) and for any pair of
hybrid times such that t + j ≥ s + r with (s, r), (t, j) ∈ dom x,
1
τD
(t − s) + J0 ≥ (j − r). Moreover, if x is maximal, then it is

t-complete, i.e., supt dom x = sup{t ∈ R≥0 : ∃j ∈ Z≥0, (t, j) ∈
dom x}= +∞. �

Proof: We first recall that, in view of Lemma 2, for any i ∈ V ,
x ∈ Di and x+ = gi(x)

|θ+i |= π−δ < π+δ, (11)

while the other θ j , j 6= i ∈ V remain unchanged across such
a jump and so does θ j − θi + 2qi jπ for all (i, j) ∈ E . We also
recall that, from Lemma 1, for any (i, j) ∈ E , x ∈ Di j and
x+ ∈ Gext

i j (x)

|θ+j − θ
+
i + 2q+i jπ| ≤max(2δ,π)< π+δ, (12)

while the θu and the other θh−θk+2qhkπ remain unchanged
for any u ∈ V and (h, k) 6= (i, j) ∈ E . From uniform global
boundedness of the right hand-side F(x) of the flow dynam-
ics (a consequence of the local boundedness of F and of the
boundedness of X ), all solutions satisfy a global Lipschitz
property with respect to the flowing time and (11) and (12)

imply a uniform average dwell time on the jumps from
n
⋃

i=1
Di

3A solution to a hybrid systemH is maximal if it cannot be extended and
it is complete if its domain is unbounded.
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and
⋃

(i, j)∈E
Di j , respectively. Finally, the uniform average dwell

time property of solutions jumping from D derives directly
from Lemma 2 and (4b)-(4c). Indeed, (4b)-(4c) imply that
jumping from Di j does not affect the triggering condition in
Du or Dhk, for any u ∈ V and (i, j) 6= (h, k) ∈ E . In a similar
way, Lemma 2 implies that jumping from Di does not affect
the triggering condition in Dj or Di j or Dji , for any j 6= i ∈ V
and (i, j) ∈ E or ( j, i) ∈ E . Thus, a uniform average dwell
time on jumps from D stems from the global Lipschitz prop-
erty of the solutions with respect to the flowing time, along
with (11) and (12).

We now check that maximal solutions of (8) are complete
by proving that the conditions of (Goebel et al., 2012, Prop.
6.10) hold. First, consider ξ ∈ C \ D. Because ∂ C ⊂ D, then
ξ ∈ int(C). Therefore, there exists a neighbourhood U of ξ
such that U ⊂ C \D. Thus, for any x ∈ U ⊂ C \D, the tangent
cone4 to C at x is TC(x) = Rn×{0}m. Hence, anyψ ∈ F(x) in
(8b) satisfies {ψ} ∩ TC(x) = {ψ} 6= ;, so that (Goebel et al.,
2012, Prop. 6.10 (VC)) holds for any ξ ∈ C \D. On the other
hand, the state space X in (3) is bounded, thus item (b) in
(Goebel et al., 2012, Prop. 6.10) is excluded. To rule out
item (c) in (Goebel et al., 2012, Prop. 6.10), from Lemmas 1
and 2, we have G(D) ⊂ X = C ∪ D. Hence, we can apply
(Goebel et al., 2012, Prop. 6.10) to conclude that all maxi-
mal solutions are complete, thus obtaining t-completeness of
solutions in view of their uniform average dwell time prop-
erty established above. �

5. Asymptotic stability properties

5.1. Synchronization set and its stability property

To analyze the synchronization properties of system (8),
consider the set

A := {x ∈ X : θi = θ j + 2qi jπ, ∀(i, j) ∈ E}. (13)

Because the network is a tree, for any x ∈ A , the phases θi
and θ j coincide modulo 2π not only for any (i, j) ∈ E but also
for any i ∈ V and j ∈ V \ {i}. In other words, when x ∈ A ,
all the oscillators are synchronized even if they do not share a
direct link. We therefore callA the synchronization set. Our
main result below establishes a practical asymptotic stability
result for A , as a function of the coupling gain κ appearing
in the flow map (1). The “practical” tuning of κ depends on
the following two parameters:

λ := λmin(B
>B), ω := (n−1)|ωM−ωm| ≥max

Òω∈bΩ
|B>Òω|1. (14)

Parameter λ ensures a detectability property of the distance
|x |A in (13) from the norm |Òσ|, for any Òσ ∈ bΣ(x). In partic-
ular, we have from the results in (Godsil and Royle (2001)).

4The tangent cone to a set S ⊂ Rn at a point x ∈ Rn, denoted TS(x), is the
set of all vectors w ∈ Rn for which there exist x i ∈ S, τi > 0 with x i → x ,

and τi ↘ 0, such that w= lim
i→∞

x i − x
τi

.

Lemma 4. Since G is a tree, λ := λmin(B>B)> 0. �

Proof: Consider a tree graph G with incidence matrix B ∈
Rn×n−1. By definition G has only one bipartite connected
component. From (Godsil and Royle, 2001, Thm. 8.2.1),
rank(B) = n − 1 and thus dim(null(B)) = 0 by way of the
fundamental theorem of linear algebra. Therefore, B y 6= 0
for any y ∈ Rn−1\{0n−1}which implies y>B>B y = |B y|2 > 0
for any y ∈ Rn−1 \ {0n−1}. Consequently all the eigenvalues
of B>B are strictly positive, thus completing the proof. �

Remark 2. The smallest eigenvalue λ of B>B and its posi-
tivity established in Lemma 4 play a fundamental role on the
speed of convergence of the closed-loop solutions to the syn-
chronization set. As G is a tree, positivity of λ is ensured
by Lemma 4. In more general cases with G not being a
tree, the leaderless context considered in this paper, where
the synchronized motion emerges from the network, poses
significant obstructions to achieving global results. A sim-
ple insightful example of a cyclic graph is discussed in Sec-
tion 5.2, which provides a clear illustration of the motivation
behind requiring that G is a tree. We emphasize that a sim-
ilar obstruction is experienced in prior work (Mayhew et al.
(2012b)) where, in a different context, a similar assumption
on the network is required. �

We are now ready to state the main result of this paper,
corresponding to a practicalKL bound on the distance of x
fromA that is uniform in κ. We state the bound in our main
theorem below, whose proof is given in Section 8.2, and then
illustrate its relevance on a number of corollaries given next.

Theorem 1. Given set A in (13), there exists a class KL
function β◦ and a class K gain γ◦, both of them independent
of κ, such that, for any κ > 0, all solutions x of (8) satisfy

|x(t, j)|A ≤ β◦(|x(0,0)|A ,κt) + γ◦((κλ)
−1cω), (15)

for all (t, j) ∈ dom x and with c := max
s∈domσ

bσ(s). �

The bound (15) in Theorem 1 is the sum of two terms:
β◦ captures the phases tendency to synchronize, while func-
tion γ◦ depends on the mismatch among the (possibly) non-
identical, time-varying natural frequencies of the oscillators,
which hampers asymptotic phase synchronization in general.
Therefore, Theorem 1 provides an insightful bound (15) il-
lustrating the trend of the continuous-time evolution of the
hybrid solutions to (8). Notice that β◦ and γ◦ can be con-
structed by following similar steps as the ones in (Sontag and
Wang, 1995, Lemma 2.14), noting that the resulting bound
is often subject to some conservatism. On the other hand,
because β◦ and γ◦ are independent of κ and λ, (15) still pro-
vides valuable quantitative information. Indeed, in view of
(15), increasing κ speeds up the transient and reduces the
asymptotic phase disagreement caused by the non-identical
time-varying natural frequencies. Equation (15) also high-
lights the impact of the algebraic connectivity λ of G (Mes-
bah and Egerstedt, 2010, pages 23-24) on the phase synchro-
nization, by giving information on the scalability of our algo-
rithm. Recall that λ is influenced by several parameters of
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the undirected graph, such as the maximum degree and the
number of nodes (Rad et al. (2011)). This continuous-time
focus in (15) in Theorem 1 is motivated by Proposition 1. It
is also of interest to establish a bound similar to (15) while
measuring the elapsed time in terms of t+ j and not only in
terms of t, as usually done when defining bounds for solu-
tions to hybrid systems, which allows us to ensure stronger
stability properties, in particular, uniformity and robustness
(Goebel et al., 2012, Chp.7). Hence, combining Theorem 1
with Proposition 1, we obtain the following second main re-
sult.

Theorem 2. For each value κ > 0, there exists a class KL
function β such that all solutions to (8) satisfy

|x(t, j)|A ≤ β(|x(0,0)|A , t+ j) + γ◦((κλ)
−1cω), (16)

for all (t, j) ∈ dom x, with γ◦ as in Theorem 1. �

Proof: Let κ > 0 and x be a solution to (8). In view of
Proposition 1, 1

τD
t + J0 ≥ j for any (t, j) ∈ dom x , which is

equivalent to 1
2 t ≥

τD
2 (j − J0). Hence, we derive from (15),

for any (t, j) ∈ dom x ,

β◦(|x(0,0)|A ,κt) = β◦

�

|x(0,0)|A ,κ(
1
2
t+

1
2
t)
�

≤ β◦
�

|x(0, 0)|A ,κmax
§

0,
1
2
t+
τD

2
j−
τD

2
J0

ª�

≤ β◦
�

|x(0,0)|A ,
κ

2
max {0, min(1,τD)(t+ j)−τDJ0}

�

=: β(|x(0, 0)|A , t+ j). (17)

Function β is of classKL . Hence, (15) and (17) yield (16),
thus completing the proof. �

Theorem 2 implies that the oscillator phases uniformly
converge to any desired neighborhood ofA by taking κ suf-
ficiently large, thus the practical nature of the result. We also
immediately conclude from Theorem 2 and Lemma 3 that the
stability property in (16) is robust in the sense of item (a) of
(Goebel et al., 2012, Def. 7.18), according to (Goebel et al.,
2012, Thm. 7.21).

We may draw an important additional conclusion from
Theorem 2 corresponding to a global practical KL bound
stemming from the fact that the function γ◦ in (16) is inde-
pendent of κ.

Corollary 1. Set A is uniformly globally practically KL
asymptotically stable for system (8), i.e., for each ε > 0, there
exists κ? > 0 such that, for all κ ≥ κ?, there exists β ∈ KL
such that any solution x verifies |x(t, j)|A ≤ β(|x(0, 0)|A , t+
j) + ε, for all (t, j) ∈ dom x. �

Lastly, in the case of uniform frequenciesω(θ , t) = 1nω(t),
for all t ≥ 0, with ω(t) ∈ Ω, we have B>ω(t) = 0, for all
t ≥ 0. Then, we can exploit the fact that the term |ω| at the
right-hand side of (16) stems from upper bounding |B>Òω|1
as in (14), which allows obtaining the following asymptotic
property ofA .

Corollary 2. Ifω(θ , t) = 1nω(t), for all t≥ 0, withω(t) ∈ Ω,
then setA is uniformly globallyKL asymptotically stable for
system (8), i.e., for each κ > 0, there exists β ∈KL such that
any solution x verifies

|x(t, j)|A ≤ β(|x(0,0)|A , t+ j), ∀(t, j) ∈ dom x . (18)

�

5.2. Cyclic graphs and their potential issues

Before proceeding with the technical derivations needed
to prove Theorem 1, we devote some attention to the issues
pointed out in Remark 2 about the need for the graph G to
be a tree, similar to (Mayhew et al. (2012b)).

Consider system (7) with n = 3 and with Gu an all-to-
all undirected graph, thus not a tree. Let G be the orien-

tation of Gu with the incidence matrix B =
�−1 0 1

1 −1 0
0 1 −1

�

. We

take δ = 3
4π, any κ > 0, any σ satisfying Property 1, and

we select for convenience ω(θ , t) = 03 for any time t ≥ 0
and x ∈ X . Let x = (θ , q) be a solution to the corre-
sponding system (7) initialized at

�

− 2
3π, 0, 2

3π, 0, 0, 1
�

. We
have that x(0,0) ∈ int(C) \A and B>θ (0,0) + 2πq(0,0) =
2
3π13, thus implying σ(x(0,0)) = σ( 2

3π)13. Hence, because
B13 = 0, from (2) it holds that θ̇ (0, 0) = 03, and conse-
quently dom x ⊂ [0,∞) × {0}, and x(t, 0) = x(0,0) and
x(t, 0) ∈ int(C)\A for all (t, 0) ∈ dom x . As a result, solution
x does not converge to the synchronization set.

More generally, when the graph is not a tree, the kernel
of matrix B contains additional elements besides the zero
vector. Consequently, we can have Bσ(x) = 0n even when
x /∈ A , and λ = 0 in (14). As a result, A is not globally
attractive.

5.3. A Lyapunov-like function and its properties

To prove Theorem 1, we rely on the Lyapunov function V ,
defined as

V (x) :=
∑

(i, j)∈E

Vi j(x), ∀x ∈ X , (19)

Vi j(x) :=

∫ θ j−θi+2qi jπ

0

σ(satπ+δ(s))ds, (20)

with satπ+δ(s) given by

satπ+δ(s) :=max
�

min{s,π+δ},−π−δ
	

, ∀s ∈ R.

Function V enjoys useful relations with the distance of x from
the synchronization setA , as formalized next.

Lemma 5. Given function V in (19)-(20), there exist α1,α2 ∈
K∞ independent of ω in (14) and of κ, such that

α1(|x |A )≤ V (x)≤ α2(|x |A ), ∀x ∈ X . (21)

�
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Proof: For each x ∈A , V (x) = 0 in view of (13), (19), (20),
and for each x ∈ (C ∪ D)\A , V (x)> 0 in view of item b) of
Property 1. In addition, V is (vacuously) radially unbounded
as X is compact. Hence, (21) holds from (Goebel et al., 2012,
Page 54). �

To prove Theorem 1, it is also fundamental to formalize
the relation between the distance of x from the set A and
bΣ(x) in (8), as done in the next lemma.

Lemma 6. There exists a class K∞ function η such that, for
each x ∈ X , η(|x |A )≤ |Òσ|2, ∀Òσ ∈ bΣ(x). �

Proof: From items a) and b) of Property 1, |σ(s)| ≥ α(|s|)
for any s ∈ domσ. Thus, in view of (9), |ς| ≥ α(|s|), for any
s ∈ domσ and ς ∈ bσ(s). We recall that, for any x ∈ X , bΣ(x)
is the stacking of all the set-valued maps bσi j defined in (10),
(i, j) ∈ E . Hence, by definition of A , for any x ∈ X \ A ,
there exists at least one element θ̃i j 6= 0, with (i, j) ∈ E , thus
Òσ ∈ bΣ(x) implies that |Òσ| ≥ |bσi j(x)| ≥ α(|θ̃i j |). Similarly,
for any x ∈ A , |Òσ| ≥ |bσi j(x)| ≥ α(|θ̃i j |) = 0. Therefore,
max(i, j)∈E α(|θ̃i j |) is a suitable lower bound for |Òσ|, for any
x ∈ X . Since θ̃i j is a function of the states and max(i, j)∈E α(·)
is positive definite and radially unbounded, as X is compact,
then (Goebel et al., 2012, Page 54) implies that there exists
η ∈ K∞ such that η(|x |A ) ≤ |Òσ|2 holds for each x ∈ X and
for all Òσ ∈ bΣ(x), thus concluding the proof. �

Function V is locally Lipschitz due to the properties of σ
and characterizing its variation when evaluated along the so-
lutions of the hybrid inclusion (8) requires using tools from
non-smooth analysis. To avoid breaking the flow of the ex-
position, we postpone to Section 8.2 those technical deriva-
tions and summarize the corresponding conclusions in the
next proposition, a key result for proving Theorem 1.

Proposition 2. Consider system (8) and function V in (19)-
(20). There exist α3 ∈ K∞ independent of ω in (14) and
of κ, such that for any κ > 0, any solution x of (8) satisfies

(denoting dom x =
J
⋃

j=0
[tj, tj+1]× {j}, possibly with J = +∞)

(i) for all j ∈ {0, . . . , J} and almost all t ∈ [tj, tj+1],

d
dt

V (x(t, j))≤ −κλα3(V (x(t, j))) + cω, (22a)

with c defined in Theorem 1;
(ii) for all j ∈ {0, . . . , J − 1},

V (x(t, j+ 1))≤ V (x(t, j)). (22b)

�

We are now ready to present the proof of Theorem 1.

Proof of Theorem 1: Let κ > 0 and x be a solution (8) and

denote, with a slight abuse of notation, dom x =
J
⋃

j=0
[tj, tj+1]×

{j} with J ∈ Z≥0 ∪ {+∞}. We scale the continuous time
as τ := (κλ)t ∈ R≥0 and we denote τj := (κλ)tj and
V ′(x(·, ·)) the time-derivative of V with respect to τ. From

item (i) of Proposition 2, for all j ∈ {0, . . . , J} and almost all
τ ∈ [τj,τj+1],

V ′(x(τ, j)) = (κλ)−1V̇ (x(t, j))

≤ −α3(V (x(t, j))) + (κλ)
−1cω. (23)

Combining (23) with the non-increase condition in (22b),
we follow the steps of the proof of (Sontag and Wang, 1995,
Lemma 2.14) to obtain an input-to-state stability bound on
V ( x̃(·, ·)) where x̃(·, ·) := x((κλ)−1(·), (·)) = x(·, ·), which
can then be converted to a bound on |x(·, ·)|A using (21),
thus leading to (15), where β◦ and γ◦ only depend on α1, α2
and α3 and are therefore independent of ω and κ. Note that
the dependence on λ is left implicit in β◦ and γ◦. �

6. Prescribed finite-time stability properties

A useful outcome of the mild regularity conditions that we
require from σ in Property 1 is that defining σ to be discon-
tinuous at the origin, as in the sign function represented in
Figure 1, leads to desirable sliding-like behavior of the solu-
tions in the attractorA . This sliding property induces inter-
esting advantages of the behavior of solutions, as compared
to the general asymptotic and practical properties character-
ized in Section 5.

A first advantage is that, even with non-uniform natural
frequencies, we prove uniform global KL asymptotic sta-
bility of A for a large enough coupling gain κ, due to the
well-known ability of sliding-mode mechanisms to dominate
unknown additive bounded disturbances acting on the dy-
namics. A second advantage is that the Lyapunov decrease
characterized in Proposition 2 can be associated with a guar-
anteed constant negative upper bound outsideA , which im-
plies finite-time convergence. Finally, since this constant up-
per bound can be made arbitrarily negative by taking κ suf-
ficiently large, we actually prove prescribed finite-time con-
vergence (see (Song et al. (2017))) when using these special
discontinuous functions σ, whose peculiar features are char-
acterized in the next lemma.

Lemma 7. Given a function σ satisfying Property 1, if σ is
discontinuous at the origin, then there exists µ > 0 such that,
for any x ∈ X \A , |Òσ| ≥ µ, for all Òσ ∈ bΣ(x). �

Proof: Since σ is discontinuous at 0 and it is piecewise con-
tinuous, there exists ε > 0 such that σ is continuous in
[−ε, 0) and (0,ε]. By item a) of Property 1, lim

s→0+
σ(s) =

− lim
s→0−

σ(s) =: σ◦ 6= 0 as σ is discontinuous at 0 and σ(0) =

0. Then there exists ε◦ ∈ (0,ε] such that σ(s) ≥ σ◦
2 for all

s ∈ (0,ε◦]. From item b) of Property 1, for any s ∈ [ε◦,π+δ],
σ(s) ≥ α(ε◦) > 0. Hence, due to item a) of Property 1,
|σ(s)| ≥ µ := min(σ◦2 ,α(ε◦)) for all s ∈ domσ \ {0}. More-
over, in view of (9), for any s ∈ domσ\{0} and any ς ∈ bσ(s),
|ς| ≥ µ. Since, for any x ∈ X , bΣ(x) is the stacking of all the
set-valued maps bσi j = bσ, (i, j) ∈ E , and by definition of A ,
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for any x ∈ X \ A , there exists at least one nonzero ele-
ment θ̃i j 6= 0 for some (i, j) ∈ E . Then Òσ ∈ bΣ(x) implies
|Òσ| ≥ |bσi j(x)| ≥ µ, thus concluding the proof. �

Paralleling the structure of Proposition 2, the next proposi-
tion, whose proof is postponed to Section 8.3, is a key result
for proving Theorem 3.

Proposition 3. Consider system (8) and function V in (19)-
(20). If σ is discontinuous at the origin, then there exist
µ ∈ R>0 independent of ω in (14) and κ? > 0 such that
for each κ ≥ κ? any solution x of (8) satisfies (denoting

dom x =
J
⋃

j=0
[tj, tj+1]× {j}, possibly with J = +∞)

(i) for all j ∈ {0, . . . , J} and almost all t ∈ [tj, tj+1] such that
x(t, j) /∈A ,

d
dt

V (x(t, j))≤ −
1
2
κλµ2; (24a)

(ii) for all j ∈ {0, . . . , J − 1},

V (x(t, j+ 1))≤ V (x(t, j)). (24b)

�

Exploiting Lemma 7 and Proposition 3, we can follow sim-
ilar steps to those in the proof of Theorem 1 to show the
following main result on uniform globalKL asymptotic sta-
bility and prescribed finite-time stability ofA for (8).

Theorem 3. If σ is discontinuous at the origin, then set A
in (13) is prescribed finite-flowing-time stable for (8), i.e., for
each T > 0 there exists κ? > 0 such that for each κ≥ κ?:
(i) there exists β ∈KL such that all solutions x satisfy (18);
(ii) all solutions x satisfy, x(t, j) ∈A for all (t, j) ∈ dom x with
t≥ T. �

Proof: We start showing that G(D∩A ) ⊂A . Indeed, we no-
tice that Di j∩A = ; for any (i, j) ∈ E , and thus G(Di j∩A ) ⊂
A trivially holds. Moreover, from Lemma 2, it holds that
G(Di ∩A ) ⊂ A for any i ∈ V . Hence, from (7b), we con-
clude that G(D ∩A ) ⊂A . To establish thatA is (strongly)
forward invariant for (8), it is left to prove that solutions can-
not leaveA while flowing. We proceed by contradiction and
for this purpose suppose there exists a solution xbad to (8)
such that xbad(0, 0) ∈A and xbad(t∗, 0) /∈A for some t∗ > 0
with (t∗, 0) ∈ dom xbad. From continuity of flowing solu-
tions between any two successive jumps and closedness ofA ,
there exists xbad(t, 0) ∈ A for all t ∈ [0, t∗) and xbad(t∗, 0) /∈
A . Hence, from (19) and (20) and positive definiteness of V ,
we have 0 = V (xbad(0,0)) < V (xbad(t∗, 0)). However, since
the solution is flowing, integrating (24a) over the continuous
time interval [0, t∗] we obtain V (xbad(t∗, 0)) < V (xbad(0,0)),
which establishes a contradiction. Consequently, a solution
cannot leave A while flowing. We have proven that the set
A is (strongly) forward invariant, implying that if x(t, j) ∈
X \ A then x(t′, j′) ∈ X \ A , for any t′ + j′ ≤ t + j, with
(t′, j′), (t, j) ∈ dom x . Let κ ≥ κ? with κ? defined in Proposi-
tion 3 and x be a solution to (8). Combining (24a) with the

non-increase condition (24b) and the forward invariance of
A , we obtain by integration for any (t, j) ∈ dom x

V (x(t, j))≤ −
1
2
κλµ2t+ V (x(0, 0)), (25)

whenever x(t, j) ∈ X \A , and thus

V (x(t, j))≤max(−
1
2
κλµ2t+ V (x(0, 0)), 0), (26)

for any x(t, j) ∈ X . Equation (26) can then be converted
to a bound on |x(t, j)|A using (21). Hence, we follow the
same steps used in the proofs of Theorem 1 and 2 to obtain
(18), thus concluding the proof of item (i) in Theorem 3.
In view of (25) and from the positive definiteness of V with
respect to A , we conclude that solutions to (8) reach the
synchronization setA flowing at most for T := 1

κ
2v
λµ2 , where

v := max
x∈X

V (x). Hence, in view of the forward invariance of

A , item (ii) in Theorem 3 holds thus completing the proof.
�

Notice that phases synchronize at most at continuous time
T = 1

κ
2v
λµ2 , in view of (26). Therefore, we may decrease T at

will by selecting a larger µ as in Lemma 7 and/or by increas-
ing the coupling gain κ.

Figure 3: The networks of oscillators described in Section 7: the blue graph
depicts physical couplings captured by ωi in (27), and the red graph is the
communication tree graph that we design for the hybrid coupling rules pre-
sented in Section 3.

7. Numerical illustration

In this section, we apply our control scheme to globally,
uniformly, synchronize the phases of n= 10 strongly damped
generators physically coupled over an all-to-all network con-
nection (represented by the blue edges in Figure 3) over a set
V of nodes whose dynamics are approximated by nonuni-
form first-order Kuramoto oscillators given by (Dörfler and
Bullo, 2012, eq. (2.8)). This fully connected dynamics can
be accurately described by the terms ωi ’s in (1) with the fol-
lowing selection:

ωi(θ , t) :=
1
ζi

�

eωi

�

1+
3
10

sin(χit+φi)
�

+ di(t)

− eκi j

∑

j∈V \{i}

sin(θ j − θi +φi j)

�

, ∀i ∈ V , (27)
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Figure 4: (Top) Phase evolution for κ = 576π
10 , δ = π

4 and different selections of σ and communication configurations. (Middle) Phase evolution in the
time intervals [0,0.41], [5,5.2] and [9, 10.75]. (Bottom) Evolution of the pair (r cos(θi), r sin(θi)), with r(t) = (1.55

p
t + 0.66)−1, showing radially the

continuous-time evolution for the phases generated by our hybrid modification (7). The black dashed lines are isotime (0 (outer), 3.66, 7.33 and 11 (inner)
time units).

for generic constant parameters χi ∈ uni([−1,1]),
eωi ∈ uni([−5,5]), φi ∈ uni([0, atan(0.25)]), and
ζi ∈ uni([20,30] 1

120π ). The physical all-to-all coupling
among the oscillators (blue edges in Figure 3) is modeled
by the sine functions sin(θ j − θi + φi j) of the angular
mismatch between the oscillators offsetted by the constant
angle φi j ∈ uni([0, atan(0.25)]). Furthermore, each physical
coupling is scaled by the gain eκi j = eκ ji ∈ uni([0.7,1.2]).
This allows fully embedding in our time-varying generalized
natural frequenciesωi of (1) the physical couplings of the os-
cillators. Each high-frequency disturbance di : R≥0 → [0, 5]
is defined as di(s) = 0 if s ∈ [0, 5.2] ∪ [6.0,11] and
di(s) = 5sin(50χis + φi) if s ∈ (5.2,6). Thus ωi(θ , t) not
only captures the time-varying natural frequency of the
i-th oscillator but also the physical coupling actions and
disturbances influencing its dynamics. The parameters have
been selected as in (Dörfler and Bullo (2012)) to model
realistic, strongly damped, generators. On the other hand,
the synchronizing coupling actions are exchanged through
our communication graph Gu = (V ,Eu), whose edges are
depicted in red in Figure 3. These “cyber” coupling actions
are represented by the functions σ’s in (1), whose design is

performed according to our solution of Section 3. Summa-
rizing, the combination of the (blue) physical layer and the
(red) “cyber” communication layer of Figure 3 generates a
cyber-physical system whose dynamics is represented by (2),
(7), with ω capturing the physical layer and σ capturing the
hybrid feedback control action. We initialize the oscillators
with q(0,0) = 09 and the initial phases are chosen in such a
way that the oscillators are equally spaced on the unit circle.
Finally, we select δ = π

4 .
The evolution of the phases, θ ′i s, and the angular errors be-

tween any two neighbours in G , namely minh∈{−1,0,1}(|θ j −
θi + 2hπ|), are reported5 in the top two rows of Figure 4
and in Figure 5, for different selections of σ, and κ = 576π

10 ,
which ensure finite-time synchronization due to the bound
reported in Lemma 10 in Section 8.3. When no communi-
cation layer is considered (left plots), the oscillators do not
synchronize. When the communication layer is implemented
and σ is given as the ramp function, practical synchroniza-
tion is achieved as established in Theorem 1 and shown in

5The simulations have been carried out using the Matlab toolbox HyEQ
(Sanfelice et al. (2013)).
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Figure 5: Evolution of the phase errors for κ= 576π
10 and different selections

of σ and communication configurations (from top to bottom: no communi-
cation layer, ramp and sign functions).

Figures 4 and 5. (Non-uniform) practical synchronization
can also be achieved in the absence of a communication layer
by selecting larger values for the eκi j ’s. On the other hand,
the sign function, which is discontinuous at 0, also leads to a
finite-time synchronization property in agreement with The-
orem 3, see Figures 4 and 5. Furthermore, the set of plots in
the bottom row of Figure 4 shows that each phase θi maps
continuously the angular values identifying oscillator i on the
unit circle, in agreement with Section 3.1 and Lemma 2.

The same exact hybrid controller dynamics is finally ex-
ploited in a more sophisticated context of non-strongly
damped generators (rather than the strongly damped case,
as considered above and in Figures 4 and 5). Following (Dör-
fler and Bullo (2012)), such behavior is modeled by a fully
connected graph comprising the second-order (rather than
first-order) heterogeneous oscillators in (Dörfler and Bullo,
2012, eq. (2.3)). Once again, this physical interconnection
is well represented by the blue edges in Figure 3 and dynam-
ics (1) with the following selection, generalizing (27) to the
dynamical context,

ω̇i(θ , t) =−
ζi

mi
ωi(θ , t) +

1
mi

�

eωi

�

1+
3

10
sin(χit+φi)

�

+ di(t)− eκi j

∑

j∈V \{i}

sin(θ j − θi +φi j)

�

, ∀i ∈ V .

(28)

This dynamically generalized selection uses the same param-
eters as in the previous set of simulations, with the addition
of the constant mass parameters mi ∈ uni([2,12] 1

120π ) for

each i ∈ V , which is defined according to (Dörfler and Bullo,
2012, eq. 2.3). We apply our hybrid feedback control algo-
rithm to this generalized scenario by augmenting once again
the physical layer with a “cyber” communication layer rep-
resented by the red edges in Figure 3, inducing the stabi-
lizing action of inputs σ in the hybrid interconnection (2),
(7). We initialize q and θ as in the previous simulations and
θ̇i(0,0) ∈ uni([−0.1, 0.1]) for each i ∈ V . Finally, we still
select δ = π

4 in (3). The evolution of the phases is reported
in Figure 6, for different selections of σ, and κ = 576π

10 . Sim-
ilarly to what happens for the first-order oscillators of Fig-
ures 4 and 5, when no communication layer is considered,
the second-order oscillators do not synchronize. When the
generators are equipped with the communication network
and σ is instead defined as the ramp function, practical syn-
chronization is achieved, as predicted by Theorem 1 and as
shown in Figure 6. On the other hand, considering the (dis-
continuous at 0) sign function to generate the synchronizing
hybrid coupling actions again leads to a finite-time synchro-
nization property, thus confirming Theorem 3.

8. Proof of Propositions 2 and 3

8.1. Results on scalar non-pathological functions
The proofs of Propositions 2 and 3, which are instrumen-

tal for proving our main results of Sections 5 and 6, require
exploiting results from non-smooth analysis, because V in
(19) is not differentiable everywhere. A further complication
emerges from the fact that, since σ may be discontinuous,
the flow map in dynamics (8) is outer semicontinuous, but
not inner semicontinuous. The lack of inner semicontinuity
prevents us from exploiting the “almost everywhere” condi-
tions of (Della Rossa et al. (2021)) and references therein.
Instead, one could resort to conditions involving Clarke’s gen-
eralized directional derivative and Clarke’s generalized gra-
dient, which can be defined as (see (Clarke, 1990, page 11))

∂ V (x) := co{ lim
i→∞
∇V (x i) : x i → x , x i /∈ Z , x i /∈ Ωu}, (29)

where Ωu is the set (of Lebesgue measure zero) where V is
not differentiable, and Z is any other set of Lebesgue mea-
sure zero. However, due to the peculiar dynamics considered
here (resembling, for example, the undesirable conservative-
ness highlighted in (Della Rossa, 2020, Ex. 2.2)), Lyapunov
decrease conditions based on Clarke’s generalized gradient
would be too conservative and impossible to prove. Due to
the above motivation, in this section we prove Propositions 2
and 3 by exploiting the results of (Valadier (1989); Bacciotti
and Ceragioli (2003)), whose proof is also reported in (Della
Rossa, 2020, Lemma 2.23), establishing a link between the
time derivative d

dtV (φ(t)) of a Lyapunov-like function V eval-
uated along a generic solution φ of a continuous-time sys-
tem, and the so-called set-valued Lie derivative (Bacciotti and
Ceragioli (1999))

V̇ F (x) := {a ∈ R| ∃ f ∈ F(x) : 〈v, f 〉= a, ∀v ∈ ∂ V (x)},
(30)
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Figure 6: (Top) Phase evolution associated of second-order oscillators for κ = 576π
10 , δ = π

4 and different selections of σ and communication configurations.
(Bottom) Evolution of the pair (r cos(θi), r sin(θi)), with r(t) = −0.255

p
t+1.4, showing radially the continuous-time evolution for the phases generated by

our hybrid modification of second-order oscillators. The black dashed lines are isotime (0 (outer), 0.5, 1 and 1.5 (inner) time units).

with ∂ V defined in (29). In the following, we characterize
some features of the set-valued Lie derivative, useful for the
next technical derivations.

Lemma 8. Consider a set S ⊂ Rn, F : dom F ⊂ Rn⇒Rn with
S ⊂ dom (F) and a locally Lipschitz V : dom V ⊆ Rn → R
such that S ⊂ dom (V ). Given any function ϕ : Rn ×Rn→ Rn

satisfying ϕ(x , f ) ∈ ∂ V (x), ∀x ∈ S, ∀ f ∈ F(x), it holds that

sup V̇ F (x)≤ sup
f ∈F(x)

〈ϕ(x , f ), f 〉. (31)

�

Proof: Consider any x ∈ S. In view of (30), and by the fact
that ϕ(x , f ) ∈ ∂ V (x) for all f ∈ F(x), we have that a =
〈v, f (x)〉 ∈ V̇ F (x) implies a = 〈ϕ(x , f ), f 〉. Hence, we de-

rive that V̇ F (x) ⊆
⋃

f ∈F(x)
{〈ϕ(x , f ), f 〉} and thus sup V̇ F (x) ≤

sup
f ∈F(x)

〈ϕ(x , f ), f 〉 as to be proven. �

Whenever function V is non-pathological (according to
the definition given next), (Della Rossa, 2020, Lemma 2.23)

ensures that d
dtV (φ(t)) ∈ V̇ F (φ(t)) for almost all t in the

domain of φ. We provide below the definition of non-
pathological functions and we prove that function V in (19)
enjoys that property. Our result below can be seen as a corol-
lary of the fact that piecewise C1 functions (in the sense of
(Scholtes (2012))) are non-pathological. This result has been
recently published in (Della Rossa et al., 2022, Lemma 4).
The scalar case is a consequence of Proposition 5 in (Valadier
(1989)). An alternative proof is reported here.

Definition 1. (Valadier (1989)) A locally Lipschitz function
W : dom W ⊆ R → R is non-pathological if, given any abso-
lutely continuous function φ : R≥0→ dom W, we have that for
almost every t ∈ R≥0 there exists at ∈ R satisfying

〈w, φ̇(t)〉= at, ∀w ∈ ∂W (φ(t)). (32)

In other words, for almost every t ∈ R≥0, ∂W (φ(t)) is a subset
of an affine subspace orthogonal to φ̇(t). �

Proposition 4. Any function W : dom W ⊆ R → R that is
piecewise continuously differentiable is non-pathological. �

For this paper, the interest of Proposition 4 stands in the
fact that it implies that function V in (19) is non-pathological
(Valadier (1989); Bacciotti and Ceragioli (1999)), being the
sum of piecewise continuously differentiable scalar func-
tions.

Remark 3. An alternative proof of Proposition 4, might be
to first establish that piecewise C1 functions from R→ R can
be represented as a max-min of C1 functions from R → R
(a similar result has been proven, for example, in (Xu et al.,
2017, Thm. 1 and Prop. 1) with reference to piecewise affine
functions), and then obtain Proposition 4 as a corollary of
(Della Rossa, 2020; Valadier, 1989; Bacciotti and Ceragioli,
1999, Lemma 2.20), which establish non-pathological prop-
erties of max-min functions. �

Proof of Proposition 4: Let W : dom W ⊆ R→ R be piece-
wise continuously differentiable. Let φ : R≥0 → dom W be
an absolutely continuous scalar function and suppose it is dif-
ferentiable at t ∈ R≥0. We split the analysis in three cases.
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a) φ̇(t) = 0. Then, for all w ∈ ∂W (φ(t)), 〈w, φ̇(t)〉 =
〈w, 0〉= 0. Thus, (32) is satisfied with at = 0.

b) φ̇(t)> 0. If W is continuously differentiable atφ(t) then,
∂W (φ(t)) = ∇W (φ(t)) and (32) holds. Consider now
the case where W is not differentiable at t. We recall
that, in view of the fact that W is piecewise continuously
differentiable, ∂W (φ(t)) =∇W (φ(t)) for any t in a suffi-
ciently small neighbourhood of t. From the absolute con-

tinuity ofφ, there exists ε > 0 such that lim
h→0

φ(t+h)−φ(t)
h ≥

ε > 0. Hence, there exists ρ1 ∈ R>0 such that for any

ρ ∈ (0,ρ1], we have φ(t+ρ)−φ(t)
ρ ≥ ε

2 and thus φ(t+ρ)≥
ρε
2 +φ(t) > φ(t). With a similar reasoning, there exist
ρ2 ∈ R≥0 such that ρ2 > 0 implies φ(t − ρ) < φ(t) for
any ρ ∈ (0,ρ2]. Hence, there exists a neighbourhood
of t contained in [t− ρ2, t+ ρ1], for which ∂W (φ(·)) is
defined and coincides with∇W (φ(t)). Therefore, for al-
most every t̃ ∈ T ⊆ [t − ρ2, t + ρ1] there exists at ∈ R
such that (32) is satisfied.

c) φ̇(t) < 0. This case is identical to the previous one by
changing all the signs, therefore implying that for almost
every t there exists at ∈ R in a compact neighbourhood
of t such that (32) is satisfied.

Since φ is absolutely continuous, then the set Φ where it is
not differentiable is of Lebesgue measure zero. We conclude
that (32) is satisfied for almost all t ∈ R≥0 because we have
arbitrarily selected t ∈ R≥0 \Φ, as to be proven. �

8.2. Proof of Proposition 2
The following lemma establishes geometric properties of

V that are used, together with Lemma 5 and Proposition 4,
to show the trajectory-based results of Proposition 2.

Lemma 9. Consider system (8), function V in (19)-(20) and
c as in Theorem 1. There exists α3 ∈K∞, independent of ω in
(14) and of κ, such that

sup V̇ F (x)≤ −κλα3(V (x)) + cω, ∀x ∈ C , (33a)

∆V (x) := sup
g∈G(x)

V (g)− V (x)≤ 0, ∀x ∈ D. (33b)

�

Proof: We prove the two equations one by one.
Proof of (33a). For each x ∈ C and each f ∈ F(x), there

exist Òω ∈ bΩ and σf ∈ bΣ(x) such that f = (Òω − Bκσf , 0) ∈
F(x). Defineϕ(x , f ) in Lemma 8 asϕ(x , f ) := (Bσf , 2πσf ).
From (30) in Lemma 8, we have

sup V̇ F (x)≤ sup
Òω∈bΩ,
σf ∈bΣ(x)

(−κσ>f B>Bσf +σ
>
f B>Òω). (34)

Thus, in view of (14) and Lemma 4, (34) yields

sup V̇ F (x)≤ sup
σf ∈bΣ(x)

(−κσ>f B>Bσf ) + cω

≤ sup
σf ∈bΣ(x)

−κλ|σf |2 + cω.
(35)

Moreover, in view of (21) and Lemmas 5 and 6, we have that,
for any σf ∈ bΣ(x),

η ◦α−1
2 (V (x))≤ η(|x |A )≤ |σf |2. (36)

By defining α3 := η ◦α−1
2 ∈K∞, (33a) stems from (35) and

(36).
Proof of (33b). We split the analysis in two cases.
First, let i ∈ V , x ∈ Di and x+ = gi(x) as in Lemma 2.

In view of the equality in (6) and the definition of Vi j

in (20), we have Vi j(x+) =
∫ θ+j −θ

+
i +2q+i jπ

0 σ(satπ+δ(s))ds =
∫ θ j−θi+2qi jπ

0 σ(satπ+δ(s))ds = Vi j(x), and thus V (x+) =
∑

(i, j)∈E
Vi j(x+) =

∑

(i, j)∈E
Vi j(x) = V (x).

Second, let (i, j) ∈ E , x ∈ Di j and x+ ∈ Gi j(x) as in
Lemma 1. In view of item a) of Property 1,

Vi j(x) =

∫ |θ j−θi+2qi jπ|

0

σ(satπ+δ(s))ds. (37)

On the other hand, in view of (4a), (4b) and Lemma 1,
|θ+j −θ

+
i +2q+i jπ|= |θ j−θi+2q+i jπ|< π+δ ≤ |θ j−θi+2qi jπ|,

because x ∈ Di j . Consequently, in view of (4a) and item b)

of Property 1 Vi j(x+) =
∫ |θ+j −θ

+
i +2q+i jπ|

0 σ(satπ+δ(s))ds <
∫ |θ j−θi+2qi jπ|

0 σ(satπ+δ(s))ds = Vi j(x).
On the other hand, from the definition of Gi j in (4b),

Vuv(x+) = Vuv(x) for any (u, v) 6= (i, j) ∈ E . Therefore
V (x+) − V (x) = Vi j(x+) − Vi j(x) < 0, since the arguments
of all the other elements of the summation in (19) do not
change. �

Based on Lemma 9, we can now prove Proposition 2.

Proof of Proposition 2: Item (ii) of Proposition 2 is a di-
rect consequence of (33b) in Lemma 9. To prove item (i)
of Proposition 2 we exploit the fact that, in view of (Della
Rossa, 2020, Lemma 2.23) and V being non pathological,
for each solution x to (8), for all j ∈ {0, . . . , J} and almost
all t ∈ [tj, tj+1] in dom x , dV (x(t,j))

dt ∈ V̇ F (x(t, j)). Hence, as
a consequence, d

dtV (x(t, j)) ≤ −κλα3(V (x(t, j))) + cω, thus
concluding the proof. �

8.3. Proof of Proposition 3

Paralleling Section 8.2, we establish via the next lemma
geometric properties of V that can be used, together with
Lemma 5 and Proposition 4, to show the trajectory-based re-
sult of Proposition 3.

Lemma 10. If σ is discontinuous at the origin, then there exist
µ ∈ R>0 independent of ω in (14) and κ? > 0 such that for
each κ > κ?

sup V̇ F (x)≤ −
1
2
κλµ2, ∀x ∈ C \A , (38a)

∆V (x) := sup
g∈G(x)

V (g)− V (x)≤ 0, ∀x ∈ D. (38b)

�
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Proof: We only prove (38a), as (38b) follows from the same
arguments as those proving (33b) in Proposition 2. For each
x ∈ C \ A and each f ∈ F(x), we may proceed as in (34)
and then exploit from Lemma 7 that,

sup V̇ F (x)≤ −κλµ2 + cω. (39)

By selecting κ≥ κ? = 2cω
λµ2 , (39) yields sup V̇ F (x)≤ −

1
2κλµ

2,
which proves (38a). �

Based on Lemma 10, we are now ready to prove Proposi-
tion 3.

Proof of Proposition 3: Item (ii) of Proposition 3 is a di-
rect consequence of (38b) in Lemma 10. In view of (Della
Rossa, 2020, Lemma 2.23) and V being non pathological,
for each solution x to (8), for all j ∈ {0, . . . , J} and almost
all t ∈ [tj, tj+1] in dom x , dV (x(t,j))

dt ∈ V̇ F (x(t, j)). Hence, as a
consequence, d

dtV (x(t, j)) ≤ − 1
2κλµ

2, whenever x(t, j) /∈ A ,
thus proving item (i) of Proposition 3 which concludes the
proof. �

9. Conclusions

We presented a cyber-physical hybrid model of leader-
less heterogeneous first-order oscillators, where global uni-
form asymptotic and/or finite-time synchronization is ob-
tained in a distributed way via hybrid coupling. More specif-
ically we establish that the synchronization set for the pro-
posed model enjoys uniform asymptotic practical stability
property. Thanks to the mild requirements on the coupling
function, the stability result was strengthened to a prescribed
finite-time property when the coupling function is discontin-
uous at the origin. Finally, we proved a useful statement on
scalar non-pathological functions, exploited here for the non-
smooth Lyapunov analysis in our main theorems. We believe
that this work demonstrates the potential of hybrid systems
theoretical tools to overcome the fundamental limitations of
continuous-time systems.

Future extensions of this work include addressing graphs
with cycles (not trees) and investigating the case with leaders
as done for a second-order Kuramoto model in (Bosso et al.
(2021a)). Additional challenges may include studying the
converse problem of globally de-synchronizing the network
(Franci et al. (2012)) via hybrid approaches.
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A. Appendix

Proof of Lemma 1: Let (i, j) ∈ E , x ∈ Di j and x+ satisfies
(4b). Then, θ+ = θ while q+ ∈ {−1,0, 1}m in view of (4).

Thus, x+ ∈ X and the first part of the statement is proved.
Let ∆θi j := θ j − θi , so that θ j − θi + 2qi jπ = ∆θi j + 2qi jπ.
Since x+ ∈ X , by definition of X in (3), |∆θi j |< 2π+ 2δ.

We now prove that |∆θ+i j +2q+i jπ|= |∆θi j+2q+i jπ|< π+δ
by exploiting the fact that q+i j = h∗ ∈ argmin

h∈{−1,0,1}
|∆θi j + 2hπ|

according to (4c), and splitting the analysis in five cases.

a) ∆θi j ∈ (−π,π). Then, the minimizer is h∗ = 0 and
|∆θi j + 2h∗π|< π < π+δ.

b) ∆θi j = π. Then, the minimizer is h∗ ∈ {−1,0} and
|∆θi j + 2h∗π| ≤ π < π+δ.

c) ∆θi j = −π. This case is identical to the previous one by
changing all the signs, therefore h∗ ∈ {0, 1} and |∆θi j +
2h∗π| ≤ π < π+δ.

d) ∆θi j ∈ (π, 2π+2δ]. Then, the minimizer is h∗ = −1 and
∆θi j + 2h∗π ∈ (−π, 2δ], which implies |∆θi j + 2h∗π| <
π+δ, since max(2δ,π)< π+δ.

e) ∆θi j ∈ [−2π − 2δ,−π). In this case, the minimizer is
h∗ = 1 and ∆θi j + 2h∗π ∈ [−2δ,−π), which implies
|∆θi j + 2h∗π|< π+δ, since 2δ < π+δ.

Hence, we obtain, in view of all the previous cases, |θ+j −θ
+
i +

2q+i jπ| ≤max(2δ,π)< π+δ thus concluding the proof since
we have arbitrarily selected (i, j) ∈ E . �
Proof of Lemma 2: Let i ∈ V , x ∈ Di and x+ = gi(x). Let
(u, v) ∈ E , in view of (5), if u 6= i and v 6= i the first equality
in (6) trivially holds. If u= i, then we have θ+v −θ

+
u +2q+uvπ=

θv −θu+ sign(θu)2π+2(quv − sign(θu))π= θv −θu+2quvπ.
Similarly, we obtain for v = i that θ+v − θ

+
u + 2q+uvπ = θv −

θu+2quvπ, thus proving the first equality in (6). On the other
hand, in view of (5b), |θ+i | = π − δ < π + δ. Thus, all the
elements of (6) are proved.

Let us now prove that x+ ∈ X . In particular, we need to
make sure that q+ ∈ {−1, 0,1}m. For any j 6= i ∈ V we have
that θ+j = θ j and |θ+i |= π−δ in view of (5b). Moreover, if j is
such that (i, j) ∈ E , then from (4a), (5d) we prove next that
qi j 6= −sign(θi). Indeed, if qi j = −sign(θi) then we would
have |θ j − θi + 2qi jπ| =

�

�θ j − sign(θi)|θi | − sign(θi)2π
�

� =
�

�θ j − sign(θi)(3π + δ)
�

� ≥ 2π > π + δ, meaning that x ∈
int(Di j) and consequently x 6∈ Di . Thus, qi j 6= −sign(θi) and,
in view of (5c), we obtain q+i j ∈ {0,−sign(θi)}. With a similar
reasoning, we conclude that if j is such that ( j, i) ∈ E then
we must have q ji 6= sign(θi), implying that q+ji ∈ {0, sign(θi)}
in view of (5c). Hence, x+ ∈ X . �
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