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Abstract

We propose an asymptotic position and speed observer for inertial navigation in the case where the position measurements are
sporadic and affected by noise. We cast the problem in a hybrid dynamics framework where the continuous motion is affected
by unknown continuous-time disturbances and the sporadic position measurements are affected by discrete-time noise. We show
that the peculiar hybrid cascaded structure describing the estimation error dynamics is globally finite-gain exponentially ISS with
gains depending intuitively on our tuning parameters. Experimental results, as well as the comparison with an Extended Kalman
Filter (EKF), confirm the effectiveness of the proposed solution with an execution time two orders of magnitude faster and with a
simplified observer tuning because our bounds are an explicit function of the observer tuning knobs.

Keywords: Localization, sampled-data observer, sporadic measurements, hybrid cascaded systems

1. Introduction

Inertial Navigation Systems (INS) Hamel and Mahony
(2006); Fossen (2011); Zhang et al. (2012) are gaining in-
creased popularity since they provide a conceptually simple an-
swer to the growing demand of location-based services.

A key aspect for providing safe and reliable autonomous nav-
igation is accurate localization. Indeed, position and veloc-
ity estimation using only accelerometers and GPS-like position
sensors is an active research field You et al. (2020); Han et al.
(2020); Yuan et al. (2021); Qi et al. (2020); Li et al. (2020).
Most INSs are based on a 9 Degrees of Freedom (DoF) Inertial
Measurement Unit (IMU). IMUs are indeed typically equipped
with three accelerometers for the acceleration measurements in
the body frame, three gyros for the measurement of the angu-
lar velocity vector, referred to as the Earth Centered Inertial
(ECI) frame, three magnetometers allowing for attitude esti-
mation. These sensors are commonly fused using the strap-
down method Woodman (2007); Zhang et al. (2012); Grip et al.
(2013): first transform the body frame accelerometer measure-
ments into inertial frame coordinates, using attitude measure-
ments coming from the estimation of the gravity vector fused
with the magnetometers and secondly perform an open-loop
double integration to estimate the vehicle position and speed.
Due to the noise and sensor biases combined with the open-
loop integration of the acceleration signals, drifts in the speed
and position estimates must be compensated. Therefore it is
well know that IMU-based INS work correctly for short time
windows and their behavior degrades rapidly with elapsing time
Grip et al. (2013).

To avoid the above-mentioned drift, extra position sensors

are typically required alongside the IMU. For example, LI-
DAR, odometry and/or vision systems are possible high-cost
equipment, both in terms of price and computational effort.
Odometry is also well-known to be prone for systematic errors
(due to sliding and uncertain wheel size), while vision systems
could fail in case of poor visibility conditions (darkness, fog,...).
For outdoor localization, where satellite signals are accessible,
Global Positioning System (GPS) devices are employed. While
GPS systems are based on Time-of-Flight (ToF) algorithms, for
indoor scenarios different techniques can be used, such as the
Received Signal Strength Indicator (RSSI) Feng et al. (2012)
and the Time Difference of Arrival (TDoA) measurements Li
et al. (2016). The recent surveys Liu et al. (2007); Yassin et al.
(2016) describe different technologies and methods for indoor
localization.

In this context, one key challenge is to fuse the inertial and
position measurements coming from various sensors imple-
menting different technologies and operating at different sam-
pling frequencies (see, e.g., the several works surveyed in Wang
and Tayebi (2020)). In this context, Vik and Fossen (2001)
presents one of the first nonlinear observers for GPS and IMU
sensor data fusion. In Zhao and Slotine (2005), based on con-
traction theory, a deterministic nonlinear observer is proposed,
which takes into account the sampled-data and sporadic nature
of the measurements, using additional velocity measurements
(not used in this paper). With velocity measurements, a non-
linear observer for inertial navigation is also proposed in Grip
et al. (2013). This last work was then extended to time-varying
observer gains in Bryne et al. (2014). Similar results relying
on velocity measurements are given in Fusini et al. (2014),
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which addresses position, velocity and attitude estimation for
Unmanned Aerial Vehicles (UAVs).

In this paper we propose a novel estimation strategy, ac-
counting for the sporadic nature of position-only measurements
(without velocity sensors) and characterizing the effects of
continuous-time process disturbances and discrete-time (sam-
pled) measurement noise. To rigorously represent this scenario,
in Section 2 we adopt the hybrid dynamical systems framework
of Goebel et al. (2012), which provides an effective and ele-
gant notation, in addition to a number of useful well-posedness
results. This hybrid framework has been already used for ob-
servers with sporadic measurements enjoying suitable direct
and reverse dwell-time constraints on the sampled-data mea-
surement occurrence Ferrante et al. (2016); Li et al. (2018);
Sferlazza et al. (2019); Ferrante et al. (2019), due to its suitabil-
ity for non-periodic sampled-data models. More recent works,
such as Bernard and Sanfelice (2022) handle even more chal-
lenging situations where the measurement do not satisfy direct
or reverse dwell-time constraints and covers, e.g., Zeno solu-
tions as a special cases. While those approaches can solve our
estimation problem, the explicit solution developed here takes
into account disturbances and noise and is specific to the INS
problem setting with an extra dynamical state that allows ex-
pressing the bounds on the exponential convergence rate of the
estimation error as a function of the tuning knobs of the pro-
posed observer. Indeed, the estimation error dynamics presents
a peculiar cascaded structure discussed in Section 3.2. Prelimi-
nary results in the direction of this paper have been published in
Sferlazza et al. (2020) where we did not take into account exter-
nal perturbations, nor studied the input-to-state stability proper-
ties of our scheme. Indeed, this work generalizes the exponen-
tial bounds of Sferlazza et al. (2020) and provides proofs that
were omitted in Sferlazza et al. (2020). Moreover, as compared
to Sferlazza et al. (2020), our main result stated in Section 3
better characterizes the impact of the observer gains on the ex-
ponential rate and ISS gains. Finally, Sferlazza et al. (2020)
did not provide experimental results, that we include here in
Section 4. We also provide a comparison with an Extended
Kalman Filter (EKF), which essentially boils down to being
a discrete Kalman filter (without any linearization) with open-
loop integration in-between samples for our specific dynamics.
It is well-known that EKF designs are associated with nonstrict
Lyapunov functions, so that our ISS bound would be nontrivial
to obtain with an EKF. Moreover, the persistence of excitation
required by the EKF is not required in our design, because it
is embedded in our ISS-based proofs. Finally, while compara-
ble performance is obtained with the EKF and our solution, on
the same hardware, the EKF execution requires a computational
time that is two orders of magnitude larger than our approach.

Notation: Rn is the n-dimensional Euclidean space. R≥0 is
the set of nonnegative real numbers. Z is the set of all inte-
gers, while N is the set of nonnegative integers. Iq is the iden-
tity matrix of dimension q ∈ N, 0q is a square matrix of di-
mension q ∈ N with all zero elements. λm(S ) and λM(S ) are,
respectively, the minimum and the maximum eigenvalues of a
symmetric matrix S . S3 is the 3-sphere S3. S O(3) ⊂ R3×3 is
the special orthogonal group of rotation matrices. x+ is the

state of a hybrid system after a jump. A> denotes the trans-
pose of a generic matrix A. |x| is the Euclidean norm of a
vector x ∈ Rn, while ‖ · ‖∞ denotes the infty norm of a vec-
tor x ∈ Rn. We consider hybrid dynamical systems as in
Goebel et al. (2012), whose solutions are defined on hybrid
time-domains. A subset E of R≥0×N is a compact hybrid time-
domain if E =

⋃ jm−1
j=0 ([t j, t j+1], j) for some finite sequence of

times 0 = t0 ≤ t1 ≤ · · · ≤ t jm , and it is a hybrid time domain
if for any (tm, jm) ∈ E, E

⋂
[0, tm] × {0, · · · , jm} is a compact

hybrid time domain. For a solution (t, j)→ x(t, j) (see (Goebel
et al., 2012, Definition 2.6)), we denote its domain as dom x.
For a flowing solution we use ẋ(t, j) = d

dt x(t, j) and for jumping
solution x+(t, j) = x(t, j + 1). B, and N denote the BODY and
NED (North-East-Down) reference frames, respectively.

2. Sporadic Position Measurements in an Inertial Naviga-
tion System

Consider the strap-down model of an Inertial Navigation Sys-
tem (INS) given by: (Bryne et al., 2014, Eq.s (2)-(3)):

v̇n = Rγb + g + d, (1)
ṗn = vn, (2)

where pn :=
[
px py pz

]>
∈R3 and vn :=

[
vx vy vz

]>
∈R3

are respectively the position and velocity vectors expressed in
N coordinates (x, y, z), g :=

[
0 0 g

]>
∈ R3 is the gravity

acceleration referred to the N-frame, d ∈ R3 is a disturbance
arising from unmodeled dynamics and unknown external per-
turbations, γb :=

[
γx γy γz

]>
∈ R3 is the acceleration mea-

surement provided by the IMU expressed in the B-frame, and
matrix t 7→ R(t) is a time-varying map from R≥0 to S O(3), rep-
resenting the (time-varying) rotation matrix from the B-frame
to the N-frame. The inertial model (1), (2) is obtained under
the assumption that the Earth angular velocity about the z-axis
of the Earth-Centered Inertial (ECI) frame is small, so that it
can be neglected (Grip et al., 2013, Remark 2).

The strap-down inertial navigation algorithm (Zhao and Slo-
tine (2005); Grip et al. (2013)) is not robust, because the speed
and the position vectors are obtained by open-loop integration
of the acceleration and this leads to drift problems. To solve
these observability problems, a position measurement is used,
provided by a Global Positioning System (GPS), for outdoor
navigation, or beacons, for indoor navigation. Consequently,
problems arise because these position measurements are avail-
able with a significantly lower sampling rate, as compared to the
IMU signals. Moreover the time between two consecutive po-
sition measurements is not constant, thus providing a so-called
sporadic position measurements situation Ferrante et al. (2019).
In order to formalize the above described setting, we assume in
this paper that no velocity measurement is available and that
the only output of system (1)-(2) is represented by the vector
y ∈ R3, only accessible at discrete instants of time, resulting in
a sequence of 3-dimensional vectors yk, k ∈ Z≥1, defined as:

yk = pn
k + nk := pn(tk) + n(k), (3)
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where nk ∈ R3 represents a bounded measurement noise and tk,
k ∈ Z≥1, is a sequence of increasing real numbers that satisfies
the following assumption:

Assumption 1. There exist scalars Tm and TM , with 0 < Tm ≤

TM , such that:

Tm ≤ tk+1 − tk ≤ TM , ∀ k ∈ Z≥1. (4)

Assumption 1 requires that the sporadic measurements yk be
available with intersample times lower and upper bounded by
positive constants Tm and TM , whose knowledge is not required
by our estimation algorithm. As a consequence, Assumption 1
is extremely mild, ruling out the defective cases of Zeno behav-
iors (because Tm is greater than zero) and of sporadic measure-
ments available at increasingly rare instants.

Assumption 2. The measurement noise n and the process dis-
turbance d are bounded. More precisely

‖d‖ := sup
t∈R≥0

|d(t)|<∞, ‖n‖ :=sup
k∈N
|n(k)|<∞. (5)

The bounds given in Assumption 2 are reasonable in practical
scenarios because n models bounded measurement noise, and d
may represent, among other things, a disturbance on the accel-
eration measurement due to the IMU bias, which is, generally,
bounded. A different setting often emerges when an indirect
velocity measurement is computed by open-loop integration of
the acceleration measurement. In this case, a bounded acceler-
ation measurement bias may result in an unbounded drift error
on the (indirect) velocity. Due to this reason, we avoid assum-
ing velocity measurements here.

Using the hybrid systems formalism of Goebel et al. (2012),
it is possible to represent the sampled-data system associated
with setting (1)–(3) as follows:

v̇n = Rγb + g + d,
ṗn = vn,

τ̇ = 1,
τ ∈ [0,TM], (6a)


vn+ = vn,

pn+ = pn,

τ+ = 0,
τ ∈ [Tm,TM], (6b)

y = pn + n, (6c)

where, the superscript ”+” has been defined in the notation sec-
tion, and timer τ is a state variable keeping track of the elapsed
time since the last measurement. Using the proof technique of
(Cai et al., 2008, Prop. 1), we obtain that the jump times of a so-
lution satisfy Assumption 1 if and only if the solution satisfies
the dwell-time logic enforced by state τ in (6). The flowing and
jumping specifications reported in (6a) and (6b) can be written
in terms of the so-called flow set C (where continuous motion
is allowed) and jump setD (where discrete motion is allowed),
defined as

(vn, pn, τ) ∈ C :=R3 × R3 × [0,TM], (7)

(vn, pn, τ) ∈ D :=R3 × R3 × [Tm,TM]. (8)

The impulsive nature of the measurement is represented by the
property that y= pn+n is only available at the jump times. Given
the setting above, we may now formalize the main goal of this
paper.

Problem 1. Given plant (6) with output y only available at the
sampling times tk, k ∈ Z≥1 satisfying Assumption 1 and sub-
ject to perturbation inputs satisfying Assumption 2, design an
asymptotic (hybrid) observer providing a continuous-time esti-
mate ( p̂n, v̂n) that exponentially converge to the states (pn, vn)
while ensuring a finite-gain ISS bound from ‖d‖ and ‖n‖.

3. Continuous-Discrete Observer Architecture

3.1. Observer dynamics
To solve Problem 1, we propose an observer providing an

asymptotic estimate of the plant state, for any sequence of sam-
pling times tk at which the sampled output is available, as long
as these times satisfy Assumption 1 for some (not known) val-
ues of 0 < Tm ≤ TM . Our observer dynamics does not depend
on Tm and TM and our tuning rules for the observer gains are
also independent of these two bounds. Nevertheless, we char-
acterize next (see, among other things, the discussion in Re-
mark 2) that the transient evolution of the estimation error and
the ensuing performance depend of Tm and TM .

The structure of the proposed hybrid observer is:
˙̂vn = Rγb + g,
˙̂pn = v̂n,

τ̇ = 1,
˙̃p = 0,

τ ∈ [0, TM], (9a)


v̂n+ = v̂n+(1−αv)

( y− p̂n− p̃
τ

)
,

p̂n+ = p̂n+(1−αp)(y − p̂n),
τ+ = 0,
p̃+ = αp(y − p̂n),

τ ∈ [Tm, TM], (9b)

where p̃ is an auxiliary “zero-order hold” state vector propa-
gating the last position correction term across the intersample
interval. Through this variable p̃, the intuition behind the cor-
rection term acting on the velocity estimate v̂n is that of an ap-
proximated speed error correction, well captured by the posi-
tion error divided by the elapsed time τ. More specifically, due
to the special structure of dynamics (6), the estimation error for
v is constant in-between samples (modulo disturbances), hence
it can be computed as the difference between the previous and
current position error over the inter-sampling time, which is the
intuition behind our sampled-data correction term. Finally, αv

and αp are two positive gains that may be tuned to suitably ad-
just the estimation error transient. Note that the measurement
y = pn + n is only used in the jump dynamics of our observer,
which is then compliant with the measurement constraints im-
posed by Assumption 1.

As compared to the architecture used in Alonge et al. (2019),
observer (9) considers a different jump map with an extra aux-
iliary state vector p̃. This extra state is necessary because,
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while Alonge et al. (2019) uses simultaneous speed and posi-
tion measurements, we only have position measurements and a
more sophisticated dynamic correction is required. Alternative
approaches for this estimation problem can be found in Ferrante
et al. (2019); Sferlazza et al. (2019), but they do not comprise
the additional state p̃, and their tuning is much more involved
due to the lack of an exponential decay guarantee related to the
observer gains (αp and αv in our case). Our solution is prefer-
able because it exploits the peculiar architecture of the system
to provide stronger guarantees.

Remark 1. Note that our observer (9) exploits the following
structure of plant (6):

ṗ = v, v̇ = ψ + d,

where signal ψ is available for measurement. Indeed, the pro-
posed estimation technique could be used in other applications
that share the same peculiar structure of the dynamics, where
the estimation error for v is constant in-between samples and
our peculiar sampled-data correction mechanism (based on a
sample-and-hold memory of the past position error) is effective.

y

3.2. Error Dynamics and Main Result
Following Problem 1, the main result of this work proves an

input-to-state stability bound on the estimation error using the
error variables

e :=
[
ev

ep

]
:=

[
vn

pn

]
−

[
v̂n

p̂n

]
, (10a)

ẽv := ep − p̃− τev, (10b)

and provides design rules to select the tuning gains αv and αp in
(9). Note that the error variables in (10) are carefully selected
in such a way that, due to the peculiar structure of dynamics
(6), in the absence of noise the set where these variables are
zero is forward invariant. In particular, the specific choice of ẽv

ensures that, when the estimation error is zero, then it remains
identically zero.

With the error variables (10), the error dynamics issued
from (6)-(9) comprises three subsystems, represented in Fig. 1,
whose three dynamics are singled out next, even though the
variable τ governing the jumps is the same for all of them. The
position estimation error dynamics can be written as:{

ėp = ev,
τ̇ = 1, τ ∈ [0,TM],{
ep

+ = αpep + (αp−1)n,
τ+ = 0, τ ∈ [Tm,TM],

(11)

The speed estimation error dynamics can be written as:{
ėv = d,
τ̇=1, τ ∈ [0,TM], ev

+ =αvev+
αv−1
τ

(ẽv + n),

τ+ =0,
τ ∈ [Tm,TM].

(12)

Finally, the dynamics of ẽv is governed by:{
˙̃ev =−τd,
τ̇=1, τ ∈ [0,TM],{
ẽv

+ =−n,
τ+ =0, τ ∈ [Tm,TM].

(13)

Figure 1: Block diagram of the speed and position estimation error
dynamics.

Intuitively speaking, and with reference to Fig. 1, the mea-
surement noise n impulsively affects all three subsystems at the
measurement instants (jumps), while the process disturbance d
affects the continuous dynamics of the two upper subsystems.
The overall dynamics shows a cascaded structure, where, in the
absence of noise, the upper subsystem (13) converges to zero in
finite time at the first measurement instant; the middle subsys-
tem (12) provides a constant continuous-time behavior in the
inter-measurement periods and a discretely converging dynam-
ics (tunable by adjusting αv) at the measurement instants, per-
turbed by input ẽv. Finally, the third subsystem (11) provides
a constant continuous-time behavior perturbed by the velocity
error ev in the inter-measurement periods, and a discretely con-
verging dynamics (tunable by adjusting αp) at the measurement
instants. The error dynamics (11)-(13) satisfies the hybrid ba-
sic assumptions of (Goebel et al., 2012, Ass. 6.5), indeed the
flow and jump sets are closed and the flow and jump maps are
continuous in these respective sets.

With error dynamics (11)-(13) our main contribution is to
prove an exponential ISS bound where we clarify the role of
the tunable observer gains αp and αv in (9), thereby providing a
solution to Problem 1.

Theorem 1. Given plant (1)-(2) with outputs (3) available at
measurement times tk, k ∈ N satisfying Assumption 1, there
exist κ>0 and λ>0 such that all solutions to (11)-(13) satisfy:[

ev(t, j)
ep(t, j)

]
≤κe−λt

∣∣∣∣∣∣∣∣
ev(0, 0)
ep(0, 0)
ẽv(0, 0)


∣∣∣∣∣∣∣∣+κ‖d‖+κ‖n‖, (14)

if and only if the gains αp and αv satisfy |αp| < 1 and |αv| < 1.
Moreover, there exist positive constants γ and η, independent
of αp and αv, such that, for any αp ∈ [0, 1) and αv ∈ [0, 1) all
solutions satisfy

|ep(t, j)| ≤
αt/TM

p

αp
|ep(0, 0)| +

TMα
t/TM
v

(1 − αp)αv

(
|ep(0, 0)| +

|ẽv(0, 0)|
Tm

)
+

TMγ

(1 − αp)(1 − αv)
‖d‖ + (η + 1)‖n‖, (15)

|ev(t, j)| ≤
αt/TM

v

αv

(
|ev(0, 0)| +

|ẽv(0, 0)|
TM

)
+

γ

1 − αv
‖d‖ + η‖n‖.

(16)
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Remark 2. While the necessary and sufficient conditions of
Theorem 1 provide a complete characterization of the estima-
tion error dynamics stability, the case of practical interest is
αp ∈ [0, 1) and αv ∈ [0, 1), because it avoids oscillatory behav-
ior. This case is associated with bounds (16)-(15), providing
insight for tuning parameters αp and αv and clarifying how the
sporadic measurements, as characterized by the minimum and
maximum inter-sample times Tm and TM , affect the localization
performance. In particular, first note that the terms αt/TM

α
provide

exponential decrease proportional to λ = −
log(α)

TM
> 0 (positive

because α < 1) because αt/TM

α
= 1

α
e−λt. Then, choosing a smaller

αp or αv increases the speed of convergence, but also increases
the overshoot, due to the term α at the denominator. A further
negative effect occurs with α too large: in addition to slowing
down the transient, it undesirably increases the gain from ‖d‖
and the cascade gain from |ev| to |ep|. In our experiments we
select αv = αp = 0.5, providing a desirable trade off. y

For proving Theorem 1 we establish input-to-state stability
(ISS) Cai and Teel (2009) of the three subsystems of Fig. 1,
corresponding to dynamics (11), (12) and (13). In our setting,
we may simplify the definitions of Cai and Teel (2009) because
our jump and flow sets only depend on the timer τ and our so-
lutions satisfy a dwell-time condition, namely each pair of con-
secutive jumps is at least Tm continuous-time units apart (see
Assupmtion 1). We may then introduce{

ẋ = f (x, u),
τ̇ = 1, τ ∈ [0,TM]{
x+ = g(x, u),
τ+ = 0, τ ∈ [Tm,TM],

(17)

where f and g are respectively the flow map and the jump map,
functions of the state x and the input u (according with the no-
tation presented in Goebel et al. (2012)), whose solution pairs
((x, τ), u) share the same hybrid time domain dom(x)=dom(u).
We say that system (17) is finite gain-exponentially input-to-
state stable with respect to u if there exist positive scalars κ, λ
and γ such that any solution pair of (17) satisfies

|x(t, j)| ≤ κe−λt |x(0, 0)| + γ‖u‖, ∀(t, j) ∈ dom x. (18)

We first provide three technical lemmas, each of them estab-
lishing ISS of the three subsystems (11), (12) and (13), whose
proofs are postponed to Section 3.3 to avoid breaking the flow
of the exposition.

Lemma 1. If αp satisfies |αp| < 1, then the position estimation
error dynamics (11) is finite-gain exponentially ISS with respect
to ev and n. Moreover, when αp ∈ [0, 1) all solutions satisfy

|ep(t, j)| ≤
αt/TM

p

αp
|ep(0, 0)| +

TM

1−αp
‖ev‖ + ‖n‖, (19)

for all (t, j) ∈ dom ep.

Lemma 2. If αv satisfies |αv| < 1, then the velocity estimation
error dynamics (12) is finite-gain exponentially ISS with respect
to ẽv, d and n. Moreover, when αv ∈ [0, 1) all solutions satisfy

|ev(t, j)| ≤
αt/TM

v

αv
|ev(0,0)| +

TM

1−αv
‖d‖ +

1
Tm

(
‖ẽv‖+ ‖n‖

)
, (20)

for all (t, j) ∈ dom ev.

Lemma 3. The ẽv dynamics (13) is finite-gain exponentially
ISS with respect to d and n. In particular, for any α̃ ∈ (0, 1)
all solutions satisfy

|ẽv(t, j)| ≤
α̃t/TM

α̃
|ẽv(0, 0)| + T 2

M‖d‖ + ‖n‖, (21)

for all (t, j) ∈ dom ẽv.

With these lemmas we are now ready to prove Theorem 1.
Proof of Theorem 1 Let us first prove necessity of |αp| < 1 and
|αv| < 1. Assume that either of them does not hold and focus on
the corresponding subsystem (11) or (12) taking a zero initial
condition for the preceding subsystem in the cascade connec-
tion of Fig. 1, and considering the case when d = n = 0. The
corresponding dynamics coincides with (17) with f (x, u) = 0
and g(x, u) = αx, where |α| ≥ 1. This clearly generates non
converging solutions, thus proving that an exponential bound
cannot hold. The sufficiency follows by simply concatenating
the exponential.

Now we prove the second statement with αp ∈ [0, 1) and αv ∈

[0, 1). Concatenating (20) and (21) with α̃ = αv, we get

|ev(t, j)| ≤αv
t/TM

αv

(
|ev(0, 0)| + 1

Tm
|ẽv(0, 0)|

)
+

+
(

TM
1−αv

+ TM
2

Tm

)
‖d‖ + 2

Tm
‖n‖, (22)

which implies (16) with γ = TM

(
1 + TM

Tm

)
and η = 2

Tm
(ensuring

( TM
1−αv

+ TM
2

Tm
) ≤ γ

1−αv
for any αv ∈ [0, 1)).

Once (16) is proven, we can plug it into (19) to get (15),
which completes the proof. �

3.3. Proofs of Lemmas 1, 2 and 3.
Proof of Lemma 1 Consider any state-input solution pair(
(ep, τ), (ev, n)

)
of (11), and any (t, k) ∈ dom(ep). Since τ̇ = 1

and the flow set requires τ ≤ TM , we have that t − tk ≤ TM ,
therefore∣∣∣ep(t, k)

∣∣∣ ≤ |ep(tk, k)| + (t − tk)‖ev‖∞

≤ |ep(tk, k)| + TM‖ev‖∞, ∀t ∈ [tk, tk+1]. (23)

In particular, when selecting (t, j−1) ∈ dom(ep) such that t = t j,
we may apply (23) with (t, k) = (t j, j − 1) to get∣∣∣ep(t j, j − 1)

∣∣∣ ≤ |ep(t j−1, j − 1)| + TM‖ev‖∞. (24)

We continue the proof for the case αp>0 because similar steps,
with less strict exponential bounds, can be followed for αp<0.
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Moreover, at each jump time t j, j ≥ 1, we may use the jump
equation in (11), combined with (24), to get∣∣∣ep(t j, j)

∣∣∣≤αp|ep(t j, j−1)| + |αp−1|‖n‖∞
≤αp|ep(t j−1, j−1)|+αpTM‖ev‖∞+(1−αp)‖n‖∞.

By iterating recursively the above inequalities, we obtain for
any (t, j) ∈ dom(ep):∣∣∣ep(t, j)

∣∣∣ ≤ |ep(t j, j)| + TM‖ev‖∞

≤α
j
p

∣∣∣ep(t0, 0)
∣∣∣ +

∑ j
i=0 α

i
pTM‖ev‖∞

+
∑ j

i=1 α
i
p(1−αp)‖n‖∞

≤|αp|
j
∣∣∣ep(0, 0)

∣∣∣ +
(∑∞

i=0 α
i
p

) (
TM‖ev‖∞

+ (1−αp)‖n‖∞
)

=α
j
p

∣∣∣ep(0, 0)
∣∣∣ + TM

1−αp
‖ev‖∞ + ‖n‖∞, (25)

where we used t0 = 0 and the sum in the next to last line con-
verges because 0 < αp < 1 by assumption.

Due to the fact that solutions to (11) are forced to jump
when τ = TM , it holds for (t, j) ∈ dom(ep) that j ≥ t

TM
−1. As

a consequence we have α j
p ≥

α
t/TM
p

αp
, where we considered the

hypothesis 0 < αp < 1. By substituting this last inequality in
(25), the ISS bound (19) is proven. �

Proof of Lemma 2 Consider any state-input solution pair
(
(ev, τ),

(ẽv, d, n)
)

to (12), and any (t, k) ∈ dom(ev). Since ėv = d and
τ̇ = 1 along flows, and the flow set requires τ ≤ TM , we have
that t − tk ≤ TM , therefore we have:

|ev(t, k)| ≤ |ev(tk, k)| + (t − tk)‖d‖∞
≤ |ev(tk, k)| + TM‖d‖∞. (26)

Similar to Lemma 1 we focus on the case αv > 0, because
αv < 0 is associated with equivalent derivations. Moreover, at
each jump time t j, j ≥ 1, we may use the jump equation in (12),
combined with (26), and the fact that jumps cannot occur unless
τ ≥ Tm, to get∣∣∣ev(t j, j)

∣∣∣ ≤ αv|ev(t j, j − 1)| + 1−αv
Tm

(
‖ẽv‖∞ + ‖n‖∞

)
≤ αv|ev(t j−1, j − 1)| + αvTM‖d‖∞

+
1−αv
Tm

(
‖ẽv‖∞ + ‖n‖∞

)
.

By iterating the above inequalities, we obtain:

|ev(t, j)| ≤ |ev(t j, j)| + TM‖d‖∞
≤ α

j
v |ev(t0, 0)| +

∑ j
i=0 α

i
vTM‖d‖∞

+
∑ j

i=1 α
i
v

1−αv
Tm

(
‖ẽv‖∞ + ‖n‖∞

)
≤ α

j
v |ev(0, 0)| +

(∑∞
i=0 α

i
v

) (
TM‖d‖∞

+
1−αv
Tm

(‖ẽv‖∞ + ‖n‖∞)
)

= α
j
v |ev(0, 0)| + TM

1−αv
‖d‖∞

+ 1
Tm

(
‖ẽv‖∞ + ‖n‖∞

)
,

where we used t0 =0 and the sum in the next to last line con-
verges because |αv|< 1 by assumption. The proof is completed
as in Lemma 1 to obtain bound (20). �

Proof of Lemma 3 Let us first concentrate on the (possibly zero-
length) flowing interval t1 − t0, to get

|ẽv(t, 0)| ≤ |ẽv(0, 0)| +
∫ t

t0
τ(s, 0) |d(s, 0)| ds

≤ α̃t/TM

α̃ |ẽv(0, 0)| + TM
2‖d‖,∀t ∈ [t0, t1] (27)

where the first term comes from t − t0 = t ≤ TM , namely t
TM
−

1 ≤ 0 and then α̃
t

TM
−1
≥ 1, while the second term comes from

t1 − t0 ≤ TM and |τ| ≤ TM .
Furthermore, from (13), at each jump time (t j, j), j ≥ 1, we
have

∣∣∣ev(t j, j)
∣∣∣ ≤ ‖n‖, which may be used to follow similar steps

to those in (27) to get

|ẽv(t, j)| ≤ ‖n‖ + TM
2‖d‖, ∀(t, j) ∈ dom ẽv, j ≥ 1.

Combining the bound above with (27), we obtain bound (21),
as to be proven. �

4. Experimental validation

4.1. Description of the experimental set-up

The setup, to verify experimentally the proposed observer, is
represented in Fig. 2, and consists of the following parts.

The localization system: comprising four fixed beacons
(shown at the top-left of Fig. 2) and a mobile beacon mounted
on the object to be tracked (top-right of Fig. 2). The beacon
hardware is based on a DW1000 IC from Decawave, a single
chip IEEE802.15.4-2011 UWB compliant device with internal
high precision counter for ToF measurements. Each beacon is
equipped with a micro-controller.

The IMU: a LSM9DS1 ST Microelectronics chip that inte-
grates 3 acceleration channels, 3 angular rate channels and 3
magnetic field channels with MEMS technology.

The processing unit: comprising a Raspberry Pi3 core that
runs compiled C code generated by the Matlab/Simulink coder,
with a 100Hz sampling frequency. The board is based on an
ARM Cortex-A53, a 4-CPU 64bit processor running at 1.2Ghz
communicating over an I2C bus and a WiFi connection.

The positioning system: a Smart Six-1.4 Comau industrial
robot arm, with the mobile beacon placed on the plate secured
at the end effector (see the top-right of Fig. 2). The robot im-
poses a trajectory on the scene, and provides an extremely ac-
curate (encoder-based) position/speed measurement, with a re-
peatability of 0.05 mm. This accurate position measurement
(called “real position/speed” in the following) is not to be used
by the observer (except for the illustrative noise-free tests de-
scribed below), but is used as a ground truth for accurately com-
puting the estimation error and providing an assessment of the
observer performance. The robot communicates with the Pro-
cessing Unit through a wireless UDP.
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Figure 2: Photo of the experimental setup: (a) fixed beacon, (b) mobile
plate to be tracked, (c) indoor scenario.

Figure 3: Reference position trajectory.

4.2. Experimental Results

The experimental test consists in actuating the robot in such
a way that the plate secured at the end effector tracks a 3D path
as in Fig. 3. This link shows a video of the experimental setup:
https://www.youtube.com/watch?v=5Z6GOh5jb98. In order to
assess the effectiveness of the proposed observer, two tests have
been carried out, both of them based on the same experimental
trajectory of the plate.
• Test 1: Noise Free: The first test (Test 1) exploits sampled ver-
sions of the accurate (noise free) position measurements pro-
vided by the robot internal controller to run the observer in a
noise free scenario (the noisy beacons are not used in this first
test). This assesses the observer behavior in a noise-free sce-
nario.
• Test 2: Noisy scenario: The second test (Test 2) runs the ob-
server by only using the IMU data and the noisy position mea-
surements provided by the beacons. The large noise levels of
this test allow validating the ISS bounds established in Theo-
rem 1. In this case the noise free position measurements pro-
vided by the robot internal controller are only used to compute
the estimation error a posteriori.

For both tests we focus on sporadic position measurements
compliant with Assumption 1 with elapsed time between two
consecutive measurements between Tm = 0.3s and TM = 0.7s,
as shown in Fig. 4. For both tests we tune the observer gains

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

Figure 4: Evolution of the timer variable τ illustrating the interval be-
tween each pair of consecutive sampled position measurements.
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Figure 5: Real and estimated positions for Test 1 and Test 2.

as αp = αv = 0.5. Finally we also compare the proposed esti-
mation algorithm with the Extended Kalman Filter (EKF) pro-
posed in (Wang and Tayebi, 2020, Algorithm 1) tuned using

GtVG>t =

[
I3 03

03 0.5I3

]
, At=

[
03 03

I3 03

]
, P0=I6, NtkQNtk

>=0.5I3, (for

the symbols, the reader is referred to Wang and Tayebi (2020)),
which allow obtaining a similar settling time to the one of our
observer, for a meaningful comparison. We emphasize that the
EKF solution provides a sound means of comparison but is not
associated with the same guarantees as our design, first of all
because EKF constructions require proving a persistence of ex-
citation property that is automatically guaranteed by our ISS-
based proof, and secondly because the non-strict certificates as-
sociated with EKF designs make it hard to extend the obtained
bounds to also certify ISS, a property that is instead certified
by our bounds, with the additional advantage that the provided
bounds are explicit functions of our observer parameters αp, αv.
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Figure 6: Real and estimated velocities for Test 1 and Test 2.

The results of both tests are shown in Figs. 5 and 6, where
the accurate measurements (the “real”, ground truth position
and speed) based on the robot encoders are shown in black, and
the estimated positions and velocities in the x,y and z directions,
as obtained from observer (9) and the EKF of Wang and Tayebi
(2020), are shown by the colored curves. It is apparent that the
estimated variables exponentially converge to the correspond-
ing state variables. Note that the “real” measurements appear
very smooth because their accuracy (0.05 mm) is two orders
of magnitude smaller than the resolution of our plots. Fig. 7
shows, in logarithmic scale, the position and speed estimation
errors for Test 1 and Test 2, when using our observer and the
EKF solution of Wang and Tayebi (2020) with a different ini-
tial condition associated with a larger initial estimation error.
In this case, the logarithmic scale helps best appreciating both
the transient and the steady-state errors. The hybrid nature of
the estimation is clearly visible in Fig. 7, especially during the
initial transient. Indeed, the velocity estimation error is con-
stant during flowing, and decreases across jumps, as expected
from the theoretical results, while the position estimation error
verifies the ISS bound (19) proven in Lemma 1. The compari-
son between the blue and red curves of Fig. 7 reveals that Test
2, where the observer (9) operates based on the noisy beacon
measurements, is associated to significantly larger steady-state
estimation errors.

The comparison with the EKF of (Wang and Tayebi, 2020,
Algorithm 1), reported in Figs. 5, 6 and 7, shows that both
method are valid and exhibit similar performance, in terms of
filtering capability. This performance equivalence is quanti-
tatively confirmed by the quantities reported in Table 2, rep-
resenting the Integral Absolute Error (IAE) indexes computed

Proposed Observer EKF
prediction-phase 0.25µs 68µs

measurement-update 0.5µs 92µs

Table 1: Execution time with the proposed hybrid observer and EKF.

both during the transient IAE := 1
t1

∫ t1
0 |e(t)|dt and at the steady-

state: IAE := 1
t2−t1

∫ t2
t1
|e(t)|dt, with t1 = 6s and t2 = 60s. For

completeness the Integral Time Absolute Error (ITAE) index is
shown as well in the same table.

While the performance is comparable, the significant advan-
tage of our observer is found when evaluating the computational
effort required by both algorithms. Indeed, the execution time
with our observer is two orders of magnitude less than the EKF
which makes our solution especially appealing when using low-
cost hardware. In particular, for a precise and reliable measure-
ment of the execution times, the two algorithms have been im-
plemented on a Texas dual-core DSP board (TMS320F28379D)
design and optimized for real-time control applications, which
has a core devoted to (and optimized for) floating point opera-
tions. Focusing on the floating point core, we were thus able to
measure the algorithms execution times excluding all the sup-
porting tasks (executed by the second core). The comparative
results are reported in Table 1 where a significant advantage
amounting to more than two orders of magnitude is associated
to our application-oriented design. This makes our solution ex-
tremely more desirable for situations where low-cost hardware
is employed and execution time becomes a cost-sensitive pa-
rameter. In addition to this advantage, we recall that the gain
tuning for our observer is intuitive and straightforward, due to
the explicit effect of gains αp, αv on our ISS bounds. Such
a simple description is not available for the EKF. Indeed, the
persistence of excitation properties, necessary to prove conver-
gence of the EKF, depends on the specific trajectory under con-
sideration (see Huang and Wang (2014); Gaspar and Oliveira
(2014) for a more detailed discussion on this aspect). While the
error dynamics associated with our application certainly guar-
antee that property for any trajectory, there is not need to prove
this fact with our approach, because we explicitly derive an ISS
bound exploiting the (unknown) upper and lower bounds on the
inter-sample interval length. We also emphasize that ISS-based
proofs are generally hard to obtain with EKF certificates, due
to the non-strict Lyapunov functions typically associated with
EKF analysis tools.

On the other side one benefit of the EKF is its ability to pro-
vide diagnostics coverage in a real-world setting. An observer
designer choosing to use an EKF has access to the covariance
matrix in addition to the measurement residuals, to note what
sensors are the most or least reliable. With the algorithm pro-
posed in this paper, the designer can only rely on the mea-
surement residuals. However, this consideration holds only if
the EKF covariance matrices are perfectly known and this is a
strong requirement, because the second order statistics of the
stochastic processes affecting both the measurements and the
dynamics are difficult to determine.

Finally, Fig. 8 shows the estimation errors ep, ev for differ-
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Figure 7: Position errors ep and velocity errors ev in Test 1 and Test 2.

ent values of αp and αv during Test 2 (when using the beacon
measurements). As one may expect from bounds (15)-(16), the
closer αp and αv are to zero, the higher the convergence rate
of the estimation error. But the higher convergence rate comes
at the price of a reduced filtering action on the measurement
noise. The choice of αp and αv should then be carried out as
a trade-off between these two goals. Note that the convergence
rate is influenced by the parameters Tm and TM of the sporadic
measurements, as highlighted in Fig. 9, even through the ob-
server dynamics does not require their knowledge. Instead, the
increased overshoot predicted by (15)-(16) and commented in
Remark 2 cannot be appreciated in the experimental tests.
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Figure 8: Position and speed errors for different values of αp and αv.

5. Conclusions

We proposed a hybrid observation scheme based on a dy-
namic augmentation to cope with position-only sporadic mea-
surements for inertial navigation. We established finite gain ISS
from disturbance inputs and sensor noise to the estimation er-
ror. Our ISS bound allows for convenient tuning of the observer
gains, which appear explicitly in the bound coefficients.
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Figure 9: Position and speed errors for different values of Tm and TM .

Test 1 ep ev

IAETR IAES S IT AE IAETR IAES S IT AE

HYBRID 3.897 1.717 0.107 11.92 3.728 0.2845
EKF 3.558 1.517 0.092 12.71 4.257 0.3085

Test 2 ep ev

IAETR IAES S IT AE IAETR IAES S IT AE

HYBRID 4.616 7.933 0.223 12.94 10.1 0.419
EKF 5.203 7.709 0.235 13.26 7.232 0.3726

Table 2: Steady-state and transient IAE and ITAE indexes for ep and
ev.

Experiments comparing our solution with a classical EKF
show that our observer achieves similar filtering capabilities
with a lower computational effort by two orders of magnitude,
in addition to being associated with ISS guarantees that are typi-
cally hard to obtain with EKF constructions. As a consequence,
the proposed solution is attractive when using low-cost hard-
ware.
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