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Nonlinear modeling and feedback control of
boom barrier automation

Daniel Cunico, Angelo Cenedese, Luca Zaccarian and Mauro Borgo

Abstract— We address modeling and control of a gate
access automation system. A model of the mechatronic
system is derived and identified. Then an approximate
explicit feedback linearization scheme is proposed, which
ensures almost linear response between the electronic
driver duty cycle input and the delivered torque. A non-
linear optimization problem is solved offline to generate
a feasible trajectory associated with a feedforward action
and a low level feedback controller is designed to track it.
The feedback gains can be conveniently tuned by solving a
set of convex linear matrix inequalities, performing a multi-
objective trade-off between disturbance attenuation and
transient response. The proposed control strategy is tested
on an industrial device. The experiments show that it can
effectively meet the requirements in terms of robustness,
load disturbance rejection and tracking performance.

Index Terms— Mechatronic industry, motion control, tra-
jectory tracking, linear matrix inequalities

I. INTRODUCTION

Due to the increasing global industrial competition, the
mechatronic industry is facing increasing challenges for
achieving extreme performance and reliability even with low-
cost devices that require integration of mechanical, electronic,
and information disciplines [1]. Among these applications,
access automation requires increasingly sophisticated control
solutions to compensate for the nonlinear effects of low-
cost devices. Access automation systems are used in several
residential or public areas to prevent unwanted access or to
regulate traffic flow [2], [3]. An active industrial research area
deals with the performance and quality improvement for such
systems, while lowering the manufacturing costs and the power
consumption.

The standard control techniques are those typical of elec-
tromechanical motion systems [4]–[7] comprising two hier-
archical levels: a trajectory planner generates the desired
reference, taking into account the nonlinear dynamics and the
constraints; a linear error feedback reduces the deviation of the
actual trajectory from the desired reference. The current indus-
trial practice for parameter tuning is based on running several
experimental tests and adjusting certain PID gains via trial and
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Fig. 1. The boom barrier experimental system.

error, until acceptable results are obtained, thus requiring much
time and man power from the technical department. Moreover,
the low-cost servomotor pack has nonlinear behavior that is
not modeled and only partially understood. Such nonlinear
effects may cause undesired oscillations in the opening phase,
and possible violent impacts at the end of stroke.

In this paper, we focus on the modeling and control of
a road automatic barrier represented in Fig. 1. The original
contributions of this work are highlighted next. 1) First we
derive and experimentally validate a nonlinear mathematical
model of the underlying unidirectional power converter, the
electrical motor and the mechanical transmission moving the
load by well representing the interplay of mechanical and
electrical components (the mechatronic device). 2) Secondly,
we propose an approximate feedback inversion scheme, whose
effectiveness is proven by relying on formally certified interval
arithmetic combined with formal Taylor expansion (thanks to
the Coq Interval tactic [8]): through this scheme, we include a
feedback linearizing pre-compensator, precisely characterizing
the state-dependent saturation values of the virtual input pro-
portional to the exerted voltage. 3) Thirdly, based on this feed-
back linearizing structure we propose a feedforward/feedback
architecture, whose feedforward term is generated through the
minimization of a nonlinear functional cost under constraints,
and the feedback term is conveniently tuned via a linear
matrix inequality (LMI) formulation [9]. The LMI constraints
allow us to optimize a disturbance rejection performance under
uncertain model parameters, while constraining the closed-
loop poles in a suitable region of the left half-plane [10]
to induce a suitable transient response. 4) Fourth, rigorous
statements certify the effectiveness of our scheme in terms
of stabilization of the error dynamics and feasibility of our
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LMIs. 5) Lastly, and most importantly, experimental results on
the industrial device confirm the effectiveness of the proposed
strategy, which induces regular (no oscillations) and fast
barrier opening, despite the system nonlinear dynamics and
uncertain parameters. Beyond the performance improvement
in the specifically considered application, the approach is
of general interest and it can be easily extended to many
similar applications that use the same control electronics.
Some technological details are omitted and all the units of
measure are normalized in the experimental results for reasons
of confidentiality. However, the proposed design strategy is
fully parametric and has been tested successfully with many
different parameter selections.

The paper is organized as follows. In Section II the ex-
perimental setup is described and the closed-loop goals are
clarified. In Section III the mathematical modeling of the
road barrier gate is derived, considering all the mechatronic
components. In Section IV the augmented plant model and
the parameter identification procedure are illustrated. Section
V describes the electrical drive and the feedback linearization
method. In Section VI the control architecture is presented and
an LMI based tuning procedure is proposed. Experimental tests
are discussed in Section VII. Concluding remarks are reported
in Section VIII.

II. SYSTEM DESCRIPTION AND GOALS

The considered mechatronic system can be represented as
sketched in Fig. 2. The electronic parts are the power source
circuit and the driver of the motor. A DC motor converts
electrical energy into mechanical energy and produces the
torque required to move the load with the desired output
angular speed. The torque is transmitted through a gearbox
to the mechanical system. Two main elements compose the
mechanics of the automatic road barrier: a bar that rotates
about one of its ends, and a spring-damper system used to
compensate for the weight of the bar. The sensor devices
represent the part related to the data acquisition system, i.e.
the group of sensors and transducers with their conditioning
circuits. In the present case study, the acquired measurements
are the motor speed ωm and the motor current ia. The elec-
tronic, gearmotor and mechanical subsystems together with
the sensors form the so-called augmented plant. Finally, the
embedded control software produces the duty cycle δ of a
PWM signal to control the actuator with precise timing.

The main problems and goals regarding the control of this
application can be summarized in the following points:

1) (Limitations) The low-cost electronic board does not
allow exerting a motor torque/current in the braking
direction. Therefore, the braking phase is often slow and
the system only decelerates due to the action of friction.

2) (Safety) The gate opening maneuver must end with a
sufficient low speed at the mechanical stop in order to
avoid damaging the device.

3) (Performance) The gate opening should be regular (with-
out oscillations) and fast.

In addition to the aims defined above, the controller should
be robust with respect to possible slow unmodeled dynamics,
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Fig. 2. Blocks diagram of a common mechatronic system.

small delays in the loop, quantization effects, variations related
to environmental conditions and aging. Finally, the proposed
control strategy must be easy enough to be implemented in
the micro-controller unit of the industrial device, which has
limited computational capacity.

III. MODELING

A. Electric motor
A brushed DC electric motor exerts the torque on the

mechanical subsystem. The DC motor dynamic model is well
known in the literature [11]. The electrical equation is:

ua(t) = Raia(t) + La
dia(t)

dt
+ ea(t), (1)

where ua(t) is the terminal voltage, ia(t) is the armature
current, Ra is the armature winding resistance, La is the
phase inductance and ea(t) is the back electromotive force
(BEMF). The BEMF and the torque exerted at the motor shaft
correspond to

ea(t) = ktωm(t), (2)
τm(t) = ktia(t), (3)

where kt is the torque constant and ωm is the mechanical speed
of the motor. Note that the two constants in eq. (2) and eq. (3)
coincide because of the balance between the input electrical
power and the output mechanical power.

B. Mechanical system
The mechanical subsystem of the automatic road barrier,

represented in Fig. 3, is composed by two main elements:
1) a bar rotating about one of its ends (the point O), assumed
to be an ideal rod of length la and mass ma, whose angular
position with respect to the x-axis in Fig. 3 is described by
the angle θ.
2) a spring-damper of natural length ls,0 and spring constant
ks, with one of its ends connected to the bar through a lever
of length l`. The lever element is fixed to the bar in O,
thus forming with it a constant angle ϕ. The damper element
produces a force proportional to the velocity, according to
the viscous coefficient bs, allowing for the stabilization of the
entire mechanical system.

Furthermore, it is possible to pre-compress the spring of a
length s0 in order to calibrate the resulting force. Typically
s0 is tuned in such a way that the entire system be at the
equilibrium when θ = θe = π/4. We assume that the mass
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Fig. 4. Main components of the torque τr(θ) in (4b). The spring is
pre-compressed of a length s0 so that θe = π/4.

of the spring and of the lever are negligible. From geometric
considerations, we obtain the following expressions for the
angle α(θ) of the lever w.r.t. the x-axis, the length ls(θ) of
the spring and the compression s(θ) of the spring:

α(θ) = π − ϕ− θ,

ls(θ) =
√
d2 + l2` − 2d l`cos (β + α(θ)),

s(θ) = ls,0 − ls(θ) + s0.

Following the notation used in Fig. 3, the inertia and the
friction of the mechanical load are

Ja =
1

3
mal

2
a, b(θ) = bs

l`d

ls(θ)
sin (β + α(θ)) , (4a)

and the reaction torque exerted by the rod at the hinge
corresponds to

τr(θ) = −kss(θ)
l`d

ls(θ)
sin (β + α(θ))︸ ︷︷ ︸

spring torque

+
g

2
malacos(θ)︸ ︷︷ ︸

bar torque

. (4b)

Fig. 4 shows the evolution of the overall external torque τr
as a function of the angle θ. The first and the second term
at the right-hand side of equation (4b) are respectively the
spring and bar contributions to the torque, tuned to generate
an equilibrium point at θ = θe.

C. Mechanical transmission
The mechanical transmission consists of a gear train system.

The gearbox is modelled by means of the classical mechanical
approach assuming rigid coupling [12]. In an ideal transmis-
sion, i.e. under the assumption of lossless power transfer,

TABLE I
PARAMETERS OF MODEL (8), (9).

Symbol Name Defined in

Ra Armature resistance [Ω] eq. (1)
La Armature inductance [H] eq. (1)
kt Torque constant [Nm/A] eq. (3)
Ng Gear ratio eq. (5)
η Gear efficiency eq. (6)
bmg Gearmotor viscous friction [Nms] eq. (7)
Jmg Gearmotor inertia [Kgm2] eq. (7)
Ja Rod inertia [Kgm2] eq. (4a)
b Nonlinear spring damping [Nms] eq. (4a)
τr Reaction torque [Nm] eq. (4b)
τc Coulomb friction torque [Nm] eq. (9)

denoting by ω(t) = θ̇(t) the speed at the output of the gear,
we have that:

ω =
r1

r2
ωm = Ngωm, θ = Ngθm (5)

where r1 and r2 are the gear wheels radii and Ng is the
transmission gear ratio. A better description is achieved by
considering an efficiency η < 1 of the transmission gear, and
characterizing load torque τ` as

τ`(θm(t), ωm(t)) = τr(Ngθm(t))
Ng

η
+ τcsign(ωm(t)), (6)

where τr is defined in eq. (4b) and τc represents the Coulomb
friction torque [13]. The resulting mechanical equation of the
system is

τm(t) = Jtot
dωm(t)

dt
+ btotωm(t) + τ`(θm(t), ωm(t)) (7)

Jtot = Jmg + Ja

N2
g

η
, btot = bmg + b(θm)

N2
g

η
. (8)

where Jmg and bmg are the gearmotor inertia and friction.

IV. AUGMENTED PLANT AND IDENTIFICATION

A. Augmented Plant modeling

Combining (1), (2), (3), (7) and recalling that θ = Ngθm,
a state-space model of the augmented plant can be obtained.
Denoting by ua the voltage applied to the motor terminals,
by x1 = ia the motor current, by x2 = θm the motor
position and by x3 = ωm the motor velocity, we have, with
x = [x1, x2, x3]

>,

ẋ = f(x, ua) =


−Ra

La
x1 −

kt

La
x3 +

1

La
ua

x3

kt

Jtot
x1 −

btot(x2)

Jtot
x3 −

τ`(x2, x3)

Jtot

(9)

where τ`(x2, x3) = τr(Ngx2)
Ng

η + τcsign(x3) according to
(6). Table I reports all the relevant quantities appearing in (8),
(9), and their definitions.
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Fig. 5. (Left) Example of data acquired for the identification of the gear-motor parameters: from above to below, respectively, voltage supplied
to the motor, motor current and motor speed. (Right) Experimental response to a staircase input duty cycle δ, compared to the identified model
simulation. The output signals are the motor speed ωm and the motor current ia, while ωm,M and ia,M are normalization factors.

B. System identification

The focus is now on the identification of the model pa-
rameters and their experimental validation. To this aim, well-
established System Identification methods [14] are used. The
nominal model parameters are provided from the literature and
the technical data-sheet, while other parameter values can be
estimated from the experimental data, to accurately describe
the system response. Following [15], for the electrical and
mechanical parameters of the motor and gear subsystem, a
set of experiments has been performed with an independent
laboratory acquisition system to measure the responses to
canonical input signals. For identification purposes, the sam-
pling frequency is 20 times higher than that of the industrial
product and a 16-bit ADC resolution is used. A National
Instruments DAQ board (USB-6216) has been used to acquire
the data and the motor has been equipped with a 12-bit
resolution encoder (Eltra ER38F). Voltage, current and speed
are continuous-time signals acquired through a sampling that
produces two discrete-time datasets of length n.

For the estimation of the electrical parameters Ra, La of
eq. (1), the following equation has been identified:

dia(t)

dt
= −Ra

La
ia(t) +

1

La
ua(t), ya(t) = ia(t−∆) (10)

where ∆ is a delay affecting the laboratory acquisition system,
which is not present in the industrial device. Note that, as com-
pared with (1), ea is not present in (10) since the identification
phase is performed under locked rotor condition, that is, from
(2), ea is zero. Since input ua is constant during each sampling
period, the sampled measurements ya(k) collected from (10)
depend on two values of the discretized input as follows

ya(k + 1) = Φya(k) + Γ0ua(k + 1) + Γ1ua(k), (11)

Φ = e−
Ra
La
ts ,

Γ0 =
1

Ra

(
1− e−Ra

La
(ts−∆)

)
,

Γ1 =
1

Ra

(
e−

Ra
La

(ts−∆) − e−Ra
La
ts
)
,

where ua(k) is the voltage supplied to the motor at the k-
th sampling time, tk = kts, k = 1, 2, . . . , n, and ts is the

sampling time. From eq. (11), with a least-squares estimate of
the parameters of the model, we can obtain the value of the
electrical parameters as:

Ra =
1− Φ

Γ0 + Γ1
, La = −Ra ts

lnΦ
.

Note that the delay ∆ of the laboratory acquisition system
cancels out when computing Γ0 + Γ1. Therefore it does
not impact the estimation process. In a similar way, for the
estimation of the mechanical parameters bmg, Jmg of eq. (8),
we consider the discretized dynamics between the applied
voltage ua and the delayed speed measurement ωm(t − ∆),
giving the following equation

ωm(k + 1)− Φωm(k) = Γ0ua(k + 1) + Γ1ua(k), (12)

Φ = e
− bmgRa+k2t

JmgRa
ts ,

Γ0 =
kt

bmgRa + k2
t

(
1− e−

bmgRa+k2t
JmgRa

(ts−∆)
)
,

Γ1 =
kt

bmgRa + k2
t

(
e
− bmgRa+k2t

JmgRa
(ts−∆) − e−

bmgRa+k2t
JmgRa

ts

)
.

Then, similar to before, the mechanical parameters are com-
puted as

bmg =
1

Ra

(
kt(1− Φ)

Γ0 + Γ1
− k2

t

)
, Jmg = − (bmgRa + k2

t )ts
RalnΦ

.

Fig. 5(left) shows an example of data acquisition for the
identification of the gearmotor parameters. The parameter
values of the mechanical system are generally known, however
to obtain a suitable plant representation, and to improve
the prediction capability, certain model parameters (the me-
chanical Coulomb friction τc, the damping of the spring b)
have been adjusted around their nominal values. Hence, a
calibration procedure has been carried out by comparing the
acquired and the simulated data and the parameter set that
minimizes the root mean square error has been selected. Using
all the identified parameters, illustrated in Table I, model
(9) has been validated on a set of independent experiments
where the following quantities have been acquired via the
serial communication device of the mechatronic system under
analysis: the duty cycle δ, the motor speed ωm and the motor
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dynamics of the drive. (Bottom) Illustration of eq. (14) for constant BEMF
values, where ea,M and ūa,M are normalization factors. The blue and
red dots represent, respectively, the minimum and maximum points
discussed in section V-B.

current ia. Fig. 5(right) shows a sample outcome of the model
validation results, obtained by comparing the identified model
simulation outputs (motor current ia and angular velocity ωm)
with the corresponding signals measured from the physical
system, when the same input signal (duty cycle δ) is used.
Specifically, we show the responses to a staircase input. The
qualitative trend of the simulated signals is close to the
experimental measurements.

V. ELECTRICAL DRIVE AND FEEDBACK LINEARIZATION

A. Electric motor drive
The motor driver, illustrated in Fig. 6, supplies the voltage

to the electric motor, based on the reference signal δ ∈ [0, 1],
provided by the control law. With reference to Fig. 6, the
alternating voltage source with effective value Vac is rectified
by means of a Graetz bridge. The motor is controlled by
chopping the non-negative semi-sinusoids v+, thus modifying
the average voltage depending on the on-off time of the

Mosfet switching. A flyback diode, in parallel to the motor,
forms a circulating path of the inductive load current. To ease
the mathematical modeling, several approximations have been
carried out. The Mosfet is modelled as an ideal switch and all
diodes are considered as a voltage generator when conducting
current, whose voltage VD is set to the value specified in the
diode data-sheet. The circuit is completed by a relay, which
allows reversing the polarity of the motor when switching
between opening and closing maneuvers.
The reference voltage δ ∈ [0, 1] coming from the control
software governs the driver operation. Considering a single
period T of the rectified semi-sinusoid v+, given the duty
cycle δ ∈ [0, 1] during the “Mosfet off” portion of the duty
cycle lasting toff = (1 − δ)T seconds, the voltage ua across
the motor terminals is:

t ∈ [0, (1− δ)T ]⇒ ua(t) =

{
−VD if ia(t) > 0

ea(t) if ia(t) = 0
(13a)

while during the remaining “Mosfet on” portion of the duty
cycle lasting ton = δT seconds, we have:

t ∈ [(1− δ)T, T ]⇒ ua(t) =

{
v+(t) if ia(t) > 0

ea(t) if ia(t) = 0.
(13b)

An example of the corresponding signals is reported at the
top of Fig. 7, where it can be observed that the load is
mainly resistive, since the PWM switching period is high,
as compared to the electrical time constant of the armature
windings. Therefore, to simplify eq. (13) we can assume
ia = 0 during the toff phase and ia > 0 during the ton

phase. Since the controller has a sampling period T , we aim
to determine the average voltage ūa of the waveform in the
interval t ∈ [0, T ]. This can be computed as

ūa(δ, ea)=
1

T

[∫ (1−δ)T

0

eadt+

∫ T

(1−δ)T

√
2Vacsin

( π
T
t
)
dt

]
,

where the first term is the weighted contribution of ūa(δ, ea)
during the toff phase, while the weighted contribution on the
ton phase is given by the semi-sinusoid v+ with amplitude√

2Vac and period T . It results that ūa is equal to

ūa(δ, ea) = ea(1− δ) +

√
2Vac

π
(1− cos(πδ)). (14)

The bottom of Fig. 7 shows eq. (14) as a function of δ, for
0 ≤ δ ≤ 1 and for constant values of ea, 0 ≤ ea ≤ ea,max.

B. Feedback linearization of the motor drive dynamics

Using a feedback linearization approach (which reaches
beyond the input-affine solutions given in [16]) we locally
invert function (14), so that the plant seen by the controller is
linear for a suitable selection of the duty cycle δ. While (14)
could be inverted by using a lookup table spanning a dense
grid of values of ūa and ea, the explicit solution given here
provides a computationally advantageous alternative approach.

Inspecting the blue and red dots in the lower plot of Fig. 7, it
is clear that the local inversion needs to rely on the values of δ
providing the minimum and maximum of ūa. Indeed, eq. (14)
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is invertible only in a range depending on ea. In particular,
differentiating (14) with respect to δ, we can determine the
minimum point at δ = δm and the maximum one at δ = δM
(represented by the blue and red dots of Fig. 7), as a function
of ea ∈ [0,

√
2Vac), as follows:

δm(ea) =
1

π
arcsin

(
ea√
2Vac

)
∈
[
0,

1

2

)
, (15a)

δM(ea) = 1− δm(ea) ∈
(

1

2
, 1

]
. (15b)

Note that the values of δm and δM are well-defined since we
have always ea <

√
2Vac. The corresponding extreme values

ūa,m(ea) = ūa(δm(ea), ea) and ūa,M(ea) = ūa(δM(ea), ea) of
ūa can be conveniently expressed as a function of δm, omitting
the dependence on ea at the right-hand side, for compact
notation:

ūa,m(ea) =
√

2Vac

[
(1− δm)sin(πδm) +

1

π
− cos(πδm)

π

]
,

(16a)

ūa,M(ea) =
√

2Vac

[
δmsin(πδm) +

1

π
+

cos(πδm)

π

]
. (16b)

To suitably invert (14) based on the quantities above, define
the normalized input δ̃ and output ũa as follows

δ̃(δ, ea) =
δ − δm(ea)

δM(ea)− δm(ea)
, (17a)

δ = γ(δ̃, ea) = δm(ea) + (1− 2δm(ea))δ̃, (17b)

ũa(δ̃, ea) =
ūa(γ(δ̃, ea), ea)− ūa,m(ea)

ūa,M(ea)− ūa,m(ea)
, (17c)

both of them taking values in [0, 1].
In the special case ea = 0, the expression of ũa in

(17c) simplifies to ũa(δ̃, 0) = 1−cos(πδ̃)
2 = sin2

(
πδ̃
2

)
. More

generally, we may decompose

ũa(δ̃, ea) =
1

2

(
1− cos(πδ̃)

)
+ Ψ(δ̃, ea), (18)

where the mismatch function Ψ(δ̃, ea) is small, therefore
neglectable, as visible from Fig. 8 and as characterized in
the next lemma, whose proof is given in Section V-C to avoid
breaking the flow of the exposition.

Lemma 1. For any δ̃ ∈ [0, 1] and any ea ∈ [0,
√

2Vac), it
holds that |Ψ(δ̃, ea)| < 0.01001.

Based on the above, we can now state our main result about
the inversion of function (14).

Proposition 1. For any u ∈ [ūa,m(ea), ūa,M(ea)], selecting

δ = δm(ea)+
1−2δm(ea)

π
arccos

(
1− 2(u− ūa,m(ea))

ūa,M(ea)− ūa,m(ea)

)
(19)

the resulting average input obtained from (14) is

ūa(δ, ea) = u+ ψ with |ψ| ≤ 0.01001(ūa,M(ea)− ūa,m(ea)).

Namely, the mismatch between the requested input u and the
applied input ūa is about one percent of the input range.

Proof. Substituing expression (19) in (17a) we obtain
δ̃(δ, ea) = 1

πarccos
(
1− 2(u−ūa,m(ea))

ūa,M(ea)−ūa,m(ea)

)
. Substituting this

last quantity in (18) and using Lemma 1, we obtain ũa(δ̃, ea) =
u−ūa,m(ea)

ūa,M(ea)−ūa,m(ea) + Ψ(δ̃, ea), with |Ψ(δ̃, ea)| < 0.01001. The
result then immediately follows from (17c).

C. Proof of Lemma 1

First, we state below a result of independent interest about a
polynomial approximation of the sine function. For the proof
of the result, we adopt formally certified interval arithmetic
combined with formal Taylor expansion, thanks to the Coq
Interval tactic [8].

Proposition 2. For any α ∈ [0, 1] the following bound holds:
| sin

(
π
2α
)
− 1

2 (3α−α3)| < 0.02002. Namely, the polynomial
function 1

2 (3α− α3) approximates sin
(
π
2α
)

with an error of
about 2%.

Proof. The proof is carried out using formally certified inter-
val arithmetic software [8]. In particular, denoting ξ(α) :=
sin
(
π
2α
)
− 1

2 (3α − α3), it is readily certified that ξ(α) ≤
0.02002 for all α ∈ [0, 1]. To prove that ξ(α) ≥ 0, a certificate
of positivity is immediate in the interval α ∈ [0, 0.99],
while proving non-negativity in the remaining interval [0.99, 1]
requires proving that, in this interval, ξ′′(α) ≥ 0 (so that
ξ′(α) is non-drecreasing). Since ξ′(1) = 0 and ξ′(0.99) <
0, the above monotonicity property proves ξ′(α) ≤ 0 for
α ∈ [0.99, 1], which means the ξ is therein non-increasing.
Since ξ(0.99) > 0 and ξ(1) = 0, this means ξ(α) ≥ 0 for
α ∈ [0.99, 1], thus completing the proof.

To the end of proving Lemma 1, denoting with σ = π(1−
2δm(ea)), after some simplifications, we obtain from (17c),

ũa(δ̃, ea) =
tan(πδm)(sin(σδ̃)− σδ̃) + 1− cos(σδ̃)

2− σtan(πδm)
. (20)

Then, using ũa(δ̃, 0) in (18), we obtain the expression of
Ψ(δ̃, ea) = ũa(δ̃, ea)− ũa(δ̃, 0) as

Ψ=
tan(πδm)(sin(σδ̃)+σsin2(πδ̃2 )−σδ̃)+cos(πδ̃)−cos(σδ̃)

2− σtan(πδm)
,

(21)
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which clearly satisfies (see also Fig. 8),

Ψ(0, ea) = 0, Ψ(1, ea) = 0, Ψ(δ̃, 0) = 0. (22)

Moreover, the following symmetry is also visible from the
lower representation in Fig. 8.

Lemma 2. For any α ∈ [0, 1] and any ea ∈ [0,
√

2Vac), it
holds that Ψ

(
1+α

2 , ea

)
= −Ψ

(
1−α

2 , ea

)
.

Proof. From eq. (21) consider tan(πδm)(σsin2(πδ̃2 ) − σδ̃) +

cos(πδ̃). Substituting sin2(πδ̃2 ) = 1
2− 1

2 cos(πδ̃) and noting that
cos(π2 + πα

2 ) = −sin(πα2 ) it follows that tan(πδm)( 1
2 sin(πα2 )+

α
2 ) − sin(πα2 ) = −

[
tan(πδm)(− 1

2 sin(πα2 )− α
2 ) + sin(πα2 )

]
.

Recalling that σ = π − 2πδm, the proof is completed for the
remaining terms, applying the trigonometric addition formulas
and noting that tan(πδm)sin(σ2 )cos(σα2 )−cos(σ2 )cos(σα2 ) = 0
since tan(πδm)sin(σ2 ) = cos(σ2 ) = sin(πδm).

Based on Lemma 2, for proving the bound in Lemma 1,
we may focus on its values in the range δ̃ ∈ [0, 0.5],
which can be parametrized by δ̃ = 1−α

2 , α ∈ [0, 1], and
ea =

√
2Vac

(
1− 2

π s
)
, s ∈ (0, π2 ]. This provides

sup
δ̃∈[0,1],

ea∈[0,
√

2Vac)

|Ψ(δ̃, ea)| = sup
α∈[0,1],
s∈(0,π2 ]

|Ψ(α, s)|, (23)

where Ψ(α, s) := Ψ
(

1−α
2 ,
√

2Vac

(
1− 2

π s
))

. Function Ψ can
be expressed as follows, after some simplifications,

Ψ =
1

2

(
sin
(π

2
α
)
− α− α(1− α)

Φ(s)− Φ(αs)

(1− α)s

1

Φ′(s)

)
,

where Φ(s) = sin(s)
s and Φ′(s) = s cos(s)−sin(s)

s2 denotes
its derivative. In particular, due to the positivity of Φ(s)
and non-positivity of both Φ′(s) and Φ′′(s), it holds that
Φ(s)−Φ(αs)

(1−α)s
1

Φ′(s) is non-decreasing for s ∈
(
0, π2

]
. Hence, due

to positivity of α(1 − α), for each α ∈ [0, 1], the function
s 7→ Ψ(α, s) is nonincreasing in

(
0, π2

]
. Since the function is

zero for s = π
2 , then the function is everywhere positive and

its supremum is given by

ΨM(α) = lim
s→0+

Ψ(α, s) =
1

2

(
sin
(π

2
α
)
− 1

2
(3α− α3)

)
,

where the right-hand side expression has been computed by
applying L’Hôpital’s rule three times. Finally, applying (23)
and Proposition 2, we obtain an upper bound on |Ψ(δ̃, ea)|
equal to 1

20.02002, thus completing the proof of Lemma 1.

VI. CONTROLLER DESIGN

In this section we describe the design of a closed-loop speed
controller, optimizing the performance during the opening and
closing operations. The algorithm brings the barrier angular
position from θ0 = 0 at rest to θf = π/2 at rest (in the
opening phase) or vice-versa (in the closing phase), while sat-
isfying a number of operating constraints. While the presented
algorithm is generic, we will focus on the opening task, which
is more critical due to the stringent opening time requirements.

The proposed control architecture is depicted in Fig. 9. The
augmented plant model (9) has been defined and identified
in Section IV. An optimization problem is solved offline to

Ref.
PD

controller
Feedback

linearization
Augmented

Plant

Feed-
Forward

r e ufb u δ y

uff
Linearized Plant

Fig. 9. Blocks diagram of the control architecture.

generate a feedforward input uff and a reference trajectory r,
specifying the reference for the motor angular velocity ωm, to
be tracked by the feedback controller. The feedback block in
Fig. 9 consists of a PD controller, operating at 100Hz to be
compatible with the embedded software implementation. The
overall control law u, used to compute δ from the feedback
linearizing law (19), is given by

u(t) = uff(t) + ufb(t), (24)

where uff is an optimized feedforward input associated with
the reference motion r and ufb is an error feedback stabilizer
exploiting the plant measurement y. Due to Proposition 1,
the dynamics from u to ūa is almost an identity (with a 1%
error) if u ∈ [ūa,m(ea), ūa,M(ea)]. The design paradigm for
the feedforward and the feedback blocks of Fig. 9, explained
next, can be extended to similar access automation systems.

A. Reference and feedforward generation
The reference r and the feedforward term uff are obtained

by solving a constrained nonlinear optimization problem. The
constraints associated to the physical limits of the system are

ūa,m(ea) ≤ ūa ≤ ūa,M(ea), 0 ≤ ia ≤ ia,M, (25)

where ūa,m(ea) and ūa,M(ea) are defined in (16) and ia,M is
the maximum current. To leave some input margin for the
feedback action, we define 5% tighter constraints than the
actual ones. To avoid feasibility issues, the formulation with
a soft constraint is introduced by adding a time-varying slack
variable ε and incorporating it into the cost functional. The
constraints for the optimization problem become

ūa,m(ea) + µ(ea) ≤ u ≤ ūa,M(ea)− µ(ea),

0.05 ia,M − ε ≤ x1 ≤ 0.5 ia,M,
(26)

where µ(ea) = 0.05 (ūa,M(ea) − ūa,m(ea)) and ε ∈
[0, 0.05 ia,M]. Note that the motor current can only flow in
one direction, which is reversed by a relay when toggling
between the opening and closing phases. In the following we
focus on the opening phase, the closing one being similar.
Moreover, discontinuities of the input u should be avoided,
therefore we enforce continuity of the control input u by opti-
mizing its time derivative v = u̇, via a dynamic augmentation.
The optimal control problem (OCP) is formulated as follows

min
x(·),u(·),
v(·),ε(·)

∫ tf

t0

‖h(x(t), v(t), ε(t))‖2W dt+ ‖hf(x(tf))‖2Wf
(27a)

subject to:

ẋ(t) = f(x(t), u(t)), u̇(t) = v(t), ∀t ∈ [t0, tf ], (27b)
ψ(x(t), u(t), ε(t)) ≤ 0, ∀t ∈ [t0, tf ], (27c)



8 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. XX, NO. XX, XXXX 2021

where t0 (initial time), tf (terminal time) are fixed and the cost
functions h and hf are defined as

h(x, v, ε) = [ia, θ − θf , v, ε]
>,

hf(x) = [ia, θ − θf ]
>.

(28)

weighted by diagonal matrices

W = diag
([

10−1, 102, 10−3, 107
])
,

Wf = diag
([

10−1, 102
])
,

(29)

to equalize the range of the corresponding variables. The
penalty related to the position error θ − θf in (28) aims at
reducing the barrier opening time, while the one related to the
current ia penalizes high currents. The penalty on the input v
ensures a sufficiently smooth control action, while the slack
variable ε implements the soft constraint given in (26).

The equality constraints (27b) represent the dynamics of the
system, where f(x, u) is defined in (9), while the inequality
(27c) comprises the constraints (26) with

ψ(x, u, ε) =


ūa,m(ea) + µ(ea)− u
u− ūa,M(ea) + µ(ea)

0.05ia,M − ε− x1

x1 − 0.5ia,M
−ε

ε− 0.05ia,M

 . (30)

The OCP (27) is solved offline in MATLAB using the software
package MATMPC [17], [18], [19], an open-source tool to
solve nonlinear programming (NLP). In MATMPC, a NLP
problem is formulated by discretizing the OCP using multiple
shooting [20] over the prediction horizon tf , which is divided
into N shooting intervals [t0, t1, . . . , tN ].

MATMPC has been set up with a 4th order Runge-Kutta
integrator and qpOASES as QP solver [21]. The system
dynamics is discretized with a sampling time Ts = 0.01s and
a total number of N = 500 shooting intervals, enabling a
prediction length of 5s. Given the ensuing optimal solutions
x∗(·), u∗(·), we use the resulting profile r(·) = x∗3(·) as
reference for ωm and the optimal u∗(·) as feedforward term,
corresponding respectively to the dashed curve in Fig. 11(a)
and the grey line in Fig. 11(c).

B. PD feedback controller
Based on the optimized solutions of (9), computed in (27)

of the previous section, corresponding to trajectory x∗, and
input uff = u∗, we may obtain the dynamics of the mismatch
state x̃ = x∗ − x to be stabilized by input ufb:

La
˙̃x1 = −Rax̃1 − ktx̃3 − ufb

˙̃x2 = x̃3

˙̃x3 =
kt

Jtot
x̃1 −

btot

Jtot
x̃3 +

1

Jtot
w,

(31)

where the exogenous signal w represents the nonlinear mis-
match terms comprising
• the viscous friction term btot(x

∗
2)− btot(x2);

• the external torque τ`(x∗2, x
∗
3)− τ`(x2, x3).

Model (31) can be reduced to a lower-order system with the
objective of simplifying the feedback tuning procedure. Since

the inductance La is small, we can reduce (31) by ignoring
the (fast) electrical time constant. Fixing La = 0, the first
equation in (31) becomes

0 = −Rax̃1 − ktx̃3 + ufb, (32)

which provides x̃1 = ufb−ktx̃3

Ra
. This can be replaced in eq.

(31) to obtain
ėθ = eω

ėω = −
(
k2

t − btotRa

RaJtot

)
eω −

kt

RaJtot
ufb +

1

Jtot
w,

(33)

where eθ and eω represent the angular position and velocity
errors, respectively. Considering the reduced model (33) and
defining the error dynamics e = [eθ, eω] ∈ R2, dynamics (33)
can be written as

ė =Ae+Bufb + Ew (34)

:=

[
0 1

0 −k
2
t +btotRa

RaJtot

]
e+

[
0

− kt
RaJtot

]
ufb +

[
0
1
Jtot

]
w.

Lemma 3. The pair (A,B) is controllable.

Proof. This property is verified simply by noting that the
controllability matrix C = [B|AB] has full rank.

Motivated by Lemma 3, the goal is to tune the parameters
of a PD feedback control law

ufb = Ke =
[
kp kd

] [eθ
eω

]
= kpeθ + kdeω, (35)

for the closed loop system (34) ensuring desirable closed-loop
dynamic performance.

C. PD gains tuning
In this section we propose an LMI-based technique to tune

the feedback controller parameters K = [kp, kd] in (35).
The objectives of the tuning are to guarantee the stability,

to optimize the rejection of disturbance w, and to shape
the transient response. Fix parameters α ≥ 0, specifying a
prescribed spectral abscissa for the closed loop, ρ > α, spec-
ifying the maximum radius for the closed-loop eigenvalues
and ϑ ∈ [0, π/2] specifying the width of the sector where the
eigenvalues should fall (see Fig. 10 (left)). For any matrix
C ∈ R1×2 characterizing a performance output z = Ce,
consider the following optimization problem:

min
W∈R2×2,
X∈R1×2,
γ∈R

γ subject to:

W = W> > 0 (36a)

M +M> + 2αW < 0 (36b)[
(M +M>)sin(ϑ) (M −M>)cos(ϑ)
(M> −M)cos(ϑ) (M +M>)sin(ϑ)

]
≤ 0 (36c)[

−ρW M>

M −ρW

]
≤ 0 (36d)M +M> E WC>

E> −γ 0
CW 0 −γ

 < 0, (36e)
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where M := AW + BX ∈ R2×2, W ∈ R2×2 denotes the
Lyapunov certificate, X ∈ R1×2 is associated to the gain to
be designed, and γ > 0 is the certified L2 gain The feasibility
of constraints (36a) and (36e) ensures internal stability of (34)
in addition to L2 external stability with gain less than γ > 0.
With respect to Fig. 10 (left), constraint (36b) impose the α-
related spectra abscissa, (36c) enforces the disk of radius ρ and
(36d) is associated with the conic sector determined by ϑ. The
shape of this region can be adjusted using these parameters,
modifying the dynamical properties of the system.

Proposition 3. Under Lemma 3, for any value of α ≥ 0,
ϑ ∈ [0, π/2] and ρ > α LMI (36) is feasible. Moreover, for any
feasible solution to (36), selecting K = XW−1 the following
properties hold: i) the closed-loop matrix (A + BK) has
eigenvalues with absolute value less than ρ, ii) the damping
factor of the poles is larger than cos(ϑ), iii) (A + BK) has
eigenvalues with real part smaller than −α, iv) the L2 gain
from w to z = Ce for (34) with ufb = Ke is smaller than γ.

Proof. Feasibility of (36) comes from the fact that the control-
lability property in Lemma 3 implies a matrix K that places
the eigenvalues of the closed-loop system on the region of the
complex semiplane defined by ρ, ϑ and α.
i-ii) The eigenvalues of (A + BK) having an absolute value
smaller than ρ and the damping factor larger than cos(ϑ) are
a direct application of the results in [10, Equations (10) and
(13)].
iii) This follows from noticing that (36b) implies (A+BK +
αI)W+W (A+BK+αI)> ≤ 0, which holds positive definite
W only if A+BK has convergence abscissa smaller than −α.
iv) The proof is a standard application of the bounded real
lemma and the use of quadratic Lyapunov functions. Defining
V (e) = e>We, W = W> > 0 by constraint (36a), perform-
ing a Schur complement on (36e), left-right multiplying by
[e, w]

> we obtain that ∀ [e, w] 6= (0, 0):

e>(M +M>)e+ 2e>Ew + 1
γ z
>z − γw>w < 0.

Substituting M = AW+BKW we get 〈∇V (e), ė〉+ 1
γ z
>z <

γw>w. Integrating both sides, we obtain the desired bound on
the L2 gain from w to z, i.e. ‖z‖2 ≤ γ‖w‖2 (or equivalently
on the H∞ norm).

Remark 1. In the presence of input saturation, the feedback
system has the form considered in [22, eqs. (1),(2)], with
parameters a1 = 0, a2 =

k2t +btotRa

RaJtot
, k = kt

RaJtot
and the func-

tion β(e) = [kp, kd] e (using the notation of [22]). Applying
[22, Thm 1], we may conclude that even with a saturated
feedback ufb, the origin of the error system (34) remains
globally asymptotically stable and locally exponentially stable.

The LMI-based design approach (36) is an effective tool for
performing the design of K. For our application, to the end
of reducing as much as possible the oscillations, we select

z = Ce =
[
0 1

]
e = eω. (37)

The suggested use of (36) is to fix parameters ρ and ϑ to
ensure a maximum natural frequency and a minimum damping
ratio. Then, for a fast decay rate, several different values of

Re(s)

Im(s)

α

ϑ

ρ

0 2 4 6 8 10 12

10
3

10
4

Trade-off curves between  and 

Fig. 10. (Left) The shaded region where the closed-loop eigenvalues
are constrained by (36b)-(36d). (Right) Trade-off curves between α and
γ obtained by solving the optimization problem (36) for model (34),
considering increasing values of α and for two different values of ϑ.
The colored dots correspond to the operating points chosen for the
experimental results illustrated in Fig. 11.

α can be tested to generate the corresponding trade-off curve,
as reported in the right of Fig. 10, where we show the curves
for ϑ = π

6 and ϑ = π
18 . The trade-off between γ and α

is easily seen from the resulting curves, where the solution
of the optimization problem (36) provides the optimal gain
γ∗(α) for each value of the parameter α. The operating points
highlighted with colored dots correspond to the feedback gains
used in the experiments reported in Fig. 11 of the next section.
Remark 2. To certify stability of the error dynamics (34) in
the presence of uncertain model parameters, suppose A and
B correspond to a nominal model and that the actual matrices
are not precisely known, but belong to a polytopic domain D.
Any matrix inside the domain D can be written as a convex
combination of the vertices Aj and Bj of the uncertainty
polytope. We can then augment (36) with the following LMIs

AjW +BjX +WA>j +X>B>j < 0, j = 1, . . . p (38)

where p is the number of vertices of the polytope to ensure
robust exponential stability of the error dynamics for any
parameter in the polytope.

VII. EXPERIMENTAL RESULTS

All the experiments have been conducted on an industrial
automatic barrier whose model has been identified as described
in Section IV-B. The controller has been implemented on
a 8-bit microcontroller (Microchip PIC18F) mounted on a
control board provided by the company developing the boom
barrier. The firmware has been written in C language through
MPLAB X IDE. The reference and feedforward terms have
been determined offline as described in Section VI-A, while
the PD controller and the feedback linearization have been
implemented directly on the microcontroller.

Fig. 11 shows the results of the proposed control strategy
and illustrates the main variables involved in the control loop.
Following Remark 2, rather than the nominal design in (36),
given the structure of A and B in (34), we consider an
uncertainty of ±20% on the a2,2 element of matrix A and
the b2 element of B. This provides four vertices that have
been taken into account in our robust design for each one
of the considered gain selections. The response for different
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Fig. 11. System responses for different values of the tuning parameters
α and ϑ. (a) reference speed r and velocities ωm; (b) motor currents
ia; (c) control input u delivered by the controller and (d) duty cycle δ
obtained from the feedback linearization. Constants ωm,M, ia,M, uM

and tM are normalization factors.

values of the LMI tuning parameters α and ϑ show a rea-
sonable trade-off between disturbance rejection and closed-
loop performance. We select ϑ = π

6 for lower values of α
and ϑ = π

18 for higher values, since large values of α may
lead to optimal closed-loop gains inducing undesired oscilla-
tions, especially in the accelerating phase, probably due the
mechanical backlash of the gearbox. We successfully remove
the oscillations by reducing ϑ and consequently increasing the
closed-loop damping ratio (see Fig. 10). When α is too low,
the tracking performance degenerates, and an undesirably large
time is needed to complete the opening maneuver, due to the
imperfect tracking of the reference signal.

Specifically, in Fig. 11(a) the dashed line shows the refer-
ence x∗3 obtained by solving the optimization problem (27) in
Section VI-A. Fig. 11(b) shows the evolution of the current x1,
while Fig. 11(c) and 11(d) illustrate, respectively, the control
input u, which is the sum of the feedforward term uff and the
feedback signal ufb, and the duty cycle δ obtained from the
feedback linearization map described in Section V-B. The con-
troller allows tracking the reference signal, compensating for
disturbances and model uncertainties, resulting in a desirably
small tracking error.

Fig. 12 shows a comparison between the opening maneuver
responses of the proposed solution and the production standard
controller provided with the same reference velocity profile.
To numerically quantify the gap between the two controllers
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Fig. 12. Output responses (a-b) and the control input responses (c)
with the proposed controller and the production standard controller.
Constants θM, ωm,M and tM are normalization factors.

in terms of tracking performance, we consider the normalized
root mean square error (NRMSE) metric

NRMSE =
||ri − yi||

||ri −mean(r)|| i = {1, . . . , n} : ri 6= 0, (39)

where ri = x∗3,i and yi = ωm,i , i = 1, . . . , n are the samples
of the reference (dashed line in Fig. 12b) and the output (solid
lines in the same figure). The computed NRMSE correspond
to 0.1861 for the production controller and 0.0719 for the
proposed showing a reduction to less than one half, revealing
a substantial tracking accuracy improvement. The production
controller is not based on any model, but it is manually tuned
by adjusting the gains of a PD controller until acceptable ex-
perimental results are obtained. The performance improvement
with the proposed control architecture shows the significance
of the mechatronic system modeling. Multiple experimental
tests have been carried out for a large variety of working
conditions, providing excellent results, thus confirming the
desirable features of the proposed solution.

VIII. CONCLUSION

We addressed modeling and control of a nonlinear motion
system. A feedback linearization-based feedforward/feedback
architecture was derived, associated with rigorous optimized
performance and feasibility guarantees. This strategy is novel,
it is general enough to be applicable to alternative systems
sharing similar mechatronic structure, and solves the cumber-
some manual gain tuning currently employed at the industrial
level.

In light of the satisfactory experimental results on the con-
sidered industrial device, future work may include verifying
the effectiveness of the control algorithm to explicitly account
for saturation for optimizing saturated performance. We will
also test the proposed strategy on alternative similar access
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automation systems (such as horizontal automatic gates). The
robust results highlighted in Remark 2 will also be better
investigated. Finally, a limitation of the proposed approach
is the inability to account for systematic trajectory tracking
errors. As this type of application is subject to repetitive
maneuvers, it would be interesting to develop adaptive control
techniques, despite the fact that they could be more demanding
from a computational viewpoint.
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