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Abstract: Relief distribution is one of the most popular topics within the field of
emergency logistics. Optimization models and solving approaches have become one of
the most powerful tools for tackling relief distribution problems. In this context,
victims’ satisfaction should be considered as one significant indicator to evaluate relief
distribution operations. Therefore, this survey addressed some of the most
representative publications working with optimization models and solving approaches
in relief distribution concerning victims’ satisfaction. Firstly, collected models were
discussed from the commonly used objectives for describing victims’ satisfaction: the
shortest travel time, the lowest unsatisfied demand, and the maximum fairness. Second,
gathered solving approaches are analyzed from exact algorithms, heuristic algorithms,
and machine learning algorithms respectively. Heuristic algorithms are further studied
into four groups: genetic algorithm, ant colony optimization, particle swarm
optimization, and others. Finally, three development trends of models and approaches

in relief distribution concerning victims’ satisfaction are showcased.
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1 Introduction

Emergency events have often negative impacts on human life and social development.
Natural disasters, public health incidents, major accidents, and other emergencies may
all be considered as emergency events. Every year, more than 500 emergency events
kill around 75,000 people and impact more than 200 million others [1]. Emergency
logistics seeks to make optimal schemes to deliver relief supplies to save lives and
reduce victims’ further suffering. It is about planning, executing, and controlling the
efficient and effective flow and storage of relief materials from the supply depots to
the demand depots [2]. Compared with commercial logistics, the cost and time of
emergency logistics activities are opposed to each other, and time is more dominant in
the goal [3]. Moreover, challenges such as additional uncertainties, complex
coordination, limited resources, and harder-to-achieve timely delivery [4] need to be

frequently considered to ensure the sustainability of emergency supplies.

Emergency logistics refers mainly to relief distribution, facility location, mass
evacuation, and casualty [5] while relief distribution is the one concerned mostly in
extant literature. Optimization models and solving approaches have become one of the
most powerful tools for tackling relief distribution problems. A lot of research
considers relief distribution as a special kind of vehicle routing problem (VRP) to
meet victims’ needs where limited vehicles have to be scheduled to accomplish
delivery tasks in a rigidly limited time. Due to the large number and various types of
supplies to be delivered, multiple depots, trips, and heterogeneous vehicles are
typically involved [6]. Some works even integrate it with facility location and mass
evacuation. VRP is a class of fundamental NP-hard problems [7]. Therefore, relief
distribution in emergency logistics is a complex optimization problem that is much

more difficult than VRP and its variants in common supply chains.

Unlike commercial logistics where profit ultimately decides whether to visit a customer
or not, emergency logistics deals with human lives and has to attend to affected victims
as much as possible. Relief distribution is supposed to ensure that the required reliefs
are distributed to all demand victims. Thus, victims’ satisfaction should be considered
as a significant indicator to evaluate relief distribution operations. Many previous
works have proposed literature reviews on emergency logistics for particular problems,

methodologies, and applications in the last decade [3-9]. However, none of them has



concentrated on relief distribution concerning victims’ satisfaction, as far as our
knowledge is concerned. Therefore, this paper will survey the most representative
publications about optimization models and solving approaches in this field to identify

some literature gaps and research opportunities.

The remaining sections of this paper are organized as follows. Section 2 discusses relief
distribution optimization models concerning victims’ satisfaction in three aspects.
Section 3 analyzes solving approaches used to solve this group of problems,
particularly heuristic algorithms. Section 4 presents discussions and future trends.

Finally, conclusions are stated in section 5.

2 Optimization Models
2.1 Relief Distribution Optimization Models

Diftferent from traditional VRP models where goods are distributed by a set of vehicles
on routes beginning and ending at a single depot, the network structure of relief
distribution optimization models is more flexible. Li et al. [11] proposed a
multi-objective integer programming model concerning multi-items, multi-vehicles,
multi-periods, soft time windows, and a split delivery strategy scenario where all
vehicles began their tours from the same depot to visit one or multiple nodes, and
finally returned to the original depot. Vieira et al. [12] formulated large-scale disaster
relief in drought scenarios as multi-depot vehicle routing problems where each vehicle
started its travel from one depot, upon completion of service to customers, and so it had
to return to the depot. Viswanath et al. [13] designed a multicommodity maximal
covering network for seeking routes that minimize the total travel time and maximize
the total covered population where vehicles were not required to return to the starting

depots.

As static models cannot well match real-world applications, dynamic factors and
uncertain features are always discussed in relief distribution optimization models. Fikar
et. al [14] presented an agent-based simulation optimization framework to model the
impact of transport disruptions and disaster relief distribution considering both
uncertainties in transport conditions and various actions from victims. Rivera-Royero
et al. [15] proposed a rolling horizon methodology that considered dynamic parameters

for relief distribution problems after the occurrence of a natural disaster while the



assembly process of the relief kits was also concerned. Liu [16] et. al studied a robust
model predictive control approach to obtain robust relief distribution plans and adjust
them in accordance with updated real-time information in post-disaster relief
distribution. Zhou et al. [17] designed a multi-objective optimization model for
multi-period dynamic emergency resource scheduling problems where the roadway
was a dynamic variable network at different scheduling periods and uncertainty might

bring all kinds of risks.

Emergency logistics is a complex system and relief distribution always has an
interdependent relationship with other emergency operations. Therefore, a lot of
researchers integrated it with facility location and/or mass evacuation as a whole
system. Zhang et. al [18] constructed a multi-objective location-routing programming
model for emergency response considering carbon dioxide emissions with uncertain
information. Vahdani et al. [19] addressed a mathematical integer nonlinear model to
locate the distribution centers for, timely distribution of vital relief to the damaged
areas, vehicle routing, and emergency roadway repair operations. Vahdani et al. [20]
rendered a bi-objective optimization model to plan for relief distribution, victim
evacuation, redistricting, and service sharing under uncertainty. Ghasemi et al. [21]
studied a stochastic multi-objective optimization model where the pre-disaster phase
focused on relief distribution centers allocation and the second phase paid attention to
establishing temporary care centers to treat the injured people and distribute

commodities to affected areas.

To sum it up, optimization models are widely used for relief distribution problems and
they are efficient for most of the variants. The above analysis classified collected
publications into three groups from the views of distribution structure, dynamic
features, and hybrid systems. It is easy to observe there is no absolute rule to conduct
the classification and some papers address attributes from more than one catalog. To
better formulate specific applications in real-life environments, the complexity of
mathematical models for relief distribution problems is increasing. As most research in
this field covers at least one attribute of the three groups, these features will also be
considered when discussing relief distribution optimization models concerning victims’

satisfaction.

2.2 Relief Distribution Optimization Models Concerning Victims’ Satisfaction



dqe[IeAL QUI009q

(#002)
- | ey sueow uonerodsuen pue (ON) Auewr 03 Auejq pUBWIAP Paysyesun SZIWIUTA
. . e 1P JIewepzQ
sarpddns mau ‘sysonbax maN
1500
Suoneo0[ ANJIoe,| - (sox) Auew 03 Auey | [euoneiddo [810) SZIWIUIW pue ‘UONB[OIA |  ((0Z07) ‘T8 1° 1M
mopurm  own  10J  Ajeuad  ozrwirurp
SIOJUD UONNQLISIP
(6102)
UONBNIBAD SSBIA - (ON) Auewr 0} Auey pUE ‘SISN[AYS ‘SBAIE POIOJLJE 8 SI[OIYIA
T8 19 Iynoqes
JO sown) [eALLIE JO WINS Y} SZIWIUTIA
SIoWO)SNd SO[OIYQA JO Joquunu (2100
- (sap) Auew 01 U ’
umousun pue  ‘QuwI} [JABI] oy} ZIWIUIW “dUWI) [dALI) [£10) SZIWIUIA | [e 12 yynwaS[yop

SuONBIO[ AJN[Io.,{

Apiqerjar ooy

(ON) Auew 0} AueN

AJIGeI[aI AJNOT dZTWIUTW
g ‘1509

‘Qun 3urfoAel) WNWIXEW JY) OZIWIUIA

ozZiwIxew  pue QZIwITuIw

(#107) T8 10 Suep)

owrn

KIQAT[Op puUB ‘SpuBWdp JOIOY

(-) Auewr 03 AuejN

awIn) [€)0} SZIWIUTN

(9102) TR O

suoneoo[ AJJIoe]

SUONIpuod d1jjel],

(ON) Auewr 03 AueN

awn) ped] A8BIdAR IZIWIUIN

(9102) 'Te 10 1ey1]

SWAISAS PUqAH

S9INJBYJ OTWRUA(]

(yodap 3umnrels oy 01 SurwINY)

aInonIs uonNqLISI(]

S AN (Ve

saA1192[q0O

UonoeIsnEs SWIIA JUIIIdOUOd UonnqLIsIp Jarja1 ur spppow uoneziundo jo uosuedwo)) | 9[qe],




warognsur - 1opun - sarddns

pue  sSpuBWwOp  [BOIPOLIdJ

(-) Auew 0} Auejy

U0 UONERIAJD }s93Ie[ 9y} OZIWIUIW pue

UOT)OBJSTIES  SWIIOTA }SOMO] AU} SZIWIXEIA]

(8107) 'Te 1@ 08D

suoneoo[ AJjIoe]

JS0J pue ‘own

[9ARBI) ‘SPUBWIAP SBAIR PIJOY

(sax) Auew 01 Kuejy

1S09 [)0} AZIWIUIW
pue ‘ouwn [9ARI} [B)0} dZIWIUIW ‘SaFe}I0yS

JO junowre wnuwixewl 9y} SZIWIUIN

(9102) 'T®

10 uy-1310zog

S92INO0SAT

Jorpa1 Sunnqrnsip urepradu )

(-) Auews 03 dUQ

pue joedwr A[ddnsioAo Jarjar azrwruru

pue joedwr Ajddnsiopun Jor[or 9zIwurp

(S107) 'Te 19 nays

SpuBwWAP JI[aI S1S00 SI9JUQD uoNNqLYSIP
(1202)

SuOnBOO[ ANI0.,] | PUB SIAUAD UONNALISIP JOI[AI (SoA) Auewr 01 AUBA | JOI[oI dZIWIUIW pue ‘S}s0d uoneuodsuen
e 1  wWodkeN

renur jo Ayoededo urepoou() dZIuuIW ‘93e10ys AJIPOWIIOd JZIWIUTIA

sjodap eo0[ Suruado
JO 1500 PAIxXI OZIWIUIW puUB ‘pPuBWIdP (S102)

SuoneIO[ AJI[Ioe,| uonoNISAP peoy (sop) Auewr 01 Auey

paygspesun Jo s3s00 Ajeudd oziwmuIw | e 39 IpRUyyY

‘Qun  uonnquysip  [eJ0}  SZIWIUIA

sarjddns

UIe1I90UN Pue JUSIOIFNSu|

(-) Auewr 0} Auey

$1S09 AOUIZIdW JZIWIUTW

pue  ‘SYSLI  [RJUSWIUOIIAUS  [enuajod

SZIWIUIW ‘9Jel PUBWIAP JOWUN SZIWIUIA

(1202) 'Te @ 0r)

owrn

[ARI) pUR ‘SPUBWIAP UIELIdOUN)

(sap) Auew 01 duQ)

PUBWISP JoWIUN SZIWIUTA

(6007) ‘Te 10 usys




1509 KI10JUdAUL

- SpUBWIAP [BIIPOLId] (ON) Auew 03 Auey | dziwiurwr  pue  1s0d0  uonepodsuen | (€107) Te 12 Ye[D
OZIWIUIW ~ ‘padu  Jowun  AZIWIUTJA]
(002)
- SpPUBLIAP [BIIPOLId] (oN) Auew 03 Kuejy] pUBWIAP PAYSIIES [810) SZIWIXBIA
°® 10 SsPsuy

Uo1endeAd SSeIN

(sap) Auew 01 U

1509 uoneALIdop dATIR[I
oZIwuIw ‘pue 3500 uoneandop 9anjosqe

ozIwIuIw ‘)S00  uonelodsues) SZIWIUTIA]

(6102) Te @Y7

pue

Spuewap

sarpddns

[Ed1POLIS]

(sax) Auew 01 suQ)

sowr) uoneardop
Suowre QoueLIEA OU) OZIWIUIW PUEB SIJel

JUSWI[IJ[NJ SUOWE JOUBLIBA JU} SZIWIUTJA]

(6102)

Te 1 Sueny

A[ddns

saseyd-qns pue

syutod puewdp [[e J0J UOTIRJSHES  SWIIOIA




The shortest travel time is basically the primary factor to be considered in relief
distribution optimization models, as loss can be minimized only when the emergency
materials are delivered to the demand depots in time and accurately [8]. Moreover, it
is important to pay attention to victims’ unsatisfied demands if the demand cannot be
fully satisfied by a single delivery. Besides, priority to the most seriously affected
areas and equity among all depots must be concerned if there are multiple demand
nodes. Accordingly, the shortest travel time, the lowest unsatisfied demand, and the
maximum fairness are commonly used objectives for relief distribution optimization
models concerning victims’ satisfaction. All publications involved in this section are
listed in Table 1 and the corresponding optimization models are specified by objective

functions, distribution structure, dynamic features, and hybrid systems.
2.2.1 Travel Time

Fikar et al. [22] proposed presented a simulation and optimization-based
decision-support system to facilitate disaster relief coordination between private and
relief organizations with the objective to minimize the average lead time. To achieve
the lowest value of total distribution time, Lu et al. [23] proposed a rolling
horizon-based framework for real-time relief distribution which consisted of one state
estimation and prediction module, and one relief distribution module. Wang et al. [24]
constructed a nonlinear integer open location-routing model for relief distribution
problems considering travel time, total cost, and reliability with split delivery. With the
goal to avoid delays and increase equipment utilization, Wohlgemuth et al. [25]
established a multi-stage mixed-integer model considering pickup and delivery
problems for forwarding agencies handling less-than-truckload freight in
disasters. Sabouhi et al. [26] proposed an integrated logistic system to simultaneously
route and schedule vehicles for evacuating people and delivering necessary relief
resources where the sum of total arrival times was minimized. Wei et al. [27] discussed
an integrated location-routing problem where each affected area was associated with a
soft time window for receiving relief supplies while the penalty for time window

violation was considered as one objective function.

Travel time minimization is usually the primary objective of relief distribution
problems. It is generally counted as the time required since the victims send out

demands until the relief is delivered. Although most research does not emphasize it as



an objective for evaluating victims’ satisfaction, travel time is one that cannot be
neglected. Some publications may not discuss travel time directly while lead time,
arrival time, time delay, and so on should be considered as the variants. Moreover,
travel time minimization is not only widely studied in single-objective optimization
problems, but also coordinates with other objectives in multi-objective optimization
problems. However, only cooperation between travel time minimization and general
objectives such as total cost minimization is considered in this sub-section.
Cooperation between travel time minimization and other victims’ satisfaction

objectives are analyzed in the following two sub-sections.
2.2.2 Unsatisfied Demand

Ozdamar et al. [28] formulated a hybrid model integrating the multi-commodity
network flow problem and the VRP to minimize the amount of unsatisfied demand over
time. Shen et al. [29] established a deterministic model for stochastic vehicle routing
problems to minimize both the unmet demand and the total visit time with a
chance-constrained programming technique. Cao et al. [30] studied the relief
distribution problem as a bi-level integer programming model where the upper level
considered the minimization of unmet demand rate, potential environmental risks, and
emergency costs while the lower level focused on the maximization of victims’
satisfaction. Ahmadi et al. [31] proposed a multi-depot location-routing model
considering network failure, multiple uses of vehicles, and standard relief time where
the penalty cost of unsatisfied demand was minimized with another two objective
functions. Nayeem et al. [32] set up a robust optimization model to hedge against
uncertainties in relief distribution centers’ capacity and relief demand with the
objective to minimize the weighted sum of commodity shortage and other costs. Sheu
et al. [33] addressed a collaboration approach for maintaining supply-demand balance
in post-disaster relief by two levels of recursive functions where both relief oversupply
impact and relief undersupply impact was required to be minimized in the objective

function.

Victims’ unsatisfied demands are usually calculated as the difference between victims’
expected amounts of relief and actual amounts of relief distributed to victims. A few
papers considered victims® unsatisfied demands as the single objective in relief

distribution optimization models while it is mainly integrated with other objectives in



the multi-objective optimization models. Moreover, unsatisfied demands caused by
uncertain demands have received increasing attention. The unmet demand rate and the
penalty cost of unmet demands are also widely used to measure victims’ unsatisfied
demands while commodities shortage and supply-demand imbalance could be counted

as the derived forms.
2.2.3 Fairness

Bozorgi-Amiri et al. [34] designed a dynamic stochastic programming model for a
humanitarian relief logistics problem. There were three objectives and the one used to
minimize the maximum amount of shortages among the affected areas in all periods
was for ensuring relief commodity delivery to all demand points. Cao et al. [35]
formulated the sustainable disaster supply chain by a mixed-integer nonlinear
programming model to maximize the lowest victims’ satisfaction, and minimize
respectively the largest deviation in victims’ satisfaction for all demand points and
sub-phases. Huang et al. [36] studied a multi-period relief distribution network with
time window and split delivery where three objectives were proposed to minimize the
variances of delivery quantities, arrival times, and deprivation times in different
locations. Zhu et al. [37] built two emergency relief routing models for injured victims
considering equity and priority. The fairness issue was presented by the relative
deprivation cost objective and measured by minimizing the absolute value of
deviations between the absolute deprivation costs in any two disaster nodes. De
Angelis et al. [38] established a vehicle routing variable depot full load model for
emergency food aid deliveries by air in Angola. Although the objective function is for
maximizing the total satisfied demand, fairness was formulated by a constraint that the
lower bound on the demand must be satisfied for each client. Clark et al. [39] developed
a network transshipment model for planning humanitarian relief operations in a similar
way where fairness was ensured by a constraint that allowed planners to set minimum

delivery levels for each recipient.

Commodity shortages, delivery time, and economic valuation are widely used
measures to describe fairness in relief distribution problems. Minimizing their maximal
values and minimizing their absolute values of deviations or variances in any two
disaster nodes are frequently used techniques to formulate fairness. As unsatisfied

demand, relief distribution problems concerning fairness are usually studied as



multi-objective optimization problems. It can be considered as an extended discussion
for travel time and/or unsatisfied demand. However, unlike travel time and unsatisfied
demand which are mostly formulated as objective functions, fairness is formulated as

constraints in some cases.

3 Solving Approaches

Two specific types of algorithms: exact and heuristic, are widely used to solve difficult
combinatorial problems. Exact algorithms use sophisticated mathematical optimization
methods to find the optimal solution. Heuristic algorithms search the solution space to
find an area in which the solution might be located and then search for a solution in this
area. Moreover, machine learning algorithms have emerged as a powerful tool in this
field that requires an agent to learn for optimal or sub-optimal decisions based on
supervised, unsupervised, or reinforcement learning. Because of their difference,
discussions on solving approaches used to generate solutions for relief distribution
models concerning victims’ satisfaction are organized into three subsections. Moreover,
all publications involved in this section are listed in Table 2 for readers' convenience.

Table 2 Comparison of solving approaches used to generate solutions for relief

distribution problems concerning victims’ satisfaction

No. of objectives | Algorithms Solution types
Rivera et al. (2016) 1 Extended bellman-ford algorithm Optimal
Briskorn et al. (2020) 1 Branch and bound algorithm Optimal
Safaei et al. (2020) 2 Goal programming Optimal
Liu et al. (2021) 1 Multiple dynamic programming algorithm | Optimal
Aliakbari et al. (2022) 1 GA Feasible
Lietal. (2019) 2 Steady-state parallel GA Feasible
Chang et al. (2014) 3 Greedy-search-based multi-objective GA | Pareto
Ransikarbum et al. (2021) |2 Hybrid NSGA 11 Pareto
Huo et al. (2022) 2 Improved NSGA-II Pareto
Zhou et al. (2017) 2 MOEA/D Pareto
Ferrer et al. (2020) 6 ACO Feasible
Wang et al. (2016) 1 Hybrid ACO Feasible
Zhang et al. (2018) 3 Immune ACO Pareto
Ding et al. (2011) 1 Fish-swarm ACO Feasible
Mohammadi et al. (2016) | 3 Multi-objective PSO Pareto




He et al. (2015) 1 PSO Feasible

Mondal et al. (2019) 2 PSO Feasible

Ejlaly et al. (2019) 3 Ultra-initiative PSO Pareto

Lietal. (2014) 1 Improved simulated annealing algorithm Feasible

Onoda et al. (2020) 2 Reactive tabu search Feasible

Chen et al. (2020) 2 Improved differential evolution algorithm | Feasible

Ferrer et al. (2016) 6 GRASP Feasible

Victoria et al. (2015) 1 Multi-start iterated local search Feasible
Hybrid benders decomposition and variable

Davoodi et al. (2019) 1 i Feasible
neighborhood search

Alem et al. (2016) 1 Two-phase heuristic Feasible
Linear programming relaxation-based

Lei et al. (2016) 1 o Feasible
heuristic

Yu et al. (2021) 3 Q-learning algorithm Optimal

Fan et al. (2022) 3 Deep Q-Network-based approach Feasible
Heuristic multi-agent reinforcement

Yang et al. (2020) 1 ) ) ] Feasible
learning scheduling algorithm

3.1 Exact algorithms

Rivera et al. [40] designed an extended bellman-ford algorithm to minimize the sum of
arrival times for a single-vehicle routing problem raised by disaster logistics where
dominance rules, and lower and upper bounds were added to speed up the algorithm.
Briskorn et al. [41] developed a method based on a branch and bound approach for
solving the problem considering disaster road clearance and relief distribution
simultaneously where every demand had to be fulfilled up to its individual deadline.
Safaei et al. [42] presented a bi-objective bi-level optimization model to design an
integrated framework for relief logistics operations. The goal programming approach
was employed for the upper-level decision to minimize deviations of total operational
cost and total unsatisfied demand. Liu et al. [43] addressed a multiple dynamic
programming algorithm to minimize transportation time for medical supplies in major
public health emergencies where the algorithm was a combination of some separated

dynamic programming operations.



It is guaranteed that the exact algorithm generates the optimal solution if an
optimization problem can be solved. Owing to the calculation accuracy, some
researchers improve classic exact algorithms to solve relief distribution problems
concerning victims’ satisfaction and these algorithms could obtain better performance
than commercial solvers such as CPLEX, Gorubi, and LINGO. However, exact
algorithms are not able to propose solutions for all problems. Particularly, it is hard for
them to generate feasible solutions for large instances in a reasonable time. Thus, the
number of publications using exact algorithms to solve relief distribution problems
concerning victims’ satisfaction is relatively small since these problems are usually

considered as large-scale optimization problems in real-life applications.
3.2 Heuristic algorithms

A heuristic algorithm usually consists of 4 components: (1) initial solutions
initialization, (2) random operations to get new solutions, (3) objective function and
fitness function calculation, and (4) elite strategy to filter good solutions. It iterates
continuously from (2)-(4) until the termination conditions are reached. There is no
general framework behind the design of a heuristic algorithm that is guaranteed to find
the optimal solution. However, the development of heuristic algorithms has received a
lot of attention in this field because of the computational complexity of relief

distribution problems concerning victims’ satisfaction.
3.2.1 Genetic algorithm (GA)

Aliakbari et al. [44] used a GA to solve a multi-echelon, multi-period, and
multi-commodity VRP considering the fair distribution of goods and services in a way
that social costs were minimized. Li et al. [45] developed a model for the post-disaster
road network repair work scheduling and relief logistics problem while a maximum
relative satisfaction degree-based steady-state parallel GA was designed to solve this
model. Chang et al. [46] addressed a greedy-search-based GA that dynamically
adjusted distribution schedules from various supply points according to the
requirements to minimize unsatisfied demand, time to delivery, and transportation
costs. With a focus on conflicting objectives between fairness and cost, Ransikarbum et
al. [47] proposed a hybrid approach based on the non-dominated sorting genetic
algorithm-II (NSGA 1II) to solve the relief distribution and short-term network

restoration problem. Huo et al. [48] studied a postdisaster material scheduling and



distribution model, and an improved NAGA II where overall dispatch time
minimization and maximum waiting time minimization were taken as objectives. Zhou
et al. [49] used the framework of multi-objective evolutionary algorithm based on
decomposition (MOEA/D) to generate solutions for multi-period dynamic emergency
resource scheduling problems considering affected areas’ satisfaction and delayed

delivery.

Inspired by the theory of biological evolution, GAs simulate the problem to be solved
as a process of biological evolution while generating the next-generation solution
through selection, crossover, mutation, and other operations [8]. It is probably the most
well-known algorithm for solving relief distribution problems concerning victims’
satisfaction. Some search uses the basic version directly while most of them modify
certain genetic operations according to specific problems to increase overall
performance. The NSGA 1I is inherited from the classic version but has developed as
the most widely used method in this field if multiple objectives are considered.
Moreover, the ranking and crowding mechanism of NSGA 1I is the base for many other

multi-objective heuristic algorithms.
3.2.2 Ant colony optimization (ACO)

Ferrer et al. [S0] developed an elaborated methodology based on ACO to address the
last mile distribution problem in humanitarian logistics concerning cost, time, equity,
reliability, security, and priority. By combining both saving algorithms and a simple
two-step 2-opt algorithm, Wang et al. [51] proposed a hybrid ACO-based algorithm for
emergency transportation problems during post-disaster scenarios where fairness and
effectiveness were considered. Zhang et al. [52] combined ACO with artificial immune
and used it to solve the routing optimization problem of grain emergency vehicle
scheduling with needs satisfaction maximization, total cost minimization, and
distribution time minimization. Ding et al. [53] designed a fish-swarm ACO to solve an
emergency logistics distribution routing optimization model while seeking the shortest

delivery time as the ultimate goal.

ACO is a probabilistic algorithm inspired by the ants’ foraging behavior. It emulates the
way that the ants manage to find the shortest path from their nest to food sources. The
positive feedback is kept through the pheromone trails deposited by the ants when they

move. Instead of using the basic version, most works develop it as a hybrid algorithm



by combining its main idea with other methods. Moreover, a few researchers have tried
to use ACO-based algorithms to generate Pareto-fronts for relief distribution problems

concerning victims’ satisfaction while it remains open to further research.
3.2.3 Particle swarm optimization (PSO)

Mohammadi et al. [54] designed a multi-objective PSO algorithm to solve a stochastic
programming model that attempts to maximize demand coverage, minimize cost and
minimize satisfaction difference for emergency supplies. He et al. [55] used K-means
clustering to set up local distribution centers and PSO to design local optimal allocation
routings for emergency relief VRP with the goal to achieve the shortest transport time.
Mondal et al. [56] observed that PSO achieved the best results when it was utilized to
minimize unsatisfied demand and resource non-allocable percentages for the resource
allocation problem in a disaster response situation. Ejlaly et al. [57] found that the
ultra-initiative PSO was efficient to produce good responses for the three-level relief
cycle logistics under uncertain conditions and on a periodic basis where unfulfilled

demand, fairness, and total cost were concerned.

PSO is a population-based stochastic optimization technique that simulates the social
behavior of fish schooling or bird flocking. It optimizes a problem by iteratively
updating each particle’s velocity and position based on the cognition part and the social
part. Owing to its high convergence speed, certain research just adopts the basic PSO to
solve relief distribution problems concerning victims’ satisfaction. However,
techniques to avoid the algorithm stuck at local optima should receive more attention.
Moreover, some literature has discussed the efficiency when using PSOs to solve
multiple objectives optimization problems while there is still a lack of well-known

multi-objective PSOs.
3.2.4 Others

Li et al. [58] adopted the improved simulated annealing algorithm to improve the
calculation efficiency when solving an emergency resource dispatching model with the
objective to minimize total travel time and constraints to decide the routes that need to
be repaired first. Onoda et al. [59] proposed a reactive tabu search-based optimal
vehicle routing method in the distribution area when a natural disaster occurred where

the total distribution time and the maximum time of one distribution were both



considered. Chen et al. [60] designed an improved differential evolution algorithm to
solve a bi-level programming model for natural disaster relief concerning distribution
time minimization and allocation fairness maximization. Ferrer et al. [61] addressed a
humanitarian aid distribution model taking into account the cost and time of operation,
the security and reliability of the routes, the equity and priority of aid handed out, and
solved it by a GRASP-based metaheuristic. Victoria et al. [62] presented a
mixed-integer linear program and a two-phase heuristic method based on multi-start
iterated local search for solving the VRP with time-dependent demand in humanitarian
logistics and total arrival time minimization. Davoodi et al. [63] developed an
integrated model to minimize the late arrival of relief vehicles that cross points en route
to disaster locations and solved this issue through hybrid benders decomposition and
variable neighborhood search. Attempting to improve demand fulfillment policy, Alem
et al. [64] established a two-stage stochastic network flow model for logistics planning
in disaster relief and proposed a simple two-phase heuristic to solve it within a
reasonable computing time. Lei et al. [65] studied a heuristic algorithm based on
mixed-integer programming to find an inventory allocation and production plan with a
shipping schedule for emergency operations scheduling so that total tardiness is

minimized.

Simulated annealing, tabu search, GRASP, iterated local search, and variable
neighborhood search are widely used heuristic algorithms for solving optimization
problems. All of them can be adapted to generate feasible solutions for relief
distribution problems concerning victims’ satisfaction although the number of work
that we have found in this field is limited. Instead of being used independently, most of
them are cooperative with other methods, particularly variable neighborhood search. In
addition to existing heuristic algorithms, some researchers have also tried to construct
customized heuristic algorithms for specific applications. Computational experiments
have verified their efficiency against commercial solvers while a further discussion

between the proposed heuristics and existing heuristics is deserved.
3.3 Machine learning algorithms

Yu et al. [66] developed a Q-learning algorithm, a type of reinforcement learning
method, to address resource allocation in humanitarian logistics using three critical

performance indicators: efficiency, effectiveness, and equity. Several small-scale



instances were tested in numerical experiments and showed that the execution time of
the Q-learning algorithm was faster than that of an exact algorithm and the accuracy
was higher than that of a heuristic algorithm. Keeping the same objective functions as
[66], Fan et al. [67] applied Markov decision process to establish the formulation of the
emergency supply distribution problem and designed a Deep Q-Network-based
approach to tackle this issue. Computational results verified that the proposed
algorithm could be a good compromise choice of the exact algorithm and the heuristic
algorithm if solving speed and solving accuracy were both considered. Yang et al. [68]
studied a heuristic multi-agent Q-learning scheduling algorithm, ResQ, to schedule a
rapid deployment of volunteers to rescue victims in dynamic settings with the objective
to minimize total distance. Compared with five classical search methods, ResQ had the

best overall performance.

Using machine learning algorithms to solve optimization problems is an emerging
technological topic. To the best of our knowledge, only three articles have tried to adopt
machine learning algorithms to solve relief distribution optimization models while only
[66, 67] care about victims’ satisfaction. Moreover, all of these studies focus on
Q-learning-based algorithms while supervised, unsupervised, and other reinforcement
learning methods are overlooked. Q-learning has been proven to converge toward the
optimal solution. However, it is hard to guarantee that its variants converge to the
optimal solution while some of them even do not guarantee convergence. Although the
aforementioned results display that Q-learning-based algorithms obtain better solution
quality than heuristic algorithms and save more execution time than exact algorithms, it
fails to overcome any of them from all metrics. Therefore, it is still hard for machine

learning algorithms to replace exact or heuristic algorithms in this field.

4 Discussions and Future Trends

Relief distribution problems concerning victims’ satisfaction has received a lot of
attention in recent years. It is widely studied as a single-objective or multi-objective
optimization problem where victims’ satisfaction is usually formulated as the shortest
travel time, the lowest unsatisfied demand, and the maximum fairness. However, few
works have integrated psychological factors into victims’ satisfaction with relief
distribution problems. Different from general satisfaction, satisfaction concerning

psychological factors is decided based on the potential value of losses and gains rather



than the final outcome. Some researchers have discussed the importance of
psychological factors in emergency situations while only decision makers’
psychological factors are concerned [69, 70]. Victims’ and decision makers’
psychological factors are different and need to be formulated separately. Thus,
establishing multi-objective relief distribution models where at least one objective
deals with victims’ satisfaction considering psychological factors deserve further

discussion.

Most aforementioned works have discussed victims’ satisfaction in relief distribution
scenarios through theoretical knowledge and past experience. Rare studies have tried to
integrate victims’ satisfaction identification with optimization models and solving
approaches in relief distribution concerning victims’ satisfaction. Traditional methods
such as case-based reasoning [71] and time series modeling [72] can be used to forecast
victims’ unsatisfaction relying on historical data while it is hard for them to work well
for in-progress disaster areas. Social media platforms enable victims to keep in touch
with outside and share real-time local information. Previous research has used social
media data to predict disasters and issue early warnings [73, 74]. However, none of
them have focused on mining victims’ satisfaction as far as our knowledge is concerned.
Therefore, how identifying new objectives and constraints for relief distribution
models concerning victims’ satisfaction through social media data remains a challenge

and needs to be further elaborated.

Exact algorithms are only applicable for small-scale problems while machine learning
algorithms are staying at the starting point for solving relief distribution problems
concerning victims’ satisfaction. Moreover, the computational time of exact algorithms
and machine learning algorithms is much longer than heuristic algorithms when
solving complex and large problems. Therefore, most studies use heuristic algorithms
in this field. However, the execution time of heuristic algorithms is still long for
emergency circumstances where decisions have to be made in a very short time.
Graphics Processing Units (GPUs) parallelization can generally achieve promising
speed-ups for time-sensitive issues. Certain works have tried to propose GPU-based
parallel heuristic algorithms for optimization problems [75] while showing the
difficulties to execute them completely on GPUs [76, 77]. It is even more challenging

to develop GPU-based fully parallel multi-objective heuristic algorithms. However, it



is interesting to utilize GPU computing techniques to enhance heuristic algorithms and
study how to use them to generate fair solutions for relief distribution problems

concerning victims’ satisfaction within a short response time.

5 Conclusions

This paper presented a survey for some of the most representative publications working
with optimization models and solving approaches in relief distribution concerning
victims’ satisfaction. Firstly, collected models were classified into three categories by
the commonly used objectives and specified by objective functions, distribution
structure, dynamic features, and hybrid systems. Meanwhile, the most frequently used
formulation for describing victims’ satisfaction: the shortest travel time, the lowest
unsatisfied demand, and the maximum fairness were summarized. Second, gathered
solving approaches were analyzed from exact algorithms, heuristic algorithms, and
machine learning algorithms respectively. As the development of heuristic algorithms
received more attention in this field, they were further studied by genetic algorithms,
ant colony optimization, particle swarm optimization, and others. It concluded that
most works combined the main idea of one algorithm with other methods rather than
keeping the verbatim port of the original design. Finally, establishing multi-objective
models considering victims’ psychological factors, identifying new objectives and
constraints through social media data, and developing GPU-based heuristic
algorithms to solve large-size real-world applications were indicated as the future

trends.
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