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Signed Tropicalizations of Convex
Semialgebraic Sets ?

Mateusz Skomra ∗

∗ LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
(e-mail: mateusz.skomra@laas.fr).

Abstract: We study the signed valuations of convex semialgebraic sets defined over non-
Archimedean fields. This is motivated by the efforts to understand the structure of semialgebraic
sets that arise in convex optimization, such as the spectrahedra and the hyperbolicity cones.
We give a full characterization of regular sets that are obtained as signed tropicalizations of
convex semialgebraic sets, and we prove that the signed tropicalizations of hyperbolicity cones
have a more restrictive structure. To obtain our results, we combine two recent advances in the
area of tropical geometry: the study of signed valuations of general semialgebraic sets and the
separation theorems for signed tropical convexities.
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1. INTRODUCTION

Convex semialgebraic sets arise naturally in convex opti-
mization problems such as the semidefinite programming
or the hyperbolic programming. As a result, questions
motivated by optimization problems, such as the study
of the expressivity of semidefinite programming, lead to
questions in real algebraic geometry (e.g., study of classes
of sets that are representable by linear matrix inequalities).
We refer to Blekherman et al. (2013) for more information
about the interactions between these disciplines. In this
work, we apply techniques from tropical geometry to study
convex semialgebraic sets.

One of the research directions in tropical geometry is
to analyze the (semi)algebraic sets defined over non-
Archimedean fields with the help of the valuation map.
This idea was first applied to sets arising in convex opti-
mization by Develin and Yu (2007), who studied the trop-
icalizations of polyhedra. This inspired numerous other
works on the tropicalizations of polyhedra, see, e.g., Al-
lamigeon et al. (2015, 2018); Allamigeon and Katz (2017);
Joswig and Smith (2018). The study of tropical polyhedra
was also extended to more general semialgebraic sets, such
as spectrahedra (Yu, 2015; Allamigeon et al., 2020), hy-
perbolicity cones in dimension 3 (Le Texier, 2021), convex
semialgebraic sets (Allamigeon et al., 2019), and arbitrary
semialgebraic sets (Alessandrini, 2013; Allamigeon et al.,
2020; Jell et al., 2022). A recent idea proposed by Jell et al.
(2022) is to study the tropicalizations of semialgebraic sets
using a signed valuation map. In other recent development,
Loho and Végh (2020) and Loho and Skomra (2022b)
started a systematic study of tropical convexities in the
signed setting and proved new tropical analogues of the
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hyperplane separation theorem. In this work, we combine
both ideas by studying the signed valuations of convex
semialgebraic sets. Our main goal is to generalize the
known results about tropical polyhedra and spectrahedra
to the tropicalizations of hyperbolicity cones in arbitrary
dimension. We present the first results in this direction, by
characterizing the regular sets arising as tropicalizations of
convex semialgebraic sets, and by showing that the trop-
icalizations of hyperbolicity cones have a more restricted,
“tropically quadratic” structure.

2. PRELIMINARIES

2.1 Generalized Puiseux series

In this work, we denote by K the field of absolutely
convergent generalized real Puiseux series, i.e., series of
the form

x = x(t) = c1t
α1 + c2t

α2 + . . . , (1)

where both the coefficients ci and the exponents αi are real
numbers. We further suppose that the sequence (αi)i>1 is
strictly decreasing and either finite or unbounded and that
the series x(t) is absolutely convergent for all sufficiently
large t > 0. It is known that K is a real closed field (van den
Dries and Speissegger, 1998). In particular, K is ordered by
putting x > 0 ⇐⇒ c1 > 0. We state our results for K, but
we note that a quantifier elimination argument discussed
in Allamigeon et al. (2020) allows to transfer our main
theorems from K to any real closed field equipped with a
nontrivial and convex valuation whose value group is R.

As a non-Archimedean field, K has a valuation function
val : K→ R ∪ {−∞} that maps a series of the form (1) to
its leading exponent, val(x) = α1, with val(0) = −∞. We
note that the usual convention in the theory of valued fields
would be to define the valuation as −α1 rather than α1.
We use the opposite convention for the sake of coherence



with the max-plus tropical semiring introduced below. One
can easily adapt our results to the other setting. We also
use an extended valuation map that keeps track not only
of the leading exponent of the series but also of its sign.

Definition 1. We define the signed valuation sval : K →
({−1, 1}×R)∪{−∞} by setting sval(x) =

(
sign(x), val(x)

)
,

with the convention that sval(0) = −∞.

We extend the definitions of val and sval to vectors by
applying them coordinatewise. A signed tropicalization of
a semialgebraic set X ⊂ Kn is then given by sval(X). An
alternative viewpoint follows from the work of Alessandrini
(2013), who showed that if X ⊂ Kn>0, then val(X)
coincides with the “log-limit” of setsX(t) ⊂ Rn>0 obtained

by fixing the parameter t, val(X) = limt→∞ logt
(
X(t)

)
. In

this way, if X ⊂ Kn, then sval(X) is obtained by “gluing”
the log-limits given by all sign patterns.

2.2 Signed tropical numbers

Tropicalizations of semialgebraic sets are studied with the
help of an algebraic structure known as the tropical semir-
ing, see Maclagan and Sturmfels (2015); Joswig (2021)
for more information. The tropical (max-plus) semiring is
defined as T = (R∪{−∞},⊕,�), where a⊕b = max{a, b}
and a�b = a+b. In order to replace valuation by the signed
valuation, we extend T to signed tropical numbers. The set
of signed tropical numbers is T± = ({−1, 1}×R)∪{−∞}.
By convention, we denote the numbers of the form (1, a)
by a and call them positive. We also denote the numbers
of the form (−1, a) by 	a and call them negative. Then,
the set T± is ordered by mimicking the order of the real
line, with −∞ having the role of zero, so that

	2 < 	1 < 	(−1) < −∞ < (−1) < 1 < 2 .

We denote by [a, b] the interval from a to b in T± and
we embed the set T in T± by identifying it with the set of
signed tropical numbers that are not smaller than −∞. We
equip T± with the topology induced by the order and use
the product topology on Tn±. We also use a sign function
tsign: T± → {−1, 0, 1} that gives the sign of a signed
tropical number, tsign(−∞) = 0, and an absolute value
function | · | : T± → T that acts by forgetting the sign of
a tropical number. In this way, the function φ : T± → R
defined as φ(x) = tsign(x) exp(|x|) is an order-preserving
homeomorphism. Thus, Tn± and Rn are homeomorphic.

In order to equip T± with an algebraic structure, we first
define the multiplication on T± (still denoted by �) as
a� b = −∞ if −∞ ∈ {a, b} and

a� b =
(
tsign(a) tsign(b), |a|+ |b|

)
otherwise. As an example, (	2)�3 = 	5, (	3)�(	4) = 7.
Defining the addition is more problematic as there is no
way to define an addition that extends⊕ and turns T± into
a semiring. As a way to overcome this difficulty, we equip
T± with a multivalued addition � : T± → 2T± defined as

a� b =


a if |a| > |b| or a = b,

b if |b| > |a|,
[	|a|, |a|] otherwise.

In this way (	2)�3 = 3, but (	2)�2 = [	2, 2]. We extend
the addition to vectors by applying it coordinatewise and
to sets A,B ⊂ T± by putting A�B = ∪{a� b : a ∈ A, b ∈
B}. These operations turn (T±,�,�) into a hyperfield,

see Baker and Bowler (2019) for more information. The
following lemma gives a link between the signed valuation
and the hyperfield operations.

Lemma 2. For any x,y ∈ K we have sval(xy) = sval(x)�
sval(y) and sval(x+ y) ∈ sval(x)� sval(y).

2.3 Tropical polynomials

A (signed) tropical polynomial P (x) ∈ T±[x] is an expres-
sion of the form

�
α∈Λ

cα � x�α1
1 � . . .� x�αn

n ,

where cα ∈ T±. A tropical polynomial defines a mul-
tivalued function P : Tn± → 2T± . One can check that
if we evaluate P on a point x ∈ Tn±, then the result
is either a singleton in T± or an interval of the form
[	a, a] for some a > −∞. We define the (signed) tropical
hypersurface of P as the set {x ∈ Tn± : −∞ ∈ P (x)}.
Furthermore, given a polynomial P ∈ K[x] of the form
P (x) =

∑
α∈Λ cαx

α1
1 . . .xαn

n , we define its formal tropical-

ization as trop(P ) =�α∈Λ sval(cα)� x�α1
1 � . . .� x�αn

n .
The next lemma follows from Lemma 2 and links the
classical and tropical hypersurfaces.

Lemma 3. Let P ∈ K[x] be a polynomial. Then, the set

sval
(
{x ∈ Kn : P (x) = 0}

)
is included in the tropical hypersurface of trop(P ). In
general, this inclusion may be strict.

Example 4. Consider the bivariate polynomial P ∈ K[x]
defined as P (x) = (x1−1−t−1)4 +x4

2−1. By opening the
parentheses, one can see that the formal tropicalization of
P is given by x�4

2 � x
�4
1 � (	x�3

1 )� x�2
1 � (	x1)� (−1).

The tropical hypersurface of trop(P ) is the boundary of
the set depicted in Figure 1. In this case, the inclusion
from Lemma 3 is satisfied as an equality.

2.4 Tropical convexity

In the unsigned case, we say that a subset X ⊂ Tn is
tropically convex if for every x, y ∈ X and for all λ, µ ∈ T
such that λ⊕µ = 0 we have (λ�x)⊕(µ�y) ∈ X. We note
that this mimics the definition of convexity over Rn, since 0
is the neutral element of � and the weights λ, µ are always
“nonnegative”, as they satisfy λ, µ > −∞. The following
lemma relates the classical and tropical convexity, see,
e.g., Develin and Sturmfels (2004), Develin and Yu (2007),
Allamigeon et al. (2019) for more information.

Lemma 5. If X ⊂ Kn is convex, then val(X) ⊂ Tn is
tropically convex.

The following extension of tropical convexity to T± was
introduced by Loho and Végh (2020).

Definition 6. We say that a set X ⊂ Tn± is TO-convex
if for every x, y ∈ X and for all λ, µ ∈ T± such that
λ, µ > −∞ and λ� µ = 0 we have (λ� x)� (µ� y) ⊂ X.

The drawback of multivalued addition is that the TO-
convexity is a rather strong property. In particular,
Lemma 5 does not generalize to the signed setting (this
requires to use a weaker notion of TC-convexity). Never-
theless, we still have a weaker property.

Lemma 7. (Loho and Skomra (2022a)). IfX ⊂ Kn is con-
vex, then the interior of sval(X) ⊂ Tn± is TO-convex.
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Fig. 1. Signed valuation of a convex semialgebraic set.

Example 8. The TV screen set is a convex set in R2

defined as {x ∈ R2 : x4
1 + x4

2 6 1}. The convexity of the
TV screen set implies that the set S1 = {x ∈ K2 : (x1 −
1− t−1)4 +x4

2 6 1} is also convex. Figure 1 depicts the set
sval(S1). We note that this set is TO-convex.

Example 9. The bean curve is the curve defined by the
polynomial p(x) = x1(x2

1 + x2
2) − x4

1 − x2
1x

2
2 − x4

2. The
region {x ∈ R2 : p(x) > 0} is convex. This implies that the
set S2 = {x ∈ K2 : x1 > t−1, p(1 − x1,x2) > 0} is also
convex. Its signed valuation is the same as in the previous
example, sval(S1) = sval(S2).

3. MAIN RESULTS

We now state our main results concerning the signed
valuations of convex semialgebraic sets. Some of these
results were obtained in collaboration with Georg Loho.

For the purpose of this work, we say that a set X ⊂ Tn±
is regular if it is equal to the closure of its interior.
Regular sets arise naturally in the study of valuations of
convex sets—it is known that generic tropical polyhedra
are regular (Allamigeon et al., 2015) and the same is true
for tropical Metlzer spectrahedra (Allamigeon et al., 2020).

3.1 Polyhedra

The signed valuations of polyhedra are studied in Loho and
Végh (2020); Loho and Skomra (2022a,b). In particular,
we have the following result.

Theorem 10. (Loho and Skomra (2022a)). Let X ⊂ Tn±
be a regular set. Then, the following are equivalent:

(1) X is an intersection of finitely many signed tropical
halfspaces.

(2) X is a signed valuation of a polyhedron.

Here, a signed tropical halfspace is a set of the form

{x ∈ Tn± : P (x) ∩ [−∞,+∞) 6= ∅} ,
where P (x) is an affine tropical polynomial,

P (x) = c0 � (c1 � x1)� . . .� (cn � xn) .

For the unsigned valuation, it is known that Theorem 10
holds even without the regularity assumption, see Develin
and Yu (2007); Gaubert and Katz (2011). On the other
hand, some assumption is necessary in the signed case.
Indeed, an intersection of finitely many signed tropical
halfspaces does not need to be connected, whereas a signed
valuation of a convex set is always connected. It is an open
question if Theorem 10 is true if we replace the assumption
“X is regular” by “X is connected”.

3.2 General convex semialgebraic sets

In order to characterize the regular sets that arise as
images of convex semialgebraic sets, we need the following
definition.

Definition 11. Let X ⊂ Tn± be any set and let σ ∈
{−1, 1}n be a vector of signs. Then, the maximal stratum
of X given by σ is the subset of Rn defined as

str(σ,X) = {(|x1|, . . . , |xn|) : x ∈ X ∧ ∀i, tsign(xi) = σi} .

We also say that a closed subset of Rn is semilinear if it
is a union of polyhedra of the form {x : Ax > b}, where
b ∈ Rm and A ∈ Qm×n is a rational matrix. The following
theorem is our main result about tropicalizations of convex
semialgebraic sets.

Theorem 12. Suppose that the set X ⊂ Tn± is regular.
Then, the following are equivalent:

(1) X has a TO-convex interior and semilinear maximal
strata.

(2) X is a signed valuation of a convex semialgebraic set.

For the unsigned valuation, a full characterization that
does not require regularity was given by Allamigeon et al.
(2019). As in the case of polyhedra, it is an open question
to obtain a generalization of Theorem 12 that does not
require regularity.

The next corollary gives more insight into the structure of
signed valuations of convex cones.

Corollary 13. Suppose that X ⊂ Kn is a convex semi-
algebraic cone such that sval(X) is regular. Let W be
any nonempty maximal stratum of sval(X). Then, W is
a support of a pure polyhedral complex of dimension n.
Furthermore, if F is an (n − 1)-dimensional face of this
complex, then the affine space spanned by F is of the form

{x ∈ Rn : λ+ xk = pTx}
for some k ∈ [n], λ ∈ R, and p ∈ Qn>0 that satisfies pk = 0

and
∑n
i=1 pi = 1.

Example 14. Consider the cone S3 = {x ∈ K3 :
(
x1 −

(1 + t−1)x3

)4
+ x4

2 − x4
3 6 0,x3 > 0}, which is a

homogenized version of the set S1 from Example 8. Its
signed valuation S = sval(S3) is therefore a (tropically)
homogenized version of the set depicted in Figure 1. If we
fix σ = (1, 1, 1), then str(σ, S) is a polyhedral complex
with three faces of dimension 2. These faces are included
in affine spaces given by x3 = x1, x3 − 1 = x1, and

x2 =
1

4
x1 +

3

4
x3 . (2)

3.3 Hyperbolicity cones

Let us recall that a homogeneous polynomial P ∈ K[x]
is hyperbolic with respect to e ∈ Kn if P (e) > 0 and,
for all x ∈ Kn, all the roots of the univariate polynomial
λ 7→ P (e − λx) belong to K. If P is hyperbolic with
respect to e, then the set

{x ∈ Kn : λ 7→ P (e− λx) has only nonnegative roots}
is called its hyperbolicity cone. The following lemmas
summarize basic properties of hyperbolicity cones. They
are stated over R in Renegar (2006), but they hold in all
real closed fields.



Lemma 15. Hyperbolicity cones are convex.

Lemma 16. The hyperbolicity cone of P with respect to e
is equal to the closure of the connected component of the
set {x ∈ Kn : P (x) > 0} that contains e.

Our first result gives a tropical analogue of Lemma 16.

Proposition 17. Suppose that X ⊂ Kn is a hyperbolicity
cone of P with respect to some point. Furthermore,
suppose that sval(X) is regular and let e be any point
in the interior of sval(X). Then, sval(X) is equal to the
closure of the connected component of the set

{x ∈ Tn± : trop(P )(x) is a positive singleton}
that contains e.

We note that the boundary of the connected component
mentioned in Proposition 17 belongs to the tropical hy-
persurface of trop(P ). Proposition 17 implies that this
boundary is a subset of sval

(
{x ∈ Kn : P (x) = 0}

)
.

Our final result implies that signed valuations of hyper-
bolicity cones have more restricted structure than signed
valuations of general convex semialgebraic sets.

Theorem 18. Suppose that X ⊂ Kn is a hyperbolicity
cone such that sval(X) is regular. Let W be a nonempty
maximal stratum of sval(X) and let F be an (n − 1)-
dimensional face of a polyhedral complex with supportW.
Then, the affine space spanned by F is of the form

{x ∈ Rn : λ+ xk = pTx} , (3)

for some k ∈ [n], λ ∈ R, and p ∈ {0, 1
2 , 1}

n that satisfies
pk = 0 and

∑n
i=1 pi = 1. In particular, p has either one or

two nonzero coefficients.

Example 19. Equation (2) implies that the set S3 from
Example 14 does not satisfy the condition of Theorem 18.
In particular, S3 is not a hyperbolicity cone. By the
discussion in Examples 8 and 9, we recover the known
fact that neither the TV screen set nor the set bounded by
the bean curve are spectrahedral, see Helton and Vinnikov
(2007); Henrion (2010) for more discussion.

Informally, Theorem 18 can be interpreted by saying that
signed valuations of hyperbolicity cones are “tropically
quadratic” since the hyperplanes of the form (3) are given
by tropical polynomials of degree 2. In this sense, Theo-
rem 18 generalizes the result of Allamigeon et al. (2020)
who showed that generic tropical Metzler spectrahedral
cones are described by systems of tropical quadratic in-
equalities. We note however that Theorem 18 is only a local
result: it states that every face separately can be described
by a tropically quadratic polynomial, but does not give a
global characterization of sval(X). I particular, the follow-
ing is the main open question about the tropicalizations of
hyperbolicity cones. This question is the tropical analogue
of the generalized Lax conjecture, see Amini and Brändén
(2018) for more information.

Problem 20. Suppose that X ⊂ Tn± is a signed valuation
of a hyperbolicity cone. Does this imply that X is a signed
valuation of a spectrahedron?

We note that if the answer to Problem 20 is negative and
a counterexample is obtained from a linear transformation
of a real polynomial (like in Example 14), then we would
obtain a negative answer to the generalized Lax conjecture
over the real numbers.
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