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Extending Task and Motion Planning with Feasibility Prediction:
Towards Multi-Robot Manipulation Planning of Realistic Objects

Smail Ait Bouhsain1, Rachid Alami1 and Thierry Siméon1

Abstract— The hybrid discrete/continuous nature of task and
motion planning (TAMP) results often in a combinatorial
explosion. This challenge is even more pronounced in multi-
robot TAMP problems due to the increase in dimensionality of
the action space. Previous works use action feasibility prediction
as a heuristic to accelerate TAMP. However, these methods are
limited to box-shaped objects and specific single or dual robot
settings. In this paper, we expand on our previous work on
action and grasp feasibility prediction [1] by extending its use
to complex-shaped objects and multi-robot systems. Also, we
propose a feasibility-enabled multi-robot TAMP algorithm ca-
pable of tackling complex multi-robot manipulation problems.
We demonstrate the performance of our method compared to a
non feasibility-informed baseline, and show its ability to handle
TAMP problems requiring the collaboration of multiple robots.

I. INTRODUCTION

Task and motion planning (TAMP, see e.g survey [2])
in robotics involves finding a sequence of steps a robot
should take to achieve a goal, along with their corresponding
motions. It mixes discrete symbolic planning and continuous
geometric planning. This combination results in a high com-
binatorial complexity making the search for a geometrically
feasible task plan tedious, time consuming and, in some
cases, unsolvable in a reasonable amount of time. These chal-
lenges do not only come from the combinatorial complexity
of the search, but also the high time cost of calling geometric
planners to verify the feasibility, particularly infeasibility, of
actions and plan their motions.

Recent works [3]–[6] leverage learning methods in order
to tackle this shortcoming of geometric planners. They
propose to learn to predict the feasibility of actions without
the need for querying geometric planning. These feasibility
predictions can then be used as heuristics during task and
motion planning. In a previous work [1], we propose the
AGFP-Net neural network, which predicts the feasibility of
pick and place actions in 3D environments, as well as the
feasibility of subsets of grasps. This model is integrated in a
feasibility-informed TAMP algorithm which uses feasibility
predictions as a heuristic to accelerate planning. The method
proposed in [1] is however limited to box-shaped objects and
obstacles. Also, it is limited to single-robot TAMP problems
and is not able to handle multi-robot settings.

In this work, we tackle these limitations by extending
the use of AGFP-Net to complex-shaped objects, allowing
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(a) Clear problem
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Fig. 1: A visualization of the initial and goal states of 3 of
the multi-robot TAMP problems solved by our method.

efficient action and grasp feasibility predictions in realistic
environments containing real-life objects. We also develop
a framework for feasibility prediction in multi-robot TAMP
problems, and introduce a new way of estimating the feasi-
bility of composite actions involving more than one robot.
Moreover, we propose a feasibility-informed multi-robot
TAMP algorithm capable of solving single and multi-robot
problems such as the ones shown in Figure 1, while taking
advantage of feasibility prediction to notably accelerate the
planning process.

II. RELATED WORK

A. Classical TAMP

Early TAMP research [7]–[15] focused on the geometric
aspect, approaching the problem as a multi-modal motion
planning problem, which involves planning among multiple
motion modes. Many current TAMP techniques [16]–[23]
integrate a task planner with a geometric planner, relying
on geometric backtracking to connect the two. These ap-
proaches, nevertheless, face challenges due to the combina-



torics of the hybrid discrete/continuous search. and the heavy
time consumption of geometric planning, as verifying the
feasibility of symbolic plans still necessitates a large number
of costly calls to the geometric planner.

B. Learning for TAMP

In recent years, learning methods became increasingly
popular in TAMP [3]–[6], [24]–[34], [1]. Many works aim
at providing a learned heuristic to a TAMP planner, such
as evaluating action affordances [29], leveraging experience
to propose promising actions [26], [27], or providing fast
geometric feedback to the task planner thanks to action feasi-
bility prediction [3]–[6]. These methods are however limited
to tabletop environments. In [1], [33], we propose a learning
approach for predicting action and grasp feasibility in 3D
environments. As most feasibility prediction methods, ours is
limited to box-shaped objects. Wells et al. [3] propose to use
SVMs to predict the feasibility of pick and place actions on
complex-shaped objects. These objects are represented using
hand-designed features, which makes the generalizability to
various shapes difficult. Park et al. [35] propose a neural
network for predicting the feasibility of grasp modes in
scenes containing one complex-shaped object and a number
of obstacles. However, this method is object-centric, meaning
that the proposed model needs to be retrained for each new
object shape. In this paper, we extend our action and grasp
type feasibility prediction neural network [1] to complex-
shaped objects, while maintaining generalizability to 3D
environments containing multiple objects of various shapes.

C. Multi-Robot TAMP

Multi-robot TAMP suffers from a higher combinatorial
complexity due to the increased number of robots, and
thus the increased dimensionality of the action space [36].
Previous works [16], [37]–[41] propose various approaches
for task and motion planning in multi-robot settings such
as graph-based and MDP-based techniques. These methods
suffer however from a combinatorial explosion as the number
of robots increases, resulting in a notable increase in the
already high number of calls to the geometric planner.
Also, in most multi-robot TAMP research, the focus is on
coordinated motion planning (e.g handover tasks). In this
paper, we propose to accelerate multi-robot TAMP using
robot-centric feasibility predictions, allowing the planner to
mitigate the combinatorial explosion due to the presence of
multiple robots. We focus on sequential motion planning,
rather than coordinated motion planning, in which objects
are passed between two robots using a pair of pick-place
actions. Driess et al. [4], [28] train a neural network to
predict action feasibility on box-shaped objects in tabletop
environments using two robotic arms. This learning approach
is limited, nevertheless, to the multi-robot setting it is trained
on, requiring a new training if the number of robots increases,
or the robots’ placements change. Our proposed feasibility
prediction framework does not depend on these parameters,
since it queries the neural network for each robot individu-

ally. Park et al. [35] propose a similar method, but focus on
environments containing one movable object only.

III. PROBLEM DESCRIPTION

We tackle manipulation problems where the goal is to
rearrange a set of movable objects in a 3D environment,
comprising nR robot arms with fixed bases, nss stable sup-
port surfaces, nobs fixed obstacles and nO movable objects.

We define the state of the environment as the configuration
of each robot together with the support surface and pose of
all movable objects. The configuration of a robot r at state
s is denoted s(r), whilst the configuration of an object O
is denoted s(O). A transition between two states s and s′

is defined as an action a which involves a specific robot r
picking an object O from its configuration in s, and placing
it at a new configuration q, which becomes the configuration
of O in s′. The action a can be explicitly represented as:

a = Move(r,O, s(O) → q) (1)

The solution to the TAMP problem is a sequence of
actions τ and their corresponding motions Π, which brings
the environment from the initial state s0 to a goal state sgoal.
We define 3 types of actions at the symbolic level. The first
is a Goal action, which moves an object to its goal state.
The second is a Temp action, which places an object at
a temporary placement. The third is a Pass action, which
aims at placing an object inside the intersection between two
robots’ workspaces, so that the second robot can reach it.
We consider the workspace of a robot r, denoted W (r), as
a sphere centered at the first joint of the robot, with a radius
equal to its reach1.

IV. FEASIBILITY PREDICTION

A. Neural Network

In [1], we propose a learning approach based on the
Action and Grasp Feasibility Prediction neural NETwork
(AGFP-Net). Given a representation of the current state of
the environment and the object of interest, it simultaneously
predicts the probability of feasibility of a Pick or Place
action, but also the feasibility of 6 grasp types. Each grasp
type is a set of grasps related to the side from which the
object is approached by the robot. The 3D environment is
represented using 5 depth images corresponding to different
views of the scene, which show all the objects in the
workspace of the robot. Also, all objects poses are shown
in the frame of the robot. Note that these depth images are
constructed internally during planning, and are not obtained
from depth cameras. The object of interest, on the hand, is
represented using a mask over each depth image, showing
the object only at the pose it should picked or placed at.

AGFP-Net is trained on a fully synthetic dataset, com-
prised of randomly generated scenes containing a single
robot, 2 box-shaped objects and up the 4 support surfaces.
The dimensions and poses of these objects are sampled

1Note that this simple model of W (r) is generalizable to more precise
workspace representations, provided that mapping the intersection between
two workspaces is possible.



Fig. 2: Visualization of the feasibility prediction pipeline on an example 2-robot scene. (Top) Scene depth images are
constructed for each robot such that only the objects in the workspace of the robot are shown. Objects present is both robots
workspaces are visible in both scene projections (yellow mustard bottle). (bottom) Scene projections and object masks are
given to AGFP-Net to obtain the action feasibility and the feasibility of 6 grasp types, illustrated on an example object.

randomly within fixed bounds. Our results in [1] show a good
generalization to new environments with a higher number
of objects, obstacles and support surfaces. Nonetheless, the
neural network is by design limited to a single robot, and it
can be used on box-shaped objects only. We refer the reader
to [1] for more details.

B. Generalization to Complex-shaped Objects

In this work, we aim at generalizing AGFP-Net to objects
with more complex shapes. One possibility could be to
generate a new dataset with scenes containing complex-
shaped objects, and retrain the neural network using the
newly generated dataset. However, since the scene pro-
jections are constructed internally, building depth images
of mesh objects can be time consuming, which defeats
the purpose of accelerating TAMP. Also, this method does
not guarantee the generalizability to unseen shapes during
training. Therefore, we propose to represent complex-shaped
objects at the feasibility prediction level using their bounding
boxes. This allows the neural network to generalize to objects
with complex shapes, without the need for any additional
data generation/annotation and training effort to [1], and
without an overhead in inference time.

Given an environment containing mesh objects, the tested
action and the object to manipulate, we generate depth
images as explained in Section IV-A and [1], using the
bounding box of each object. These depth images are then
given as input to AGFP-Net to obtain the probability of
feasibility of performing the action on the object of interest,
as well as the feasibility of each one of the defined grasp
types. Since these grasp types represent continuous subsets
of grasps, all grasps (obtained using an off-the-shelf grasp
planner or from a grasp database) can be associated with one
of these grasp types using simple geometric transforms (cf.
Figure 2). The action a defined in (1) can be decomposed
into Pick and Place sub-actions as follows:

a(r,O, s(O),q) = Pick(r,O, s(O)) + Place(r,O,q) (2)

where Pick corresponds to picking object O using r from
s(O), and Place refers to placing O using robot r at q.
Following [1], we define the probability of feasibility paF of
the action as:

paF = pPick
F × pPlace

F ×max(pa
G) (3)

where pPick
F and pPlace

F are the predicted probabilities of the
Pick and Place sub-actions respectively, and pG(a) is the
vector of combined grasp type probabilities:

pa
G = pPick

G ⊗ pPlace
G (4)

⊗ being the element-wise product.
These probabilities of feasibility of grasp types are used

in (3) to ensure that there is at least one common grasp
type between the Pick and Place actions. Additionally,
during geometric planning, grasps are sorted according to the
probability of feasibility of their corresponding grasp type.
Motion planning is then performed on the most promising
grasps first, allowing a faster planning time.

C. Generalization to Multi-Robot Settings

The design choices behind AGFP-Net [1] ensure that
feasibility prediction is able to cover the whole workspace of
a single robot. One important property of the model is that
it is centered around the robot, meaning that it is dependent
on the kinematics of the robot only, and does not depend
on any other factors such as where the robot is placed in
the environment. This is achieved by expressing all objects
poses, fixed or movable, in the frame of the robot. Also, the
scene projections are constructed such that the center of the
robot’s workspace is at the center of the depth images, and
each projection covers the whole workspace of the robot. As
a result, the scene projections only show the objects inside
the robot’s workspace.

These capabilities allow a smooth generalization of
AGFP-Net to multi-robot problems. Indeed, the neural net-
work can be queried for each robot individually by making
sure the scene projections show the objects (or parts of



objects) in the workspace of the said robot only, and that
the shown poses of these objects are in the frame of the
latter. Given an object pose in the world frame qO and a
robot’s frame transform Tr, an object’s pose expressed in
the frame of the robot is simply qr

O = TrqO. Using this
approach, AGFP-Net can be used to predict feasibility for
each robot to move the objects inside its own workspace.

Moreover, this method allows testing composite actions
such as Pass actions. An object placed inside the intersec-
tion between two robots’ workspaces would be visible in the
scene projections corresponding to each robot, as shown in
Figure 2. A Pass action aims at placing an object at an in-
tersection region for another robot to manipulate. Therefore,
a Pass action is feasible only if the first robot is able to
pick the object from s(O) and place it at the intersection
placement q, and if the second robot is able to pick it from
this placement. Given a Pass action apass(r1, O, s(O),q)
between two robots r1 and r2, we transform the pick and
place poses to the frame of each robot to obtain s(O)r1 , qr1

and qr2 2. Then, we compute the probability of feasibility
p
apass

F of the Pass action between r1 and r2 as:

p
apass

F = paF (r1, O, s(O)r1 ,qr1)× pPick
F (r2, O, qr2) (5)

For actions agoal of type goal, and atemp of type Temp
using a robot r:

p
agoal

F = p
atemp

F = paF (r,O, s(O)r,qr) (6)

We develop a TAMP algorithm which uses these probabil-
ities of feasibility to prioritize feasible actions and speedup
the search of a geometrically feasible task plan.

V. TASK AND MOTION PLANNING

We propose a feasibility-informed multi-robot TAMP al-
gorithm capable of solving problems involving multiple
robots. The main algorithm, shown in Algorithm 1, remains
similar is based on a best-first tree search, where nodes
represent states and edges are actions allowing transitions
between states, following the definitions of Section III. A
list Q of open nodes is maintained and sorted according
to a defined cost. At each iteration, the node s with the
minimum cost is extracted from Q and compared to the goal
state sgoal. If s is a goal state, we retrieve the complete task
plan leading to s then query the geometric planner to check
the feasibility of every action in the task plan and plan their
corresponding motions. If the action sequence is feasible,
then a solution was found. Otherwise, the search continues.
During geometric planning, the probabilities of feasibility
of grasp types for each action are given to the geometric
planning to prioritize feasible grasps.

If s in not a goal state, we expand the node using
the function findChildren, shown in Algorithm 2. It first
samples applicable actions at state s, by calling the function
findPossibleActions which is detailed in Algorithm 3. For
each movable object O in the environment, we find the set

2Note that qr1 and qr2 represent the placement pose expressed in the
frame of robots r1 and r2 respectively, and are not robot configurations.

of robots capable of reaching O at its pose in s, using the
function findReachingRobots(s(O), E). For each robot ri
in the obtained set, we generate Goal, Pass and Temp
actions. In the case where O is not already at its goal pose, if
sgoal is reachable by ri, we sample a set of goal placements
in the workspace of ri. Otherwise, if the goal pose of O is
not reachable by ri, we try to generate Pass placements.

Algorithm 1 Task and motion planner
Input: E, s0, sgoal ▷ Environment, Initial and goal states
1: Q← {s0} ▷ Set of nodes to expand
2: while Solution not found do
3: s← argmincostQ
4: if s ∈ sgoal then
5: [τ,Π]← retrieveSolution(s)]
6: if Π is feasible then
7: return τ , Π
8: end if
9: else

10: Q← Q ∪ findChildren(s, E, sgoal)
11: end if
12: end while

Algorithm 2 findChildren
Input: s, E, sgoal

1: children← ∅
2: A← findPossibleActions(s, E, sgoal)
3: for each a in A do
4: [pa

F , pa
G)]← predictFeasibility(s, E, a)

5: child← nextState(s, a)
6: child.cost← computeCost(child, sgoal, pF (a), E)
7: children← children ∪ child
8: end for
9: return children

We first find the set of robots that are able to reach sgoal.
The planner needs to figure out how to bring O to each one
of these robot’s workspace. In order to do that, we build a
graph Γ which vertices are all the robots in the environment,
and edges represent the existence of an intersections between
two robots’ workspaces. For each robot rg reaching sgoal,
we use a Breadth-First Graph Search to find all possible
paths from ri to rg , and we extract the first robot from each
path. These are all the robots ri can pass object O to in
order to bring it closer to its goal pose. For each robot rj
in the obtained set of robots, we sample a number of Pass
placements at the intersection between W (ri) and W (rj).

Finally, we sample a set of Temp placements in the
workspace of ri. Then, we generate actions corresponding
to each one of the Goal, Pass and Temp placements
sampled3. Once all possible actions are found, we call
predictFeasibility for each action a, which queries AGFP-
Net and uses (3), (4) and (5) to compute the probability of
feasibility of the action and the feasibility of the grasp types.
We construct a new child as the result of applying a at s,
we compute its cost and add it to the list of open nodes.

We define the cost of a node as:

CTotal = CSoFar + CToGoal + CFeasibility (7)

where CSoFar is the number of actions in the branch leading
to the node, CToGoal is the minimum number of actions

3Although the number of samples is a parameter fixed by the user, we
give the planner the possibility to resample new placements, in case the
previous ones do not lead to a feasible solution.



(a) Access problem (b) Sort problem (c) Longswap problem

Fig. 3: Visualization of the initial and goal states for 3 of the 6 problem domains used to test our approach.

Algorithm 3 findPossibleActions
Input: s, E, sgoal

1: A← ∅
2: for each O in movable objects do
3: for each ri in findReachingRobots(s(O), E) do
4: P ← ∅
5: if s(O) /∈ sgoal(O) then
6: if sgoal(O) is reachable by ri then
7: P ← P ∪ sampleGoal(ri, E, sgoal(O))
8: else
9: for rg in findReachingRobots(sgoal(O), E) do

10: next robots← BFS(ri, rg)
11: for rj ∈ next robots do
12: P ← P ∪ samplePass(ri, rj , E)
13: end for
14: end for
15: end if
16: end if
17: P ← P ∪ sampleTemp(ri, E)
18: for each q ∈ P do
19: a←Move(ri, O, s(O)→ q)
20: A← A ∪ a
21: end for
22: end for
23: end for
24: return A

to reach the goal state, and CFeasibility is the feasibility
cost detailed in [1]. In this work, CToGoal is constructed
differently compared to [1] [33] in order to tackle multi-
robot problems. Indeed, we take advantage of the previously
constructed graph Γ to compute the shortest path length to
the goal for each object using Breadth-First Graph Search.
We then sum these path lengths to obtain the minimum
number of actions to reach the goal state.

VI. EXPERIMENTS

A. Test TAMP problems
In order to demonstrate the performance of our TAMP

algorithm, we construct multiple TAMP problems with vary-
ing challenges in single, dual and triple robot settings.
Each problem contains a number of complex-shaped objects
extracted from the YCB [42] and KIT [43] objects databases.
Note that none of these objects nor their bounding boxes
were used during the training of AGFP-Net. Since grasp
planning is outside the scope of this work, we manually
annotate each object with up to 200 grasps.

We modify the Access and Sort domains defined [1] to
measure the performance of our generalization to mesh ob-
jects and multi-robot settings. In the Access problem shown
in Figure 3a, a single robot has to access and move a meat
can. The difficulty is due to a number of objects blocking
access to the wanted object, which requires removing all
blocking objects to access the wanted one, before returning
them to their initial pose. The Sort problem, illustrated
in Figure 3b is a dual-robot problem where the goal is to

sort objects on two pre-occupied tables. Here, the algorithm
has to find feasible sets of placements on narrow surfaces.
Moreover, each robot can reach one of the tables only.

We also define TAMP problems in which the presence
of multiple robots might either make the problem easier or
more challenging. The dual-robot Assist problem, shown
in Figure 1b, is similar to the previously defined Access
problem. For one robot, the red object is not accessible due
to a number of blocking objects. The second robot, however,
has direct access to it. This problem aims at testing the
ability of our algorithm to find the simplest solution, which
involves one robot assisting the other. In the Clear problem,
illustrated in Figure 1a, two large objects (in red) span over
the intersection region of two robots’ workspaces, rendering
Pass actions infeasible. The robots have to first clear the
intersection region before moving a set of objects from one
table to another.

Additionally, we test our approach on two three-robot
problems, each with a different setting. The first is the
Middleman problem (Figure 1c), in which three robots form
a triangle such that there is an intersection between every
pair of robots’ workspaces. One of the intersection regions
is blocked by a number of obstacles, forcing the robots to
perform two Pass actions via a middleman robot to move
two objects from one counter to the other. The second is
the Longswap problem in which three sequential robots
have to collaborate to swap the placements of 4 objects. For
increased difficulty, the intersection regions between robots’
workspaces are partially blocked by a set of obstacles.

B. Implementation details

We run our feasibility-informed TAMP algorithm on each
one of these problems for 10 trials each, with a timeout set to
900 seconds per trial. We use Moveit! Task Constructor [44]
for geometric planning with a BiTRRT motion planner [45].
On the feasibility prediction side, we reuse the neural net-
work weights obtained using the training approach detailed
in [1]. Experiments were conducted on an Intel i9-11950H
@ 2.60GHz, with 32GB of RAM and NVIDIA RTX A3000
GPU. For comparison, we also run a baseline version our
algorithm that does not leverage feasibility prediction, by
setting all probabilities of feasibility to 1 during the search.

VII. RESULTS

Table I shows the averaged results obtained for each
problem. Results show that our feasibility-informed TAMP
algorithm is able to solve all problems with 100% success
rate, compared to the non-informed algorithm which fails



TABLE I: Planning performances with and without using feasibility prediction, averaged over 10 trials. Speedup is computed
over all the trials by considering the timeout for failed cases and the average total planning time for successful ones.

Problem Method
Success Total Geometric Planning Feasibility Infeasible

Rate Planning Time (s) Prediction Task Speedup
(%) Time (s) Feasible actions Infeasible actions Time (s) Plans

Access Baseline 0% > 900 - - - -
> 11.7Ours 100% 76.8 (+/-38.3) 32.1 (+/-7.4) 2.5 (+/-1.8) 35.7 (+/-29.7) 2.9 (+/-1.5)

Sort Baseline 0% > 900 - - - -
> 11.1Ours 100% 81.0 (+/-25.5) 33.7 (+/-14.9) 18.6 (+/-15.3) 27.6 (+/-8.7) 1.9 (+/-2.2)

Assist Baseline 90% 173.9 (+/-23.0) 116.6 (+/-15.8) 54.910 (+/-23.5) - 66.4 (+/-4.0)
> 35.7Ours 100% 6.9 (+/-5.6) 2.1 (+/-0.7) 1.6 (+/-3.4) 2.7 (+/-2.2) 0.7 (+/-1.2)

Clear Baseline 90% 436.6 (207.4) 13.9 (+/-2.8) 421.7 (+/-207.8) - 29 (9.3)
> 14Ours 100% 34.5 (+/-24.3) 10.9 (+/-1.4) 13.5 (+/-21.7) 9.6 (+/-3.1) 0.6 (+/-0.9)

Middleman Baseline 30% 520.7 (+/-49.5) 26.6 (+/-15) 493.9 (+/-35.8) - 30.3 (+/-10.6)
> 55,7Ours 100% 14.1 (+/-12.4) 5.9 (+/-1.9) 6.0 (+/-12.0) 2.0 (+/-0.5) 0.2 (+/-0.4)

Longswap Baseline 20% 289.6 (+/-32.0) 31.7 (+/-2.0) 256.9 (+/-34.1) - 14.0 (+/-1.0)
> 6.5Ours 100% 118.7 (+/-41.1) 47.8 (+/-11.0) 7.0 (+/-13.3) 54.7 (+/-18.2) 1.1 (+/-1.1)

at least once, and completely fails to solve the single-robot
Access, and the dual-robot Sort problems. Given the high
combinatorial complexity of these problems, this outcome
can be expected and shows that our proposed method is
able to efficiently filter the tree search and reach a solution
faster, allowing a total planning time of 76.8s for the Access
problem and 81s for the Sort problem. These results are also
comparable to the ones obtained in [1], which shows that our
method is able to handle complex-shaped objects and multi-
robot systems without hurting the planning time.

For the Assist problem, using AGFP-Net allows at least a
35 times speedup in planning time. In this problem, the non-
informed planner is sensitive to the order in which objects
are processed during the search. If the action moving the red
object to a Pass region (using the robot with easy access to
it) appears early in the search, planning time can be low. Our
approach removes this sensitivity to the order of objects by
prioritizing actions according to their feasibility. Results on
the Clear problem, on the other hand, show a 92% reduction
in planning time using feasibility prediction. This gain in
performance is obtained thanks to our proposed method for
evaluating the probability of Pass actions. Indeed, since
the intersection region between two robots’ workspaces is
not fully covered by the red objects, both the Pick and
the Place actions of the passing robot might be feasible.
However, taking into account the feasibility of the following
Pick action using the receiving robot allows the planner to
prioritize clearing the intersection region before performing
Pass actions between the robots. This is demonstrated by the
reduction in infeasible task plans generated. The three-robot
Middleman problem presents a similar scenario, except the
objects blocking the intersection region are fixed obstacles.
Also, the added robot adds to the combinatorial complexity
of the problem. Results show an improvement in success
rate from 30% without feasibility prediction to 100% using
AGFP-Net. Also, total planning time using the latter is at
least 55 times faster than when no heuristic is used. This
shows that our feasibility-informed planner avoids spending
extensive effort on trying to perform a single Pass action
directly to the goal robot, and prefers the use of a middleman
robot with two Pass actions for each object.

The performance yielded on the Assist, Clear and
Middleman problems show that using feasibility prediction,
our TAMP algorithm is able to identify scenarios where
robot collaboration is advantageous or necessary, generally
resulting in the first generated task plan being geometrically
feasible as shown in Table I. Results on the Longswap
problem demonstrate the ability of our approach to generalize
to different multi-robot settings. In addition to an improve-
ment in success rate from 20% to 100%, our feasibility-
informed planner reduces the total planning time by at least
84%. Using AGFP-Net, our algorithm identifies which of
the sampled Pass placements are free and prioritizes them.
It also recognizes occupied goal placements and includes
Temp placements in its solution in order to free them.

These results show that our proposed approach is able
to tackle single and multi-robot TAMP problems involv-
ing complex shaped objects. Feasibility prediction not only
guarantees 100% success rate on all problems, but it also
reduces considerably the planning time. Also, the overhead
due to feasibility prediction is largely compensated by the
time saved in geometric planning time.

VIII. CONCLUSION

In this paper, we present a method for extending the
use of AGFP-Net [1] to complex-shaped objects, allowing
action and grasp feasibility prediction on realistic objects.
We also propose a framework for predicting the feasibility
of actions in arbitrary multi-robot settings, taking advantage
of the robot-centric nature of the neural network, and using
a new approach for computing the probability of feasibility
of collaborative actions such as Pass actions. Moreover,
we develop a feasibility-informed multi-robot TAMP algo-
rithm, capable of solving complex TAMP problems involving
multiple robots. We demonstrate the performance of our
method on six TAMP problems containing multiple complex-
shaped objects, and different single and multi-robot settings.
Results show a notable gain in success rate and planning
time using feasibility prediction as a heuristic. Future work
might involve extending the approach to coordinated motion
planning problems, and handling more collaborative actions
such as handovers, allowing a parallel execution of tasks.
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