Smail Ait Bouhsain

Rachid Alami

Thierry Siméon

Extending Task and Motion Planning with Feasibility Prediction: Towards Multi-Robot Manipulation Planning of Realistic Objects

The hybrid discrete/continuous nature of task and motion planning (TAMP) results often in a combinatorial explosion. This challenge is even more pronounced in multirobot TAMP problems due to the increase in dimensionality of the action space. Previous works use action feasibility prediction as a heuristic to accelerate TAMP. However, these methods are limited to box-shaped objects and specific single or dual robot settings. In this paper, we expand on our previous work on action and grasp feasibility prediction [1] by extending its use to complex-shaped objects and multi-robot systems. Also, we propose a feasibility-enabled multi-robot TAMP algorithm capable of tackling complex multi-robot manipulation problems. We demonstrate the performance of our method compared to a non feasibility-informed baseline, and show its ability to handle TAMP problems requiring the collaboration of multiple robots.

I. INTRODUCTION

Task and motion planning (TAMP, see e.g survey [START_REF] Garrett | Integrated task and motion planning[END_REF]) in robotics involves finding a sequence of steps a robot should take to achieve a goal, along with their corresponding motions. It mixes discrete symbolic planning and continuous geometric planning. This combination results in a high combinatorial complexity making the search for a geometrically feasible task plan tedious, time consuming and, in some cases, unsolvable in a reasonable amount of time. These challenges do not only come from the combinatorial complexity of the search, but also the high time cost of calling geometric planners to verify the feasibility, particularly infeasibility, of actions and plan their motions.

Recent works [START_REF] Wells | Learning feasibility for task and motion planning in tabletop environments[END_REF]- [START_REF] Yang | Sequence-based plan feasibility prediction for efficient task and motion planning[END_REF] leverage learning methods in order to tackle this shortcoming of geometric planners. They propose to learn to predict the feasibility of actions without the need for querying geometric planning. These feasibility predictions can then be used as heuristics during task and motion planning. In a previous work [START_REF] Bouhsain | Simultaneous action and grasp feasibility prediction for task and motion planning through multi-task learning[END_REF], we propose the AGFP-Net neural network, which predicts the feasibility of pick and place actions in 3D environments, as well as the feasibility of subsets of grasps. This model is integrated in a feasibility-informed TAMP algorithm which uses feasibility predictions as a heuristic to accelerate planning. The method proposed in [START_REF] Bouhsain | Simultaneous action and grasp feasibility prediction for task and motion planning through multi-task learning[END_REF] is however limited to box-shaped objects and obstacles. Also, it is limited to single-robot TAMP problems and is not able to handle multi-robot settings.

In this work, we tackle these limitations by extending the use of AGFP-Net to complex-shaped objects, allowing This work is partially supported by the EU-funded project euROBIN under grant agreement no. 101070596 (https://www.eurobin-project.eu/) efficient action and grasp feasibility predictions in realistic environments containing real-life objects. We also develop a framework for feasibility prediction in multi-robot TAMP problems, and introduce a new way of estimating the feasibility of composite actions involving more than one robot. Moreover, we propose a feasibility-informed multi-robot TAMP algorithm capable of solving single and multi-robot problems such as the ones shown in Figure 1, while taking advantage of feasibility prediction to notably accelerate the planning process.

II. RELATED WORK

A. Classical TAMP

Early TAMP research [START_REF] Alami | A geometrical approach to planning manipulation tasks. the case of discrete placements and grasps[END_REF]- [START_REF] Barry | A hierarchical approach to manipulation with diverse actions[END_REF] focused on the geometric aspect, approaching the problem as a multi-modal motion planning problem, which involves planning among multiple motion modes. Many current TAMP techniques [START_REF] Cambon | A hybrid approach to intricate motion, manipulation and task planning[END_REF]- [START_REF] Garrett | Sampling-based methods for factored task and motion planning[END_REF] integrate a task planner with a geometric planner, relying on geometric backtracking to connect the two. These approaches, nevertheless, face challenges due to the combina-torics of the hybrid discrete/continuous search. and the heavy time consumption of geometric planning, as verifying the feasibility of symbolic plans still necessitates a large number of costly calls to the geometric planner.

B. Learning for TAMP

In recent years, learning methods became increasingly popular in TAMP [START_REF] Wells | Learning feasibility for task and motion planning in tabletop environments[END_REF]- [START_REF] Yang | Sequence-based plan feasibility prediction for efficient task and motion planning[END_REF], [START_REF] Chitnis | Guided search for task and motion plans using learned heuristics[END_REF]- [START_REF] Khodeir | Learning to search in task and motion planning with streams[END_REF], [START_REF] Bouhsain | Simultaneous action and grasp feasibility prediction for task and motion planning through multi-task learning[END_REF]. Many works aim at providing a learned heuristic to a TAMP planner, such as evaluating action affordances [START_REF] Xu | Deep affordance foresight: Planning through what can be done in the future[END_REF], leveraging experience to propose promising actions [START_REF] Kim | Learning to guide task and motion planning using score-space representation[END_REF], [START_REF] Kim | Learning value functions with relational state representations for guiding task-and-motion planning[END_REF], or providing fast geometric feedback to the task planner thanks to action feasibility prediction [START_REF] Wells | Learning feasibility for task and motion planning in tabletop environments[END_REF]- [START_REF] Yang | Sequence-based plan feasibility prediction for efficient task and motion planning[END_REF]. These methods are however limited to tabletop environments. In [START_REF] Bouhsain | Simultaneous action and grasp feasibility prediction for task and motion planning through multi-task learning[END_REF], [START_REF] Ait Bouhsain | Learning to predict action feasibility for task and motion planning in 3d environments[END_REF], we propose a learning approach for predicting action and grasp feasibility in 3D environments. As most feasibility prediction methods, ours is limited to box-shaped objects. Wells et al. [START_REF] Wells | Learning feasibility for task and motion planning in tabletop environments[END_REF] propose to use SVMs to predict the feasibility of pick and place actions on complex-shaped objects. These objects are represented using hand-designed features, which makes the generalizability to various shapes difficult. Park et al. [START_REF] Park | Scalable learned geometric feasibility for cooperative grasp and motion planning[END_REF] propose a neural network for predicting the feasibility of grasp modes in scenes containing one complex-shaped object and a number of obstacles. However, this method is object-centric, meaning that the proposed model needs to be retrained for each new object shape. In this paper, we extend our action and grasp type feasibility prediction neural network [START_REF] Bouhsain | Simultaneous action and grasp feasibility prediction for task and motion planning through multi-task learning[END_REF] to complexshaped objects, while maintaining generalizability to 3D environments containing multiple objects of various shapes.

C. Multi-Robot TAMP

Multi-robot TAMP suffers from a higher combinatorial complexity due to the increased number of robots, and thus the increased dimensionality of the action space [START_REF] Antonyshyn | Multiple mobile robot task and motion planning: A survey[END_REF]. Previous works [START_REF] Cambon | A hybrid approach to intricate motion, manipulation and task planning[END_REF], [START_REF] Umay | An integrated task and motion planning technique for multi-robot-systems[END_REF]- [START_REF] Motes | Hypergraph-based multi-robot task and motion planning[END_REF] propose various approaches for task and motion planning in multi-robot settings such as graph-based and MDP-based techniques. These methods suffer however from a combinatorial explosion as the number of robots increases, resulting in a notable increase in the already high number of calls to the geometric planner. Also, in most multi-robot TAMP research, the focus is on coordinated motion planning (e.g handover tasks). In this paper, we propose to accelerate multi-robot TAMP using robot-centric feasibility predictions, allowing the planner to mitigate the combinatorial explosion due to the presence of multiple robots. We focus on sequential motion planning, rather than coordinated motion planning, in which objects are passed between two robots using a pair of pick-place actions. Driess et al. [START_REF] Driess | Deep visual heuristics: Learning feasibility of mixed-integer programs for manipulation planning[END_REF], [START_REF] Driess | Deep visual reasoning: Learning to predict action sequences for task and motion planning from an initial scene image[END_REF] train a neural network to predict action feasibility on box-shaped objects in tabletop environments using two robotic arms. This learning approach is limited, nevertheless, to the multi-robot setting it is trained on, requiring a new training if the number of robots increases, or the robots' placements change. Our proposed feasibility prediction framework does not depend on these parameters, since it queries the neural network for each robot individu-ally. Park et al. [START_REF] Park | Scalable learned geometric feasibility for cooperative grasp and motion planning[END_REF] propose a similar method, but focus on environments containing one movable object only.

III. PROBLEM DESCRIPTION

We tackle manipulation problems where the goal is to rearrange a set of movable objects in a 3D environment, comprising n R robot arms with fixed bases, n ss stable support surfaces, n obs fixed obstacles and n O movable objects.

We define the state of the environment as the configuration of each robot together with the support surface and pose of all movable objects. The configuration of a robot r at state s is denoted s(r), whilst the configuration of an object O is denoted s(O). A transition between two states s and s ′ is defined as an action a which involves a specific robot r picking an object O from its configuration in s, and placing it at a new configuration q, which becomes the configuration of O in s ′ . The action a can be explicitly represented as:

a = M ove(r, O, s(O) → q) (1)
The solution to the TAMP problem is a sequence of actions τ and their corresponding motions Π, which brings the environment from the initial state s 0 to a goal state s goal . We define 3 types of actions at the symbolic level. The first is a Goal action, which moves an object to its goal state. The second is a T emp action, which places an object at a temporary placement. The third is a P ass action, which aims at placing an object inside the intersection between two robots' workspaces, so that the second robot can reach it. We consider the workspace of a robot r, denoted W (r), as a sphere centered at the first joint of the robot, with a radius equal to its reach1 .

IV. FEASIBILITY PREDICTION A. Neural Network

In [START_REF] Bouhsain | Simultaneous action and grasp feasibility prediction for task and motion planning through multi-task learning[END_REF], we propose a learning approach based on the Action and Grasp Feasibility Prediction neural NETwork (AGFP-Net). Given a representation of the current state of the environment and the object of interest, it simultaneously predicts the probability of feasibility of a P ick or P lace action, but also the feasibility of 6 grasp types. Each grasp type is a set of grasps related to the side from which the object is approached by the robot. The 3D environment is represented using 5 depth images corresponding to different views of the scene, which show all the objects in the workspace of the robot. Also, all objects poses are shown in the frame of the robot. Note that these depth images are constructed internally during planning, and are not obtained from depth cameras. The object of interest, on the hand, is represented using a mask over each depth image, showing the object only at the pose it should picked or placed at.

AGFP-Net is trained on a fully synthetic dataset, comprised of randomly generated scenes containing a single robot, 2 box-shaped objects and up the 4 support surfaces. The dimensions and poses of these objects are sampled randomly within fixed bounds. Our results in [START_REF] Bouhsain | Simultaneous action and grasp feasibility prediction for task and motion planning through multi-task learning[END_REF] show a good generalization to new environments with a higher number of objects, obstacles and support surfaces. Nonetheless, the neural network is by design limited to a single robot, and it can be used on box-shaped objects only. We refer the reader to [START_REF] Bouhsain | Simultaneous action and grasp feasibility prediction for task and motion planning through multi-task learning[END_REF] for more details.

B. Generalization to Complex-shaped Objects

In this work, we aim at generalizing AGFP-Net to objects with more complex shapes. One possibility could be to generate a new dataset with scenes containing complexshaped objects, and retrain the neural network using the newly generated dataset. However, since the scene projections are constructed internally, building depth images of mesh objects can be time consuming, which defeats the purpose of accelerating TAMP. Also, this method does not guarantee the generalizability to unseen shapes during training. Therefore, we propose to represent complex-shaped objects at the feasibility prediction level using their bounding boxes. This allows the neural network to generalize to objects with complex shapes, without the need for any additional data generation/annotation and training effort to [START_REF] Bouhsain | Simultaneous action and grasp feasibility prediction for task and motion planning through multi-task learning[END_REF], and without an overhead in inference time.

Given an environment containing mesh objects, the tested action and the object to manipulate, we generate depth images as explained in Section IV-A and [START_REF] Bouhsain | Simultaneous action and grasp feasibility prediction for task and motion planning through multi-task learning[END_REF], using the bounding box of each object. These depth images are then given as input to AGFP-Net to obtain the probability of feasibility of performing the action on the object of interest, as well as the feasibility of each one of the defined grasp types. Since these grasp types represent continuous subsets of grasps, all grasps (obtained using an off-the-shelf grasp planner or from a grasp database) can be associated with one of these grasp types using simple geometric transforms (cf. Figure 2). The action a defined in (1) can be decomposed into P ick and P lace sub-actions as follows:

a(r, O, s(O), q) = P ick(r, O, s(O)) + P lace(r, O, q) (2)
where P ick corresponds to picking object O using r from s(O), and P lace refers to placing O using robot r at q. Following [START_REF] Bouhsain | Simultaneous action and grasp feasibility prediction for task and motion planning through multi-task learning[END_REF], we define the probability of feasibility p a F of the action as:

p a F = p P ick F × p P lace F × max(p a G) (3)
where p P ick F and p P lace F are the predicted probabilities of the P ick and P lace sub-actions respectively, and p G (a) is the vector of combined grasp type probabilities:

p a G = p P ick G ⊗ p P lace G (4)
⊗ being the element-wise product.

These probabilities of feasibility of grasp types are used in (3) to ensure that there is at least one common grasp type between the P ick and P lace actions. Additionally, during geometric planning, grasps are sorted according to the probability of feasibility of their corresponding grasp type. Motion planning is then performed on the most promising grasps first, allowing a faster planning time.

C. Generalization to Multi-Robot Settings

The design choices behind AGFP-Net [START_REF] Bouhsain | Simultaneous action and grasp feasibility prediction for task and motion planning through multi-task learning[END_REF] ensure that feasibility prediction is able to cover the whole workspace of a single robot. One important property of the model is that it is centered around the robot, meaning that it is dependent on the kinematics of the robot only, and does not depend on any other factors such as where the robot is placed in the environment. This is achieved by expressing all objects poses, fixed or movable, in the frame of the robot. Also, the scene projections are constructed such that the center of the robot's workspace is at the center of the depth images, and each projection covers the whole workspace of the robot. As a result, the scene projections only show the objects inside the robot's workspace.

These capabilities allow a smooth generalization of AGFP-Net to multi-robot problems. Indeed, the neural network can be queried for each robot individually by making sure the scene projections show the objects (or parts of objects) in the workspace of the said robot only, and that the shown poses of these objects are in the frame of the latter. Given an object pose in the world frame q O and a robot's frame transform T r , an object's pose expressed in the frame of the robot is simply q r O = T r q O . Using this approach, AGFP-Net can be used to predict feasibility for each robot to move the objects inside its own workspace.

Moreover, this method allows testing composite actions such as P ass actions. An object placed inside the intersection between two robots' workspaces would be visible in the scene projections corresponding to each robot, as shown in Figure 2. A P ass action aims at placing an object at an intersection region for another robot to manipulate. Therefore, a P ass action is feasible only if the first robot is able to pick the object from s(O) and place it at the intersection placement q, and if the second robot is able to pick it from this placement. Given a P ass action a pass (r 1 , O, s(O), q) between two robots r 1 and r 2 , we transform the pick and place poses to the frame of each robot to obtain s(O) r1 , q r1 and q r22 . Then, we compute the probability of feasibility p apass F of the P ass action between r 1 and r 2 as:

p apass F = p a F (r 1 , O, s(O) r1 , q r1) × p P ick F (r 2 , O, q r2) (5)
For actions a goal of type goal, and a temp of type T emp using a robot r:

p a goal F = p atemp F = p a F (r, O, s(O) r , q r) (6)
We develop a TAMP algorithm which uses these probabilities of feasibility to prioritize feasible actions and speedup the search of a geometrically feasible task plan.

V. TASK AND MOTION PLANNING

We propose a feasibility-informed multi-robot TAMP algorithm capable of solving problems involving multiple robots. The main algorithm, shown in Algorithm 1, remains similar is based on a best-first tree search, where nodes represent states and edges are actions allowing transitions between states, following the definitions of Section III. A list Q of open nodes is maintained and sorted according to a defined cost. At each iteration, the node s with the minimum cost is extracted from Q and compared to the goal state s goal . If s is a goal state, we retrieve the complete task plan leading to s then query the geometric planner to check the feasibility of every action in the task plan and plan their corresponding motions. If the action sequence is feasible, then a solution was found. Otherwise, the search continues. During geometric planning, the probabilities of feasibility of grasp types for each action are given to the geometric planning to prioritize feasible grasps.

If s in not a goal state, we expand the node using the function f indChildren, shown in Algorithm 2. It first samples applicable actions at state s, by calling the function f indP ossibleActions which is detailed in Algorithm 3. For each movable object O in the environment, we find the set of robots capable of reaching O at its pose in s, using the function f indReachingRobots(s(O), E). For each robot r i in the obtained set, we generate Goal, P ass and T emp actions. In the case where O is not already at its goal pose, if s goal is reachable by r i , we sample a set of goal placements in the workspace of r i . Otherwise, if the goal pose of O is not reachable by r i , we try to generate P ass placements.

Algorithm 1 Task and motion planner

Input: E, s0, s goal ▷ Environment, Initial and goal states

1: Q ← {s0}
▷ Set of nodes to expand 2: while Solution not found do 3:

s ← argmincostQ

4:

if s ∈ s goal then 5:

[τ, Π] ← retrieveSolution(s)]
6:

if Π is feasible then

7:

return τ , Π

8:

end if

9:

else 10: We first find the set of robots that are able to reach s goal . The planner needs to figure out how to bring O to each one of these robot's workspace. In order to do that, we build a graph Γ which vertices are all the robots in the environment, and edges represent the existence of an intersections between two robots' workspaces. For each robot r g reaching s goal , we use a Breadth-First Graph Search to find all possible paths from r i to r g , and we extract the first robot from each path. These are all the robots r i can pass object O to in order to bring it closer to its goal pose. For each robot r j in the obtained set of robots, we sample a number of P ass placements at the intersection between W (r i) and W (r j).

Q ← Q ∪ f indChildren(s,
Finally, we sample a set of T emp placements in the workspace of r i . Then, we generate actions corresponding to each one of the Goal, P ass and T emp placements sampled 3 . Once all possible actions are found, we call predictF easibility for each action a, which queries AGFP-Net and uses (3), (4) and (5) to compute the probability of feasibility of the action and the feasibility of the grasp types. We construct a new child as the result of applying a at s, we compute its cost and add it to the list of open nodes.

We define the cost of a node as:

C T otal = C SoF ar + C T oGoal + C F easibility (7)
where C SoF ar is the number of actions in the branch leading to the node, C T oGoal is the minimum number of actions for each ri in f indReachingRobots(s(O), E) do 4:

P ← ∅ 5: if s(O) / ∈ s goal (O) then 6:
if s goal (O) is reachable by ri then 7:

P ← P ∪ sampleGoal(ri, E, s goal (O))
8:

else 9:
for rg in f indReachingRobots(s goal (O), E) do 10:

next robots ← BF S(ri, rg)

11:

for rj ∈ next robots do

12:

P ← P ∪ sampleP ass(ri, rj , E)

13:

end for

14:

end for

15:

end if

16:

end if

17:

P ← P ∪ sampleT emp(ri, E)

18:

for each q ∈ P do

19:

a ← M ove(ri, O, s(O) → q)

20:

A ← A ∪ a

21:

end for

22:

end for 23: end for 24: return A to reach the goal state, and C F easibility is the feasibility cost detailed in [START_REF] Bouhsain | Simultaneous action and grasp feasibility prediction for task and motion planning through multi-task learning[END_REF]. In this work, C T oGoal is constructed differently compared to [1] [33] in order to tackle multirobot problems. Indeed, we take advantage of the previously constructed graph Γ to compute the shortest path length to the goal for each object using Breadth-First Graph Search.

We then sum these path lengths to obtain the minimum number of actions to reach the goal state.

VI. EXPERIMENTS A. Test TAMP problems

In order to demonstrate the performance of our TAMP algorithm, we construct multiple TAMP problems with varying challenges in single, dual and triple robot settings. Each problem contains a number of complex-shaped objects extracted from the YCB [START_REF] Calli | The ycb object and model set: Towards common benchmarks for manipulation research[END_REF] and KIT [START_REF] Kasper | The kit object models database: An object model database for object recognition, localization and manipulation in service robotics[END_REF] objects databases. Note that none of these objects nor their bounding boxes were used during the training of AGFP-Net. Since grasp planning is outside the scope of this work, we manually annotate each object with up to 200 grasps.

We modify the Access and Sort domains defined [START_REF] Bouhsain | Simultaneous action and grasp feasibility prediction for task and motion planning through multi-task learning[END_REF] to measure the performance of our generalization to mesh objects and multi-robot settings. In the Access problem shown in Figure 3a, a single robot has to access and move a meat can. The difficulty is due to a number of objects blocking access to the wanted object, which requires removing all blocking objects to access the wanted one, before returning them to their initial pose. The Sort problem, illustrated in Figure 3b is a dual-robot problem where the goal is to sort objects on two pre-occupied tables. Here, the algorithm has to find feasible sets of placements on narrow surfaces. Moreover, each robot can reach one of the tables only.

We also define TAMP problems in which the presence of multiple robots might either make the problem easier or more challenging. The dual-robot Assist problem, shown in Figure 1b, is similar to the previously defined Access problem. For one robot, the red object is not accessible due to a number of blocking objects. The second robot, however, has direct access to it. This problem aims at testing the ability of our algorithm to find the simplest solution, which involves one robot assisting the other. In the Clear problem, illustrated in Figure 1a, two large objects (in red) span over the intersection region of two robots' workspaces, rendering P ass actions infeasible. The robots have to first clear the intersection region before moving a set of objects from one table to another.

Additionally, we test our approach on two three-robot problems, each with a different setting. The first is the M iddleman problem (Figure 1c), in which three robots form a triangle such that there is an intersection between every pair of robots' workspaces. One of the intersection regions is blocked by a number of obstacles, forcing the robots to perform two P ass actions via a middleman robot to move two objects from one counter to the other. The second is the Longswap problem in which three sequential robots have to collaborate to swap the placements of 4 objects. For increased difficulty, the intersection regions between robots' workspaces are partially blocked by a set of obstacles.

B. Implementation details

We run our feasibility-informed TAMP algorithm on each one of these problems for 10 trials each, with a timeout set to 900 seconds per trial. We use Moveit! Task Constructor [START_REF] Görner | Moveit! task constructor for task-level motion planning[END_REF] for geometric planning with a BiTRRT motion planner [START_REF] Devaurs | Enhancing the transition-based rrt to deal with complex cost spaces[END_REF]. On the feasibility prediction side, we reuse the neural network weights obtained using the training approach detailed in [START_REF] Bouhsain | Simultaneous action and grasp feasibility prediction for task and motion planning through multi-task learning[END_REF]. Experiments were conducted on an Intel i9-11950H @ 2.60GHz, with 32GB of RAM and NVIDIA RTX A3000 GPU. For comparison, we also run a baseline version our algorithm that does not leverage feasibility prediction, by setting all probabilities of feasibility to 1 during the search.

VII. RESULTS

Table I shows the averaged results obtained for each problem. Results show that our feasibility-informed TAMP algorithm is able to solve all problems with 100% success rate, compared to the non-informed algorithm which fails TABLE I: Planning performances with and without using feasibility prediction, averaged over 10 trials. Speedup is computed over all the trials by considering the timeout for failed cases and the average total planning time for successful ones. at least once, and completely fails to solve the single-robot Access, and the dual-robot Sort problems. Given the high combinatorial complexity of these problems, this outcome can be expected and shows that our proposed method is able to efficiently filter the tree search and reach a solution faster, allowing a total planning time of 76.8s for the Access problem and 81s for the Sort problem. These results are also comparable to the ones obtained in [START_REF] Bouhsain | Simultaneous action and grasp feasibility prediction for task and motion planning through multi-task learning[END_REF], which shows that our method is able to handle complex-shaped objects and multirobot systems without hurting the planning time.

For the Assist problem, using AGFP-Net allows at least a 35 times speedup in planning time. In this problem, the noninformed planner is sensitive to the order in which objects are processed during the search. If the action moving the red object to a P ass region (using the robot with easy access to it) appears early in the search, planning time can be low. Our approach removes this sensitivity to the order of objects by prioritizing actions according to their feasibility. Results on the Clear problem, on the other hand, show a 92% reduction in planning time using feasibility prediction. This gain in performance is obtained thanks to our proposed method for evaluating the probability of P ass actions. Indeed, since the intersection region between two robots' workspaces is not fully covered by the red objects, both the P ick and the P lace actions of the passing robot might be feasible. However, taking into account the feasibility of the following P ick action using the receiving robot allows the planner to prioritize clearing the intersection region before performing P ass actions between the robots. This is demonstrated by the reduction in infeasible task plans generated. The three-robot M iddleman problem presents a similar scenario, except the objects blocking the intersection region are fixed obstacles. Also, the added robot adds to the combinatorial complexity of the problem. Results show an improvement in success rate from 30% without feasibility prediction to 100% using AGFP-Net. Also, total planning time using the latter is at least 55 times faster than when no heuristic is used. This shows that our feasibility-informed planner avoids spending extensive effort on trying to perform a single P ass action directly to the goal robot, and prefers the use of a middleman robot with two P ass actions for each object.

The performance yielded on the Assist, Clear and M iddleman problems show that using feasibility prediction, our TAMP algorithm is able to identify scenarios where robot collaboration is advantageous or necessary, generally resulting in the first generated task plan being geometrically feasible as shown in Table I. Results on the Longswap problem demonstrate the ability of our approach to generalize to different multi-robot settings. In addition to an improvement in success rate from 20% to 100%, our feasibilityinformed planner reduces the total planning time by at least 84%. Using AGFP-Net, our algorithm identifies which of the sampled P ass placements are free and prioritizes them. It also recognizes occupied goal placements and includes T emp placements in its solution in order to free them.

These results show that our proposed approach is able to tackle single and multi-robot TAMP problems involving complex shaped objects. Feasibility prediction not only guarantees 100% success rate on all problems, but it also reduces considerably the planning time. Also, the overhead due to feasibility prediction is largely compensated by the time saved in geometric planning time.

VIII. CONCLUSION

In this paper, we present a method for extending the use of AGFP-Net [START_REF] Bouhsain | Simultaneous action and grasp feasibility prediction for task and motion planning through multi-task learning[END_REF] to complex-shaped objects, allowing action and grasp feasibility prediction on realistic objects. We also propose a framework for predicting the feasibility of actions in arbitrary multi-robot settings, taking advantage of the robot-centric nature of the neural network, and using a new approach for computing the probability of feasibility of collaborative actions such as P ass actions. Moreover, we develop a feasibility-informed multi-robot TAMP algorithm, capable of solving complex TAMP problems involving multiple robots. We demonstrate the performance of our method on six TAMP problems containing multiple complexshaped objects, and different single and multi-robot settings. Results show a notable gain in success rate and planning time using feasibility prediction as a heuristic. Future work might involve extending the approach to coordinated motion planning problems, and handling more collaborative actions such as handovers, allowing a parallel execution of tasks.

 Fig. 1: A visualization of the initial and goal states of 3 of the multi-robot TAMP problems solved by our method.

Fig. 2 :

 2 Fig. 2: Visualization of the feasibility prediction pipeline on an example 2-robot scene. (Top) Scene depth images are constructed for each robot such that only the objects in the workspace of the robot are shown. Objects present is both robots workspaces are visible in both scene projections (yellow mustard bottle). (bottom) Scene projections and object masks are given to AGFP-Net to obtain the action feasibility and the feasibility of 6 grasp types, illustrated on an example object.

(a)Fig. 3 :

 3 Fig. 3: Visualization of the initial and goal states for 3 of the 6 problem domains used to test our approach. Algorithm 3 findPossibleActions Input: s, E, s goal 1: A ← ∅ 2: for each O in movable objects do 3:

 E, s goal)

	11:	end if
	12: end while
	Algorithm 2 findChildren

Input: s, E, s goal

1: children ← ∅ 2: A ← f indP ossibleActions(s, E, s goal) 3: for each a in A do 4: [p a F , p a G)] ← predictF easibility(s, E

, a) 5:

child ← nextState(s, a)

6:

child.cost ← computeCost(child, s goal , p F (a), E)

7:

children ← children ∪ child 8: end for 9: return children

LAAS-CNRS, Toulouse, France, {saitbouhsa, alami, simeon}@laas.fr

Note that this simple model of W (r) is generalizable to more precise workspace representations, provided that mapping the intersection between two workspaces is possible.

Note that q r 1 and q r 2 represent the placement pose expressed in the frame of robots r 1 and r 2 respectively, and are not robot configurations.

Although the number of samples is a parameter fixed by the user, we give the planner the possibility to resample new placements, in case the previous ones do not lead to a feasible solution.