Armando Castañeda
email: armando.castaneda@im.unam.mx

Pierre Fraigniaud
email: pierref@irif.fr

Ami Paz
email: ami.paz@lisn.fr

Sergio Rajsbaum
email: rajsbaum@im.unam.mx

Matthieu Roy
email: roy@laas.fr

Corentin Travers
email: corentin.travers@lis-lab.fr

Synchronous t-resilient Consensus in Arbitrary Graphs

Keywords: Crash failures, Consensus, Combinatorial topology, Distributed graph algorithms

We study the number of rounds needed to solve consensus in a synchronous network G where at most t nodes may fail by crashing. This problem has been thoroughly studied when G is a complete graph, but very little is known when G is arbitrary. We define a notion of radius(G, t), that extends the standard graph theoretical notion of radius, for considering all the ways in which t nodes may crash, and we present an algorithm that solves consensus in radius(G, t) rounds. Then we derive a lower bound showing that, among oblivious algorithms, our algorithm is optimal for a large family of graphs including all vertex-transitive graphs.

Introduction

The problem. We consider a synchronous message-passing distributed system, where at most t out of n nodes may fail by crashing. The nodes communicate by sending messages to each other over the edges of an undirected graph G known by the nodes. In the consensus problem each node is given an input, and after some number of rounds produces an output, such that all outputs are the same and must be equal to one of the inputs.

One of the earliest and most well-know facts in distributed computing is that the number of rounds needed to solve consensus when G is the complete graph, K n , is t + 1. Namely, for t ≤ n -1, and any algorithm requires this number of rounds in the worst case. The round complexity to solve consensus in K n has been thoroughly studied, but not for graphs other than the complete graph.

Results

This paper studies the number of rounds needed to solve consensus, as a function of G and t. It presents two main contributions, inspired by the recently introduced [START_REF] Castañeda | A topological perspective on distributed network algorithms[END_REF] information flow perspective.

First, it shows that for any given (t + 1)-node-connected graph G (i.e., a graph that is connected after the removal of any t nodes), it is possible to solve consensus tolerating t failures, in radius(G, t) rounds. Roughly, the eccentricity of v against t failures, ecc(v, t), is the smallest number of rounds needed for a node v to broadcast its input value, independently of the failure pattern (when and how nodes crash). Then, radius(G, t) is equal to the smallest ecc(v, t), over all nodes v. Both these notions extend the standard notions of eccentricity and radius, and equal to them when t = 0. For example, radius(K n , t) = t + 1 for the complete graph and radius(C n , 1) = n -1 for the cycle. For the wheel graph W n , composed of an (n -1)-cycle and one extra node connected to all other nodes, radius(W n , 2) = n -1 and radius(W n , 1) = 1 + (n -1)/2 .

Second, the paper presents a matching lower bound, showing that our algorithm is optimal among oblivious algorithms, in any graph that is vertextransitive. In an oblivious algorithm, the decision value of a node is based solely on the set of input values it has seen so far. Roughly speaking, a graph is vertex-transitive if it is highly symmetric. This is a large and well studied class of graphs (see, e.g., [START_REF] Godsil | Algebraic Graph Theory[END_REF]). A core difficulty in analyzing our model yields from the "non-clean" crashes, that is, the fact that a node may fail "at the middle" of a round, i.e., it may send messages to some of its neighbors, but not to others. In fact, we show that, for clean crashes that take place initially (i.e., all failing nodes do not perform any round of communication), a faster algorithm exists, and the lower bound does not hold.

Direct generalizations of known upper and lower bound techniques from a complete graph to general graphs seem difficult to obtain. Instead, both our upper and lower bounds use novel ideas, which we discuss next.

Our upper bound techniques.

In a classic algorithm to solve consensus on a complete graph, e.g. [START_REF] Raynal | Consensus in synchronous systems: A concise guided tour[END_REF], nodes repeatedly send all the inputs they know, and at the end of round t + 1, each node that has not crashed, decides the smallest input value among the values it has seen. The usual agreement argument is that among the t + 1 rounds there must be at least one in which no node crashes. All nodes that are alive at the end of such a round have seen the same set of inputs, and there is common knowledge [START_REF] Dwork | Knowledge and common knowledge in a byzantine environment: Crash failures[END_REF] on a set of inputs. This argument holds only under the assumption that the graph is complete. We use a similar idea on an arbitrary graph, but based on a more general information flow argument [START_REF] Castañeda | A topological perspective on distributed network algorithms[END_REF].

Given a node v and its ecc(v, t), we show that at the end of round ecc(v, t), either all alive nodes have received v's input, or none has. For the complete graph, ecc(v, t) = t + 1 for all nodes v, and indeed, for any node v, either all nodes have received the input of v by round t + 1, or no node will ever receive it. This implies the correctness of the algorithm for the complete graph described above. Notice that the eccentricity is not less than t + 1, because the adversary may create a hidden path, v 1 , . . . , v t such that v 1 = v and each v i , 1 ≤ i ≤ t -1, fails in round i and sends a message to only v i+1 before failing.

We use this information flow perspective to derive simple consensus algorithms for arbitrary graphs. Each node repeatedly forwards all the pairs (v, in v) it knows about, where in v is the input value of node v. An algorithm is specified by two functions: R(G, t) which returns the number of rounds to execute, and D(G, t) which tells a node which value to decide, among the input values it has seen. After R(G, t) rounds, the active nodes have the same view of the inputs of a carefully chosen subset of t + 1 nodes, thus, after R(G, t) rounds, D(G, t) can pick deterministically the input of one of these nodes. Remarkably, our lower bound shows that this is not necessarily the case after fewer rounds.

Our lower bound techniques.

There are several lower bound proofs for the number of rounds to solve consensus under crash failures for the case when G is a complete graph. The classic t + 1 lower bound proof style proceeds by a rather complex backward induction (a detailed description appears in [START_REF] Lynch | Distributed Algorithms[END_REF]). Later on, simpler forward induction proofs were discovered [START_REF] Kawazoe | A simple bivalency proof that t-resilient consensus requires t+1 rounds[END_REF][START_REF] Moses | A layered analysis of consensus[END_REF], following the classical bivalency arguments that were originally developed for proving the impossibility of solving consensus in asynchronous systems [START_REF] Michael | Impossibility of distributed consensus with one faulty process[END_REF].

The aforementioned proofs hold for general graphs as well, namely, t + 1 rounds is a lower bound for solving consensus on any graph G. However, for general graphs this bound is very weak, as it does not take into consideration the structure of the graph. An obvious example is a cycle with t = 1: our lower bound is n -1, while the standard approaches give a lower bound of 2 rounds.

Our lower bound technique is different from both the backward and the forward arguments. It is inspired by the topological techniques for distributed computing [START_REF] Herlihy | Distributed Computing Through Combinatorial Topology[END_REF], though we do not use topology explicitly. Our lower bound technique is similar to the connectivity analysis of the protocol complex, the structure of states at the end of executions of an algorithm after a certain number of rounds. However, instead of working with the protocol complex, we consider an information flow directed graph version based on failure patterns, without including input values. We prove that consensus is solvable by an oblivious algorithm if and only if all connected components of the information flow graph have a dominating node, namely, a node with an edge from it to any other node in its connected component. In [START_REF] Castañeda | A topological perspective on distributed network algorithms[END_REF] we introduced this information flow perspective, and used it to study set agreement and approximate agreement.

The seminal paper [START_REF] Dwork | Knowledge and common knowledge in a byzantine environment: Crash failures[END_REF] shows that, as soon as there is common knowledge of a clean round (where a node that crashes does not send any messages), it is also common knowledge that nodes have identical views of the initial configuration. As a consequence, any action that depends on the system's initial configuration can be carried out simultaneously in a consistent way by the set of active nodes at any round k ≥ t + 1, if it can be carried out at all. Our lower bound is larger than t + 1 on general graphs, and hence shows how the round in which nodes have common knowledge of a subset of the input configuration is affected also by the structure of the graph.

Related work

Consensus in the failure-prone synchronous model has been thoroughly studied since the beginning of the distributed computing field in the late 1970's [START_REF] Wensley | Sift: Design and analysis of a fault-tolerant computer for aircraft control[END_REF]. A variety of aspects have been considered, including the number of rounds (in great detail, including worst case, early deciding, simultaneous, unbeatability, etc.), number and size of messages, variants of consensus, in static and dynamic networks, and under various failure models. We only mention some of the most relevant papers, among a vast literature, which is covered only partially even by surveys, e.g. [START_REF] Castañeda | Early decision and stopping in synchronous consensus: A predicate-based guided tour[END_REF][START_REF] Raynal | Consensus in synchronous systems: A concise guided tour[END_REF] and textbooks on the field, e.g. [START_REF] Attiya | Distributed computing: fundamentals, simulations, and advanced topics[END_REF][START_REF] Lynch | Distributed Algorithms[END_REF][START_REF] Raynal | Fault-Tolerant Message-Passing Distributed Systems -An Algorithmic Approach[END_REF].

For general graphs, since early on there has been an interest in characterizing the graphs where consensus is solvable, initially for Byzantine failures [START_REF] Dolev | The byzantine generals strike again[END_REF][START_REF] Dolev | Authenticated algorithms for byzantine agreement[END_REF][START_REF] Michael | Easy impossibility proofs for distributed consensus problems[END_REF]. It was observed early on [START_REF] Lamport | The byzantine generals problem[END_REF] that t+1 connectivity is necessary and an exponential algorithm was described. The algorithms for Byzantine settings also work in our model. However, they have not been optimized for the number of rounds, and furthermore, our setting requires only t + 1 nodeconnectivity, while an algorithm tolerating Byzantine failures requires n ≥ 3t+1, and node-connectivity at least 2t + 1 [START_REF] Dolev | The byzantine generals strike again[END_REF]. Very recently, consensus algorithms for general graphs were designed, for local broadcast Byzantine failures [START_REF] Samir Khan | Exact byzantine consensus on undirected graphs under local broadcast model[END_REF]. One algorithm works in the local broadcast model on a graph under the weakest requirements-minimum degree 2t, and (3t/2+1) node-connected; however, it has an exponential time complexity. A different consensus algorithm terminates in 3n rounds, but only assuming the graph is 2t-connected. There has also been work on characterizing the directed graphs for which fault tolerant synchronous consensus is solvable, both under crash and under Byzantine failures [START_REF] Tseng | Fault-tolerant consensus in directed graphs[END_REF][START_REF] Tseng | A note on fault-tolerant consensus in directed networks[END_REF].

We are not aware of any previous lower bound techniques for solving consensus in an arbitrary graph G. A simple lower bound, that can be proven using standard indistinguishability arguments, is the maximum radius among the graphs created by removing at most t nodes from G. However, this yields only a trivial 1-round lower bound for the complete graph. A lower bound of t+1 rounds for the complete graph was proven using other methods, specifically crafted for the complete graph case, first for Byzantine failures [START_REF] Michael | A lower bound for the time to assure interactive consistency[END_REF], later for the case were digital signatures can be used [START_REF] Dolev | Authenticated algorithms for byzantine agreement[END_REF], and finally to crash failures (see, e.g., [START_REF] Hadzilacos | A lower bound for Byzantine agreement with fail-stop processors[END_REF]).

Our lower bound technique is mainly inspired by the topological techniques for distributed computing [START_REF] Herlihy | Distributed Computing Through Combinatorial Topology[END_REF], and more specifically by the topological structure of the executions of a synchronous algorithm after a certain number of rounds [START_REF] Herlihy | An axiomatic approach to computing the connectivity of synchronous and asynchronous systems[END_REF]. Indeed, the technique used for deriving our second algorithm is reminiscent of topological existential upper bounds proofs used in the past [START_REF] Attiya | Bounds on the step and namespace complexity of renaming[END_REF][START_REF] Castañeda | New combinatorial topology bounds for renaming: The upper bound[END_REF]. Hidden paths have played an important role in the design of early-deciding consensus algorithms in the complete graph [START_REF] Castañeda | Unbeatable consensus[END_REF].

Research on dynamic networks also characterizes families of networks for which consensus (or a variant of it) is solvable [START_REF] Charron-Bost | Minmax algorithms for stabilizing consensus[END_REF][START_REF] Coulouma | A characterization of oblivious message adversaries for which consensus is solvable[END_REF][START_REF] Nowak | Topological characterization of consensus under general message adversaries[END_REF][START_REF] Santoro | Agreement in synchronous networks with ubiquitous faults[END_REF][START_REF] Winkler | An overview of recent results for consensus in directed dynamic networks[END_REF]. Interestingly, dynamic networks research and works on synchronous fault-tolerant consensus [START_REF] Tseng | Fault-tolerant consensus in directed graphs[END_REF][START_REF] Tseng | A note on fault-tolerant consensus in directed networks[END_REF] share the idea of picking a node as a source, and having all nodes deciding on the input of this source. In Theorem 3 we present an information flow characterization for consensus, in terms of such a source. Our notion of a core set (see Section 3.2) can be seen as a refinement of such notions, defined in order to optimize the number of rounds. Interestingly, [START_REF] Nowak | Topological characterization of consensus under general message adversaries[END_REF] presents a topological solvability characterization of consensus using the point set topology techniques introduced in [START_REF] Alpern | Defining liveness[END_REF].

Preliminaries

Model of Computation. We consider the standard synchronous message-passing model of computation where at most t nodes may fail by crashing. A set of n ≥ 2 nodes V communicate through reliable bidirectional channels E defining a graph G = (V, E). In the remainder of the paper, we fix G and t, and assume t < κ(G), the node connectivity of G, i.e., the minimum number of nodes whose deletion disconnects G. Fixing G means that the algorithm performed at each node may depend on the graph G, and on the node's location in it. This assumption allows us to focus solely on the uncertainty caused by crashes, and not by the structure of the network, like it is the case in the classical framework G = K n , the complete graph on n vertices. Each node u of G is identified by a name, which is unique in G, that can be viewed as an integer ID in {1, . . . , n}. For the sake of simplifying the presentation, we do not make a distinction between the node v itself, and its name. For instance, when referring to the "smallest node", we merely refer to "the node with smallest name".

An execution proceeds in a infinite sequence of synchronous rounds, starting in round 1. In every round, each node v first performs some local computation, then sends a message to each of its neighbors in G, denoted N (v), and then receives the messages sent to it from N (v) in that round. When a node crashes in round r, it fails to send its message to some of its neighbors in round r, and sends no message in subsequent rounds. We focus on full information algorithms, i.e., each message sent by a node contains all the node's state.

A failure pattern ϕ for G and t specifies, for each node that fails, in which round it fails, and which messages it fails to send. It is a set of triples of the form (v, F v , f v), indicating that v crashes in round f v , in which it does not send the messages to the neighbors in F v ⊆ N (v), where F v = ∅. Note that we may have F v = N (v), in which case the crash is called clean. Since at most t nodes can fail, |ϕ| ≤ t, and since nodes do not recover from a failure, if (v,

F v , f v) ∈ ϕ and (u, F u , f u) ∈ ϕ, then v = u.
For an execution with failure pattern ϕ, the faulty nodes are those that appear in a triplet in ϕ; the others are the correct nodes. A node is active in round r in ϕ if it is correct, or if it fails in a round later than r. A node that crashes with F v = N (v) is said to crash cleanly in ϕ.

Consider any input assignment to the nodes. Our algorithms are of the following form. Initially, for each node v with input in v , its view is {(v, in v)}. In each round, each node v sends its view to N (v), and at the end of the round it updates its view with the new input value-pairs it receives.

Given a failure pattern ϕ, we say that u hears from v in ϕ, if in some round u receives a message containing the input of v. Similarly, we say that u hears from v by round r in ϕ if u receives a message with v's input in round r, or before. In other words, there is a causal path from u to v [START_REF] Kuhn | Dynamic networks: Models and algorithms[END_REF] in an execution with failure pattern ϕ. In more detail, there is a causal path u = u 0 → . . . → u = v from u to v if there exist + 1 distinct nodes u 0 , . . . , u with u 0 = u and u = v such that for each i, 1 ≤ i ≤ :

• u i ∈ N (u i-1) and
• If u i-1 fails at round r in ϕ then either r > i, or r = i and u i-1 sends a message to u i in round r, i.e.

u i / ∈ F ui-1 .
Clearly, the existence of such a path depends on ϕ, but not on the input assignment. Thus, to analyze the structure of all possible failure patterns, we ignore the input values. This is what we do next, where we may identify ϕ with the infinite execution with that failure pattern.

Eccentricity and Radius in Failure Patterns. Let dist G (u, v) denote the distance between nodes u and v in G = (V, E). The eccentricity of a node v ∈ V is defined as ecc G (v) = max u∈V dist G (u, v). The diameter of a graph is defined as max v∈V ecc G (v), and its radius as min v∈V ecc G (v). We generalize the notions of eccentricity and radius to the synchronous t-resilient model.

In the following, failure patterns are denoted by lower case Greek letters ϕ, ψ, . . ., and sets of failure patterns are denoted by upper case Greek letters Φ, Ψ, We denote by Φ (t) all the set of all failure patterns for G and t. The failure pattern in which no nodes crash is ϕ ∅ , and hence Φ

(0) all = {ϕ ∅ }. Definition 1. Given a node v ∈ V and a failure pattern ϕ ∈ Φ (t) all , the eccentric- ity ecc G (v, ϕ) ∈ N ∪ {∞} of v in ϕ
is the minimum number of rounds required for all correct nodes to hear from v (i.e., there is causal path from v to every correct node), or ∞ if not all correct nodes hear from v. If ecc G (v, ϕ) ∈ N, we say that v floods to the correct nodes in ϕ.

Consider any ϕ. Notice that since G is at least (t + 1)-connected, and at most t nodes crash, if a correct node u hears from v, then every correct node receives a message from v (because a message can get from u to every correct node). We thus have the following claim.

Fact 1. For every v ∈ V , and every ϕ ∈ Φ

(t) all , if ecc G (v, ϕ) = ∞ then no correct node hears from v in ϕ. Definition 2. For v ∈ V and Φ ⊆ Φ (t) all , such that there is at least one ϕ ∈ Φ with ecc G (v, ϕ) ∈ N, let ecc G (v, Φ) = max{ecc G (v, ϕ) : ϕ ∈ Φ, ecc G (v, ϕ) ∈ N}.
Notice that, for any Φ containing failure patterns where v is correct, there is at least one

ϕ ∈ Φ with ecc G (v, ϕ) ∈ N. Lemma 1. For v ∈ V and ϕ ∈ Φ (t)
all , let A be the set of all active nodes in round

ecc G (v, Φ (t) all) under ϕ. Either all nodes in A hear from v by round ecc G (v, Φ (t) all), or no node in A hears from v by round ecc G (v, Φ (t) all) in ϕ. Proof. Let ϕ ∈ Φ (t)
all be the failure pattern identical to ϕ in the first ecc G (v, Φ (t) all) rounds, but with all the nodes of A correct in ϕ . Then, the nodes in A have the same view in both ϕ and ϕ in round ecc G (v, Φ

(t) all). If ecc G (v, ϕ) ∈ N, by Definition 1, all nodes in A hear from v by time ecc G (v, ϕ), which is at most ecc G (v, Φ (t)
all), by Definition 2. The same is true for ϕ, as ϕ and ϕ are identical in the first ecc G (v, Φ Note that Lemma 1, which holds for the family Φ (t) all , may not hold for every family Φ of failure patterns. Indeed, the failure pattern ϕ constructed from ϕ in the proof of Lemma 1 needs to belong to Φ, which is to say that Φ must be stable by the transformation changing ϕ into ϕ , which is not true for all Φ, but holds for Φ

(t) all) rounds. If ecc G (v, ϕ) = ∞, no node in A hears from v in ϕ ,
(t) all . Definition 3. Let Φ ⊆ Φ (t)
all such that for every v ∈ V there is at least one ϕ ∈ Φ with ecc G (v, ϕ) ∈ N. The radius of G with respect to Φ is defined as radius(G, Φ) = min v∈V ecc G (v, Φ).

For t = 0, our notion of eccentricity and radius coincides with the classical graph-theoretic definition, i.e., ecc

G (v, Φ (0) all) = ecc G (v) and radius(G, Φ (0) all) = radius(G). Moreover, in the complete graph K n , we have radius(K n , Φ (t)
all) = t+1, which together with Lemma 1 implies the correctness of the simple algorithm discussed in the Introduction.

Consensus Algorithms in Arbitrary Graphs

We consider the usual consensus problem in which each node starts with an input value, defined by the following properties.

• Termination: Every correct node decides a value

• Validity: The decision of a node is equal to the input of some node;

• Agreement: The decisions of any pair of nodes are the same. This version of consensus is sometimes called uniform since the agreement property requires that all decisions must be the same. In the nonuniform version of the problem, it is required that only the decisions of correct nodes are the same. In our consensus algorithms all decisions are taken at the same time, and hence they solve both versions of the problem.

Oblivious algorithms. Recall that in our algorithms, a node resends to its neighbors the set of input values it has received, each one together with the name of the node that has the corresponding input value. Thus, to specify a consensus algorithm, we define a function R(G, t) that returns a round number, stating that all correct nodes decide in round R(G, t). Also, we define a decision function D(G, t) used by a node to select a consensus value from its view (possibly taking in consideration the names of the nodes that proposed this inputs, and the structure of G and t). Formally, D(G, t) is a function from the set with all views to the output set. In a t-fault tolerant oblivious consensus algorithm for G, after R(G, t) rounds of communication (independently of the failure pattern or the input assignment), each node selects a value from its view, as specified by the function D(G, t). We stress that G is fixed in the paper, and R(G, t) and D(G, t) are not computed by the nodes, they are given as part of the algorithm. (Note however that if the nodes "know" G, t, and there relative positions in the graph, then they can compute these functions locally).

A naive algorithm

We describe a naive algorithm, P G,t ecc = (R ecc (G, t), D ecc (G, t)), based on a simple idea. Let us order the n nodes of G as v 1 , . . . , v n , with

ecc G (v i , Φ (t) all) ≤ ecc G (v i+1 , Φ (t) all) (1)
for 1 ≤ i < n. In particular, we have radius(G,

Φ (t) all) = ecc G (v 1 , Φ (t) all). Let R ecc (G, t) = ecc G (v t+1 , Φ (t)
all), and D ecc (G, t) be the function that, given a view, returns the input of the smallest 1 node among the nodes in {v 1 , . . . , v t+1 }.

Theorem 1. Algorithm P G,t ecc solves consensus in ecc G (v t+1 , Φ (t)
all) rounds. Proof. The algorithm satisfies termination as all correct nodes run R ecc (G, t) = ecc G (v t+1 , Φ (t) all) rounds. For validity, the definition of ecc G (v t+1 , Φ (t) all) and Equation 1 imply that all nodes receive at least one input of a node in {v

1 , . . . , v t+1 } by round ecc G (v t+1 , Φ (t) all), in every ϕ ∈ Φ (t)
all . For agreement, consider any 1 Assuming V is a totally ordered set.

all) in ϕ. Lemma 1 and Equation 1imply that either all nodes in A have received

v i 's input, 1 ≤ i ≤ t + 1, in round ecc G (v t+1 , Φ (t)
all) in ϕ, or none of them has received it in that round. Therefore, all nodes in A have the same view of the inputs of the nodes v 1 , . . . , v t+1 , hence D ecc (G, t) returns the same value to all of them.

It is easy to come up with graphs for which this solution is not optimal, in terms of number of rounds.

Lemma 2. There is a graph G for which P G,t ecc is not time optimal, with t = 1. Proof. Consider the graph G with n = 2k + 2 nodes, k ≥ 4, consisting of a path (x 1 , . . . , x 2k+1) plus a universal node y connected to every x i , i = 1, . . . , 2k + 1 (See figure 1 for the case k = 4.). Set t = 1.

Observe that if y does not crash, then for every i, 1 ≤ i ≤ 2k + 1, every node hears from x i in at most 3 rounds, unless x i crashes cleanly in the first round. If y crashes at the first round, at least one node hears from x i not before at least k round (the exact number depends on i). As per y, observe that ecc G (y, Φ N y) = 2k + 1, which is reached when y crashes at round 1, sending a message only on the edge {y, x 1 }. A systematic analysis demonstrates that radius(G,

Φ (t) all) = ecc G (x k+1 , Φ N x k+1) = k, i.e., v 1 = x k+1 . Similarly, we have ecc G (x k , Φ N x k) = k + 1, and v 2 = x k . Therefore, the naive algorithm performs in R ecc (G, 1) = k + 1 rounds in G, with D ecc (G, 1) using the set D = {x k , x k+1 }.
Instead, consider the set D = {y, x k+1 }, and perform flooding for k = R -1 rounds, with the objective of having nodes collecting the inputs of the nodes in D . If the actual failure pattern ϕ satisfies ϕ ∈ Φ N

x k+1 , then every correct node receives the input of x k+1 by the end of round k, as ecc

G (x k+1 , Φ N x k+1) = k. Otherwise, i.e., if ϕ ∈ Φ ∞
x k+1 , then, by Fact 1, no correct nodes receive the input of x k+1 , no matter how many rounds of flooding are performed. On the other hand, we have ecc G (y, Φ ∞

x k+1) = 1, because y does not crash in any failure pattern in Φ ∞

x k+1 as, by Fact 2, x k+1 must be the (unique) node that crashes in Φ ∞

x k+1 . In other words, either (1) all correct nodes receive the input from x k+1 in k rounds, or (2) no correct node receives this input, but they all have received the input from y. Therefore, if the nodes adopt the input of x k+1 whenever they receive it, or the input of y whenever they have not received the input of x k+1 , then consensus is reached, after k < R rounds.

An adaptive-eccentricity based algorithm

The algorithm P G,t ecc is based on a core set of nodes {v 1 , . . . , v t+1 }, consisting of the first t + 1 nodes in order of ascending eccentricity. We show here that there is a more clever way of selecting a core set of t + 1 nodes. The corresponding algorithm,

P G,t adapt = (R adapt (G, t), D adapt (G, t)), is similar, except that, R adapt (G, t) = radius(G, Φ (t)
all). As before, D adapt (G, t) returns the input of the smallest node among the core set, but now the core set is {s 1 , . . . , s t+1 }, as defined next.

The first node s 1 is the same v 1 as in P G,t ecc . To choose the i-th node, we consider all the un-chosen nodes, and their eccentricity only among the failure patterns where the previously selected nodes have ∞ eccentricity, and take the node that minimizes this quantity.

Formally, to define the core set of t + 1 nodes, we construct a sequence of pairs (s i , Φ i), with s i ∈ V , and

Φ i ⊆ Φ (t)
all , for i = 1, . . . , t + 1, inductively, as follows. For every node

v ∈ V , let Φ ∞ v = {ϕ ∈ Φ (t) all : ecc G (v, ϕ) = ∞} and Φ N v = {ϕ ∈ Φ (t) all : ecc G (v, ϕ) ∈ N}. Let Φ 0 = Φ (t)
all , and, for i = 1, . . . , t + 1, let

s i = arg min v∈V {s1,...,si-1} ecc G (v, Φ N v ∩ Φ i-1), Φ i = Φ ∞ si ∩ Φ i-1 , (2)
where, for i = 1, we interpret {s 1 , . . . , s i-1 } as the empty set. In other words,

Φ i = Φ ∞ s1 ∩ • • • ∩ Φ ∞ si
, and also Φ i = Φ i-1 Φ N si . Observe that, for every i = 1, . . . , t + 1, and every v ∈ V {s 1 , . . . , s i-1 }, Φ N v ∩ Φ i-1 is not empty as it contains the failure pattern in which all nodes s 1 , . . . , s i-1 crash cleanly at the first round, and no other node crashes. Also note that ecc G (s 1 , Φ N s1) = radius(G, Φ (t) all). For example, in K n , we have ecc Kn (s i , Φ N si) = t -i + 2 for i = 1, . . . , t + 1 whenever t < n -1. For t = n -1, we have ecc Kn (s i , Φ N si) = n -i for i = 1, . . . , n. In the cycle C n with t = 1, we have ecc Cn (s 1 ,

Φ N s1) = n -1 and ecc Cn (s 2 , Φ N s2) = n-1 2
. For the graph G in Figure 1,

s 1 = x 5 and s 2 = y, ecc G (s 1 , Φ N s1) = radius(G, Φ (1)
all) = 4, and ecc G (s 2 , Φ N s2) = 1. The core set for G, t is {s 1 , . . . , s t+1 }, and the core sequence for G is the ordered sequence (s 1 , . . . , s t+1). A crucial property of this sequence is that, while the sequence (ecc G (v i , Φ N vi)) 1≤i≤t+1 defined in Eq. (1) is non decreasing, and may even be increasing, the sequence (ecc

G (s i , Φ N si ∩ Φ i-1
)) 1≤i≤t+1 defined in Eq. (2) is non increasing, and is actually always decreasing. Intuitively, this is because the maximization in the computation of ecc G (v, Φ N v ∩Φ i) for determining s i+1 is taken over the set Φ N v ∩ Φ i which is smaller than the set Φ N v ∩ Φ i-1 used for the computation of s i . Lemma 3. Consider the core sequence (s 1 , . . . , s t+1) and the pairs

(s i , Φ i) de- fined in Eq. (2). Then, ecc G (s i , Φ N si ∩ Φ i-1)) > ecc G (s i+1 , Φ N si+1 ∩ Φ i)), for i ∈ {1, . . . , t}.
The proof of this lemma uses the following fact: Fact 2. For every v ∈ V , and every failure pattern ϕ ∈ Φ

(t) all , if ecc G (v, ϕ) = ∞ then v crashes at round 1 in ϕ.
Proof. Assume for contradiction that v does not crash an in the first round, but still, ecc G (v, ϕ) = ∞. As deg G (v) ≥ κ(G) > t and since v does not crash in round 1, there is a correct node that receives the input of v in round 1. By the contrapositive of Fact 1, ecc G (v, ϕ) ∈ N: a contradiction.

We now are ready to prove Lemma 3.

Proof of Lemma 3. Fix 1 ≤ i ≤ t. Recall that s i+1 is defined as

s i+1 = arg min v∈V {s1,...,si} ecc G (v, Φ N v ∩ Φ i).
Thus, it is enough to identify a node v / ∈ {s 1 , . . .

s i } that satisfies ecc G (s i , Φ N si ∩ Φ i-1) > ecc G (v, Φ N v ∩ Φ i).
We show that a neighbor v of s i satisfies this. Let v / ∈ {s 1 , . . . s i } be a neighbor of s i . Note that such a neighbor v exists, as deg

G (s i) ≥ κ(G) > t. Let ϕ ∈ Φ N v ∩ Φ i , i.e., ϕ ∈ Φ i and ecc G (v, ϕ) < ∞.
For each (w, F w , f w) ∈ ϕ, define the triplet (w, F w , ϕ w) as follows:

F w =    F w if w / ∈ {s 1 , . . . , s i } N (w) if w ∈ {s 1 , . . . , s i-1 } N (w) {v} if w = s i and f w = f w + 1 if w / ∈ {s 1 , . . . , s i } 1 if w ∈ {s 1 , . . . , s i } .
Let ϕ be the failure pattern defined by these triplets. That is, s 1 , . . . , s i-1 fail cleanly in the first round, s i sends a message to v and then fails, and the rest of the nodes fail as in ϕ, but one round latter. The crux of the proof lays in the following fact: ecc G (v, ϕ) = ecc G (s i , ϕ)-1. To see this, note that the set of correct nodes in ϕ and ϕ is the same, and let u be such a correct node. As ecc G (v, ϕ) < ∞, there exists a causal path from v to u under ϕ. By Fact 2, the nodes s 1 , . . . , s i crash at round 1 in ϕ, so the path does not go through them. The failure pattern ϕ is designed such that the same path exists in ϕ , even when starting in round 2. Hence, there is a causal path from s 1 to u in ϕ . This path starts by a message from s 1 to v in the first round, and continues as the previous path, until u. This implies that ecc G (v, ϕ) ≥ ecc G (s i , ϕ) -1. The proof of the opposite inequality is almost the same. Namely, any causal path in ϕ starting from s 1 must contain a path from v that starts one round later, and it exists in ϕ as well.

It follows that ecc G (s i , ϕ) < ∞, and hence ϕ ∈ Φ N si . In addition, s 1 , . . . , s i-1 fail cleanly in the first round, so ϕ

∈ Φ i-1 . Hence, ϕ ∈ Φ N si ∩ Φ i-1 , and ecc G (s i , ϕ) ≤ ecc G (s i , Φ N si ∩ Φ i-1). Thus, ecc G (v, ϕ) = ecc G (s i , ϕ) -1 < ecc G (s i , ϕ) ≤ ecc G (s i , Φ N si ∩ Φ i-1
)). As this holds for any ϕ ∈ Φ N v ∩ Φ i , the claim is proved.

Note that, as for Lemma 1, Lemma 3 may not hold for every family Φ = Φ (t) all of failure patterns. Indeed, the failure pattern ϕ constructed from ϕ in the proof of Lemma 3 needs to belong to Φ.

Theorem 2. Algorithm P G,t adapt solves consensus in radius(G, Φ

all) rounds.

The correctness proof of P G,t adapt is very similar to that of P G,t ecc :

Proof. Let ϕ ∈ Φ (t)
all , and consider an execution of Algorithm P G,t adapt with failure pattern ϕ for R rounds. Let j be the smallest index of a node s j in the core set such that some correct node v hears from s j . Such an index j must exist since at least one node in the core set is correct in ϕ, and it hears from itself. We thus have ϕ ∈ Φ N sj ∩ Φ j-1 , which implies ecc G (s j , ϕ) ≤ ecc(s j , Φ N sj ∩ Φ j-1). It then follows from Lemma 3 that ecc G (s j , ϕ) ≤ radius(G, Φ (t) all) = R. From Fact 1, we deduce that all correct nodes have received the input of s j in the first R rounds, and the choice of j assures that this is the smallest-indexed node in the core set that any of the correct nodes has received, which completes the proof.

Finally, observe that P G,t ecc performs in ecc G (v t+1 , Φ

all) rounds according to the notations of Eq (1), while P G,t adapt performs in radius(G, Φ

all) = ecc G (v 1 , Φ (t)
all) rounds according to the same notations.

Implementing the algorithms with small messages

Our algorithms P G,t ecc and P G,t adapt are full information, and hence in every round each node sends all inputs it knows, for a total of O(n(log n + log |U |)) bits per message, where U is the input space. The algorithms however can be implemented using small messages of only O(log n + log |U |) bits. Indeed, in both algorithms, there is a node set S of size t + 1 such that, in round R(G, t), each node decides the input of the smallest node in S it is aware of. Therefore, it is enough that, in every round, each node sends only the pair (v, in v) with the smallest node v ∈ S it is aware of. Specifically, if |U | is at most polynomial in n, this gives a simple consensus algorithm exchanging messages on O(log n) bits.

The Lower Bound

In this section we present the notion of information flow graph (Section 4.1), and a solvability characterization for consensus based on this notion (Section 4.2). We then show that P G,t adapt is time optimal for vertex-transitive graphs (Section 4.3), among oblivious algorithms. Recall that in an oblivious algorithm, the decision value of a node is based only on the set of input values it has seen so far. Algorithms P G,t ecc and P G,t adapt are oblivious. We stress that the notion of information flow graph, the results we prove about it, and our consensus solvability characterization, apply for any graph, not only for vertex-transitive graphs.

config K3 (ϕ u clean , 1) config K3 (ϕ u dirty , 1) config K3 (ϕ ∅ , 1) (u, {u, v, w}) (v, {u, v, w}) (w, {u, v, w}) (u, {u, v}) (v, {u, v}) (u, {u, w}) (w, {u, w}) (w, {v, w}) (v, {v, w}) Figure 2: IF K 3 ,Φ (1)
all ,1

, with the config K 3 (ϕ, 1) sets marked, for some ϕ ∈ Φ [START_REF] Kawazoe | A simple bivalency proof that t-resilient consensus requires t+1 rounds[END_REF] all ; ϕ ∅ denotes the failure pattern without failures, ϕ u clean the failure patter where u fails cleanly in round 1 and ϕ u dirty the failure patter where u fails in round 1 and sends a message only to v.

Lemma 5. Let ϕ, ψ ∈ Φ and u, v ∈ V such that u and v are active in round r in both ϕ and ψ.

If (u, view G (u, ϕ, r)), (v, view G (v, ϕ, r)) ∈ E(IF G,Φ,r) and view G (v, ϕ, r) = view G (v, ψ, r), then (u, view G (u, ψ, r)), (v, view G (v, ψ, r)) ∈ E(IF G,Φ,r).
Proof. If (u, view G (u, ϕ, r)), (v, view G (v, ϕ, r)) ∈ E(IF G,Φ,r), then it must be that u ∈ view G (v, ϕ, r), from which it follows that u ∈ view G (v, ψ, r), and thus (u, view G (u, ψ, r)), (v, view G (v, ψ, r)) ∈ E(IF G,Φ,r).

The solvability characterization

The next result provides a solvability characterization for consensus by oblivious algorithms. In essence, it states that the number r of rounds should be large enough so that every connected component of IF G,Φ,r has a dominating node. A connected component of IF G,Φ,r is a connected component of the underlying, undirected graph of IF G,Φ,r . We say that a node v ∈ V of the graph G dominates

a connected component C of IF G,Φ,r , if the set {(v, view G (v, ϕ, r)) : ϕ ∈ Φ} dominates C.
That is, for every (w, view G (w, ϕ, r)) in C, there is an arc from the node (v, view G (v, ϕ, r)) to (w, view G (w, ϕ, r)). Clearly, the algorithm satisfies termination and validity. For agreement, consider any ϕ ∈ Φ. Let w and w be two nodes that are active in round r in ϕ. By Lemma 4, the subgraph of IF G,Φ,r induced by config G (ϕ, r) is connected. Therefore, (w, view(w, ϕ, r)) and (w , view(w , ϕ, r)) belongs to the same connected component C of IF G,Φ,r , thus w and w decide the input of the same node.

Lemma 7. For any Φ ⊆ Φ (t)
all , if there is an oblivious algorithm solving consensus in r rounds under the set of failure patterns Φ, then every connected component C of IF G,Φ,r has a dominating node in V .

Proof. For establishing the lemma, we prove the contrapositive. Let Φ ⊆ Φ (t) all , and let C be a connected component of IF G,Φ,r . Assume that, for every u ∈ V , node u does not dominate C. We show that binary consensus in r rounds is impossible. For this purpose, we use a connectivity argument, by proving the existence of a path in the graph of configurations, between the configuration in which all nodes have input 0, and the configuration in which all nodes have input 1.

Let u 1 , . . . , u n be an arbitrary ordering of all the nodes of V . Let (v 1 , . . . , v n) be a sequence of nodes in V , and (ϕ 1 , . . . , ϕ n) be a sequence of failure patterns in Φ, such that u i / ∈ view G (v i , ϕ i , r) and view G (v i , ϕ i , r) ∈ C for all 1 ≤ i ≤ n. Specifically, v i is active in round r in ϕ i . (v i , ϕ i) 1 ≤i≤n exists since no node dominates C. Note that it may be the case that v i = v j for i = j.

Let X i be the vector composed of n -i 0-entries, follow by i 1-entries, i.e., X i (j) = 0 for 1 ≤ j ≤ n -i, and X i (j) = 1 for n -i < j ≤ n. Specifically, X 0 = 0 n is the all-0 vector, and X n = 1 n the all-1 vector. For every 0 ≤ i ≤ n, let us consider the executions of an alleged r-round algorithm when the inputs of u 1 , . . . , u n are given by X i , i.e., the input of u j is X i (j) for j = 1, . . . , n. Let 1 ≤ j ≤ n be the minimum index such that, if the inputs are given by X j and the failure pattern is ϕ j , then v j decides on 1. Note that such a value must exist, since on X n , node v n must decide 1.

Assume first that j = 1, i.e., on inputs X 1 and failure pattern ϕ 1 , v 1 decides on 1. Consider the execution of the algorithm with the same failure pattern ϕ 1 , but with inputs X 0 . This execution differs from the previous one only by the input of u 1 , which is not seen by v 1 as u 1 / ∈ view G (v 1 , ϕ 1 , r). Hence, v 1 must decide on 1 in this case as well. On the other hand, on the input vector X 0 = 0 n , all nodes must decide 0, a contradiction.

Consider now the case of 1 < j ≤ n. In the connected component C, there is a path P connecting (v j-1 , view G (v j-1 , ϕ j-1 , r)) and (v j , view G (v j , ϕ j , r)). Let us describe this path P as

(v j-1 , view G (v j-1 , ϕ j-1 , r)) = (w 0 , view G (w 0 , ψ 0 , r)), (w 1 , view G (w 1 , ψ 1 , r)), . . . , (w k-1 , view G (w k-1 , ψ k-1 , r)), (w k , view G (w k , ψ k , r)) = (v j , view G (v j , ϕ j , r))
By the minimality of j, we know that, on the input vector X j-1 , and with failure pattern ϕ j-1 , node v j-1 decides on 0. Put differently, on the input vector X j-1 and with failure pattern ψ 0 , node w 0 decides on 0. Consider now two consecutive nodes in the path P , say (w i , view G (w i , ψ i , r)) and (w i+1 , view G (w i+1 , ψ i+1 , r)). As commented earlier, there exists a failure ∈ Φ such that

view G (w i , ψ i , r) = view G (w i , , r) and view G (w i+1 , ψ i+1 , r) = view G (w i+1 , , r).
So, when running on input vector X j-1 (or any other input vector), and with failure pattern , w i and w 1i+1 decide the same. A simple induction on the distance to node (w 0 , view G (w 0 , ψ 0 , r)) in the path P implies that on X j-1 , with failure pattern ϕ j , v j decides on 0. We are now in a case similar to that of j = 1: On the input vector X j-1 , with failure pattern ϕ j , node v j decides on 0. Instead, on the input vector X j , with the same failure pattern ϕ j , node v j decides on 1. The only difference between X j-1 and X j is in the input of u j , which is not seen by v j as u j / ∈ view G (v j , ϕ j , r). So v j must decide the same in both cases, a contradiction.

Optimality of P G,t

adapt for symmetric graphs To conclude, we use the characterization in Theorem 3 to show that P G,t adapt is time optimal for vertex-transitive graphs, among oblivious algorithms.

An automorphism of G is a bijection π : V → V such that, for every two nodes u and v, {u, v} ∈ E ⇐⇒ {π(u), π(v)} ∈ E. A graph G = (V, E) is vertex-transitive if, for every two nodes u and v, there exists an automorphism π of G such that π(u) = v. For instance, the complete graphs K n , the cycles

C n , the d-dimensional hypercubes Q d , the d-dimensional toruses C n1 × • • • × C n d ,
the Kneser graphs KG n,k , and Cayley graphs, are all vertex-transitive. The wheel, composed of a cycle and a center node connected to all cycle nodes, is not vertex-transitive, since the center node has degree n -1 while the cycle nodes have degree 3.

all) = 1, as consensus is trivially not solvable in zero rounds in any graph with at least 2 nodes, even with no failures. So we assume now that radius(G,

Φ (t) all) ≥ 2.
We will show a result stronger that the one stated in the theorem, namely we show that no oblivious algorithm can solve consensus in a vertex-transitive graph G in a restricted set of failure patterns Φ Φ

(t) all (or Φ Φ (t)
all in the case of the complete graph K n with n -1 failures). That is, even if the algorithm has only to deal with the n + 1 failure patterns in Φ Φ

(t) all (or Φ if G = K n with t = n -1 failures), still consensus is not solvable in fewer than radius(G, Φ (t) all) rounds.
Both sets of failure patterns Φ and Φ consist of the empty failure pattern ϕ ∅ and one failure pattern ϕ s for each node s chosen from a larger set Φ. A failure pattern ϕ belongs to Φ if it consists of the union of two, possibly empty, sets of failures: a hidden path ϕ h and a set of clean failures ϕ c occurring at round 2. A hidden path starting at some node s is a failure pattern

ϕ h = {(v i , F vi , i), = 1, . . . , k} where 1 ≤ k ≤ t, v 1 = s, and F vi = N (v i) {v i+1 } for every 1 ≤ i ≤ k with v k+1 a correct node. Hence, for any failure pattern ϕ ∈ Φ (t) all : ϕ ∈ Φ ⇐⇒ ϕ = ϕ h ∪ ϕ c
where ϕ h is either empty or an hidden path starting at some node v and ϕ c is empty or has the form:

ϕ c = {(u 1 , N (u 1), 2), . . . , (u , N (u), 2)}
for some nodes u 1 , . . . , u and ≤ t.

Remark.. In a vertex-transitive graph G, for every s ∈ V , radius(G,

Φ (t) all) = ecc G (s, Φ (t)
all). In fact, this is the only property of vertex-transitive graphs we use, and the only way we use vertex-transitivity. Hence our theorem holds for any graph satisfying the above property.

We will now show that ecc G (s, Φ

all) = ecc G (s, Φ) and therefore for every s ∈ V , we can assign a failure pattern ϕ s ∈ Φ such that radius(G,

Φ (t) all) = ecc G (s, ϕ s). In what follows, let R = radius(G, Φ (t)
all). Lemma 8. For every node s, there exists a failure pattern

ϕ s ∈ Φ such that ecc G (s, ϕ s) = radius(G, Φ (t) all) = R. Moreover, if ϕ s contains an hidden path, it starts in s. Proof. Let ϕ ∈ Φ (t)
all be a failure pattern such that ecc G (s, ϕ) = R. As observed above, such a failure pattern exists because G is vertex-transitive. Based on ϕ, we define another failure pattern φ. We show that φ ∈ Φ, the hidden path (if any) in φ starts in s and ecc G (s, φ) = R, which proves the lemma.

Since ecc G (s, ϕ) = R, there is a correct node x such that every causal path in ϕ from s to x has length at least R. Let u 1 = s → . . . → u R → u R+1 = x be such a path, of length exactly R (such a path must exist as otherwise ecc G (s, ϕ) would have been larger). In addition, let

= 0 s is correct in ϕ max{i : 1 ≤ i ≤ R, u 1 , . . . , u i fail in ϕ} otherwise.
Note that for each j, 1 ≤ j ≤ , u j fails at round j or at a later round. For each

(v, F v , r v) ∈ ϕ, let Fv = N (v) \ {u i+1 } if ∃i ≤ : v = u i N (v) otherwise,
and

rv = i if ∃i ≤ : v = u i 2 otherwise.
Finally, we set φ = {(v, Fv , rv) : ∃F, r, (v, F, r) ∈ ϕ}. That is, the set of nodes that fail in ϕ and φ is the same, and there is a hidden path from s to u in φ. Each node that fails in φ and that is not in the hidden path fails cleanly in round 2. Therefore, φ ∈ Φ. As there is a correct node (namely, u) that hears from s, every correct node hears from s in φ. Hence, ecc G (s, φ) ≤ radius(G, Φ

all) = R. Consider a causal path s = ũ1 → ũ2 → . . . → ũm = x from s to x in φ. Nodes ũ1 , . . . , ũ coincide with nodes u 1 , . . . , u as for each i, 1 ≤ i ≤ -1, node u i fails in round i and sends only to node u i+1 . Since every faulty nodes not in the hidden path fails cleanly in round 2 in φ, nodes ũ , . . . , ũm are correct in φ, and thus also in ϕ. Therefore, ũ1 → . . . → ũm is also a causal path from s to x in ϕ, from which we conclude that its length is at least ecc G (s, ϕ) = R. As this holds for any causal path from s to x in φ, ecc G (s, φ) = R.

Next, we show that even if that algorithm has to deal with a restricted set of failure patterns consisting in only n + 1 failure patterns, consensus is not solvable in fewer than radius(G, Φ (t) all) rounds. In the general case, this set of failure patterns is called Φ. It follows from Lemma 8 that for every s ∈ V , we can assign a failure pattern ϕ s ∈ Φ such that radius(G, Φ

all) = ecc G (s, ϕ s) and whose hidden path (if any) starts at s. Let Φ = {ϕ s : s ∈ V } ∪ {ϕ ∅ }. These configurations config G (ϕ, t) for ϕ ∈ Φ are depicted in Figure 3 for the case of G = K 3 and t = 1.

The case of the complete graph K n with t = n -1 needs special care. In this case, we use a slightly different set of failure pattern denoted Φ to show that consensus is not solvable in fewer than radius(K n , Φ (n-1) all) = n -1 = t rounds. Given a node s, let ϕ s be an hidden path of length n -2. That is,

ϕ s = {(v 1 , N (v) \ {v 2 }, 1), . . . , (v n-2 , N (v) \ {v n-1 }, n -2)}
where v 1 = s, and v n-1 is a correct node. Note that ecc Kn (s, ϕ) = n -1. Indeed, there are two correct nodes in ϕ and only one of them, namely v n-1 has heard of s at the beginning of round n -1. As for any n-nodes graph G, radius(G,

Φ (t) all) ≤ n -1, ecc Kn (s, ϕ) = n -1 = radius(K n , Φ (n-1) all
). We set Φ = {ϕ s : s ∈ V } ∪ {ϕ ∅ }. Using Theorem 3, it is then sufficient to prove the following lemmas: We start with the proof of Lemma 9.

config K3 (ϕ u dirty , 1) config K3 (ϕ w dirty , 1) config K3 (ϕ v dirty , 1) config K3 (ϕ ∅ , 1)
Proof of Lemma 9. We first note that

V (IF G,Φ,R-1) = config G (ϕ ∅ , R -1) ∪ s∈V config G (ϕ s , R -1)
. Now, we prove the following three claims, which together show the connectivity of the underlying graph of IF G,Φ,R-1 :

1. The subgraph of IF G,Φ,R-1 induced by config G (ϕ ∅ , R -1) is connected; 2. for every s ∈ V , the subgraph of IF G,Φ,R-1 induced by config G (ϕ s , R -1)
is connected;

3. and finally, config

G (ϕ s , R -1) ∩ config G (ϕ ∅ , R -1) = ∅.
The facts that the subgraphs of IF G,Φ,R-1 induced by config G (ϕ ∅ , R -1) and config G (ϕ s , R -1) are connected follow directly from Lemma 4.

To show that config G (ϕ s , R -1) ∩ config G (ϕ ∅ , R -1) = ∅ for every node s ∈ V , we show that for every such s there is a node v s such that view G (v s , ϕ s , R -1) = view G (v s , ϕ ∅ , R -1). To this end, we analyze the possible structures of the failure pattern ϕ s . Recall that ϕ s is composed of a (possibly empty) hidden path s = v 1 , . . . , v k+1 that starts in s and a set of nodes {v 1 , . . . , v } that crash cleanly in round 2. We consider two cases, according to the length k of the hidden path in ϕ s :

• k = 0. If no node crashes cleanly in round 2, ϕ s = ϕ ∅ and every node has the same view at the end of round R -1 in both failure patterns.

Let us assume that at least one node crashes cleanly in round 2. Let u be a correct neighbor of v 1 , which must exist since deg

G (v 1) ≥ κ(G) > t.
Assume for contradiction that there is a node u from which u hears in the first R -1 rounds when there are no failures, but from which it does not hear in ϕ s . That is:

u ∈ view G (u, ϕ ∅ , R -1) and u / ∈ view G (u, ϕ s , R -1).
Define a failure pattern ϕ s identical to ϕ s , except that the node u does not crash in ϕ s , and the clean failure of v 1 is replaced by (v 1 , N (v 1) {u}, 1). In other words, ϕ s is the same as ϕ s except that (1) u is removed from ϕ s if it happened that u = v i for some i ∈ {2, . . . , }, and (2) the clean crash of v 1 at round 2 in ϕ s is replaced by a crash in which v 1 sends to u at round 1.

As

ϕ s ∈ Φ (t)
all , and radius(G, Φ

all) = R, there must exist a causal path from v 1 to u under ϕ s , which is composed of a message from v 1 to u, followed by a path P from u to u of length at most R -1. By the fact that G is undirected, and by the construction of ϕ s , the same path P in the opposite direction is a causal path from u to u under ϕ s , and also under ϕ s . Hence u ∈ view G (u, ϕ s , R -1): a contradiction. As view G (u, ϕ s , R -1) ⊆ view G (u, ϕ ∅ , R-1), it follows that view G (u, ϕ s , R-1) = view G (u, ϕ ∅ , R-1).

• k = 1. The analysis of this case is similar to the previous case. Consider node v 2 , the neighbor of s that receives a message from s in the first round. As v 2 is the end of a hidden path, it is correct. Assume for contradiction that view G (v 2 , ϕ s , R -1) = view G (v 2 , ϕ ∅ , R -1). Hence, there exists a node u : u ∈ view G (v 2 , ϕ ∅ , R -1) and u / ∈ view G (v 2 , ϕ s , R -1). Similarly to the previous case, let ϕ s be the failure pattern identical to ϕ s , except that u is correct in ϕ s (ϕ s and ϕ s are thus the same if u is correct in ϕ s .). As ϕ s ∈ Φ (t) all , and radius(G, Φ (t) all) = R, there must exist a causal path from v 1 (= s) to u under ϕ s , which is composed of a message from v 1 to v 2 , followed by a path P from v 2 to u of length at most R -1. As in the previous case, the same path P in the opposite direction is a causal path from u to v 2 under ϕ s , and also under ϕ s . Therefore, u ∈ view G (v 2 , ϕ s , R -1): a contradiction.

• k ≥ 2. In this case, our goal is to show that view

G (v k+1 , ϕ s , R -1) = view G (v k+1 , ϕ ∅ , R -1)
, where v k+1 is the last node of the hidden path starting in s.

By the end of round k, v k+1 has heard from every node v 1 , . . . , v k in the hidden path. Let u = v k+1 be a correct node. As ecc G (s, ϕ s) = R, u hears from s at the latest at round R. Since v k+1 is the only active node that has heard from s at the end of round k, a shortest causal path from s to u consists of the hidden path v 1 (= s), . . . , v k+1 followed by a causal path P from v k+1 to u of length at most R-k. Since every faulty node outside the hidden path crashes cleanly in round 2, the path P contains only correct nodes. Hence, the path P in the opposite direction is also a causal path in ϕ s , from u to s. Finally, consider a faulty node u which is not in the hidden path: u fails cleanly in round 2. As deg G (u) ≥ κ(G) > t, u has a correct neighbor u that hears from it in round 1. As seen above, there is a causal path made of correct nodes and of length at most R -k from u to v k+1 . Hence, u hears from u by the end of round R -k + 1 at the latest. We conclude that v k+1 hears from all the nodes by the end of round τ

= max(k, R -k, R -k + 1) = max(k, R -k + 1) in ϕ s .
As every causal path under ϕ s is also a causal path when there are no failures, view G (v k+1 , ϕ s , τ) = view G (v k+1 , ϕ ∅ , τ). To conclude the analysis of this case, we consider the following sub-cases depending on the relations between τ and R -1 :

τ ≤ R -1. As the view of v k+1 consists of all the nodes at the end of round τ in both ϕ s and ϕ ∅ , we have view

G (v k+1 , ϕ s , R -1) = view G (v k+1 , ϕ ∅ , R -1)
, as desired.

τ > R -1. We have τ = k = R since k ≥ 2 and the length k of the hidden path is at most R. Note that t nodes fail in ϕ s . Otherwise, as deg G (v k+1) ≥ t, v k+1 has a correct neighbor u. The hidden path can thus be extended by failing v k+1 in round k + 1 with one message sent from v k+1 to u in that round. In the resulting failure pattern ϕ s , ecc G (s, ϕ s) ≥ R + 1 > radius(G, Φ

all) = R, which is a contradiction. Let us also observe now that the number n of nodes satisfies n = t+1. Since ecc G (s, ϕ s) = R, every correct node has heard from s in ϕ s by the end of round R = k. Note that v k+1 is the only correct node that hears from s by the end of round R, and thus the only correct node. As t nodes fails, the total number of nodes in G is n = t + 1. Therefore, since for every node v deg G (v) ≥ t = n -1, G is the complete graph K n and t = n -1, which contradicts the assumptions of the lemma. Now, we show that, for every s ∈ V , s does not even dominate the subgraph induced by config G (ϕ s , R -1). To see this, let us fix s ∈ V . Since ecc G (s, ϕ s) = radius(G, Φ (t) all) = R, there exists a correct node u s that has not heard from s by the end of round R -1 in ϕ s . That is, s / ∈ view G (u s , ϕ s , R -1). It follows that s does not dominate config G (ϕ s , R -1), and therefore it does not dominate V (IF G,Φ,R-1), as claimed.

We now consider the case where G = K n and t = n -1 Proof of Lemma 10. As in the proof of Lemma 9, it follows from Lemma 4 that 1. The subgraph of IF Kn,Φ ,n-2 induced by config G (ϕ ∅ , n -2) is connected; 2. for every s ∈ V , the subgraph of IF G,Φ,n-2 induced by config G (ϕ s , n -2) is connected.

It remains to show that for any node s, config Kn (ϕ s , n-2)∩config Kn (ϕ ∅ , n-2) = ∅. Recall that ϕ s consists in an hidden path of length n -2 starting in v 1 = s and ending in some correct node v n-1 . Let u denote the node that is not involved in the hidden path, i.e., the node u such that {u} = V \ {v 1 , . . . , v n-1 }.

By the end of round n -2, v n-1 has heard from every node in the hidden path v 1 , . . . , v n-2 and from node u in ϕ s . As the graph is complete, v n-1 also hears from every node in the failure-free failure pattern ϕ ∅ . Therefore,

view Kn (v n-1 , ϕ s , n -2) = view Kn (v n-1 , ϕ ∅ , n -2).
The rest of the proof, namely that no node dominates IF Kn,Φ ,n-2 , is the same as in the proof of Lemma 9.

The theorem directly follows from the previous lemmas and the characterization in Theorem 3.

Theorem 5. If G is vertex-transitive, P G,t
adapt is time optimal among oblivious algorithms.

We conjecture that P G,t adapt is, among oblivious algorithms, time optimal for all graphs and for the class Φ (t) all of all failure patterns. This conjecture is grounded on the fact that Lemma 3 holds for all graphs, and not only for those that are vertex-transitive. P G,t adapt is however not optimal for specific classes Φ of failure patterns, even in vertex-transitive graphs, as we show in the next section.

The Case of Clean Failures

An interesting and well studied type of failures are clean failures, i.e., failures where the failing nodes do not send any messages. Here, we focus on initial clean failures, i.e., crashes occurring before the failing nodes were able to send any messages. We show that in this case, neither the naive algorithm nor our adaptive algorithm P G,t adapt are optimal, and we do so on a vertex-transitive graph. This implies that considering Φ (t) all in our algorithm (Theorem 2) and in our lower bound (Theorem 4) is required for these claims to hold.

Consider the graph Q 3 , i.e., the 3-dimensional hypercube with nodes marked x 1 x 2 x 3 ∈ {0, 1} 3 , and edges between two nodes of Hamming distance (i.e., number of different coordinates) equal to 1 -see Figure 4. Interestingly, this graph was also used to prove an impossibility result related to routing with edge failures [START_REF] Chiesa | On the resiliency of static forwarding tables[END_REF]. The diameter of Q 3 is 3, and its connectivity is 3 as well.

Let t = 2, and let us consider the set Φ case, every path from 000 must start with the edge (000, 100); from 100 to 011, every path take 3 more edges, since this is their Hamming distance, hence the distance between 000 and 011 is 4. Since all nodes have the same eccentricities, the naive algorithm, Algorithm P Q3,4 ecc , solve consensus in 4 rounds. The radius radius(Q 3 , Φ

clean-init) is also 4, so our algorithm, P Q3,2 adapt , also takes 4 rounds to reach consensus.

To get a 3-round algorithm under Φ

clean-init , we note that if node 000 is correct, and if it cannot flood in 3 rounds, this is because two nodes of Hamming weight 1 (the nodes 001, 010, 100) have crashed. Moreover, in this case, the node 111 can flood in 3 rounds. We present the algorithm

P Q3,2 clean-init = (R clean-init (Q 3 , 2), D adapt (Q 3 , 2)),
where the flooding time is R clean-init (Q 3 , 2) = 3, and the decision procedure D adapt (Q 3 , 2)) at each node u is as follows.

1. If node u receives at least two nodes of Hamming weight 1, and node u received 000, then return the input of 000;

2. Otherwise, if node u receives 111, return the input of 111;

3. Otherwise, return the input of 001.

Theorem 6. Algorithm P Q3,2 clean-init solves consensus on Q 3 with at most 2 clean initial failures in 3 rounds.

Proof. The running time of the algorithm is clear from the choice R clean (Q 3 , 2) = 3. The correctness yields from a simple case analysis.

In a failure pattern ϕ 1 where at most one node of Hamming weight 1 fails, and 000 does not fail, we have ecc Q3 (000, ϕ 1) ≤ 3, and all nodes decide on the input of 000, by Instruction 1.

In a failure pattern ϕ 2 where two nodes of Hamming weight 1 fail, we have that the node 111 does not fail and has ecc Q3 (111, ϕ 2) ≤ 3, and all nodes decide on the input of 111 by Instruction 2.

We are left with the case of failure patterns where 000 fails, which leads to two sub-cases. In a failure pattern ϕ 3 where 000 fails while 111 does not fail, at most one neighbor of 111 fails, 111 has ecc Q3 (111, ϕ 3) = 2 and all nodes decide on the input of 111 by Instruction 2.

Finally, in the failure pattern ϕ 4 where 000 and 111 fail, node 001 does not fail, has ecc Q3 (001, ϕ 4) = 3, and all nodes decide on the input of 001 by Instruction 3.

Theorem 6 shows that P G,t adapt , which was proved optimal for Φ (t) all (in vertextransitive graphs), is not optimal for all families Φ of failure patterns. In particular, P Q3,2 adapt is not optimal in Q 3 for Φ

(2) clean-init . We don't know whether P G,t adapt is optimal for Φ (t) clean .

Conclusion

We have studied for the first time the number of rounds needed to solve fault-tolerant consensus in a crash prone synchronous network with arbitrary structure. We have defined a notion of dynamic radius of a graph G when t nodes may crash, which precisely determines the worst case number of rounds needed to solve oblivious consensus for vertex-transitive networks. The optimality of our algorithm was shown through a novel consensus solvability characterization in arbitrary networks, using the notion of information flow [START_REF] Castañeda | A topological perspective on distributed network algorithms[END_REF]. A second consequence of the characterization is an abstract consensus algorithm that is optimal for all graphs. Our focus has been in the worst-case number of rounds. An interesting challenge would be to design early deciding algorithms; a problem that is well-studied in the case of the complete graph e.g. [START_REF] Castañeda | Early decision and stopping in synchronous consensus: A predicate-based guided tour[END_REF].

An interesting future line of research is to study the case of non-oblivious algorithms (such algorithms have been considered in the past, e.g. [START_REF] Raynal | Fault-Tolerant Message-Passing Distributed Systems -An Algorithmic Approach[END_REF]). Remarkably, for the case of the complete communication graph, there is no difference between these two types of algorithms: at the end of round t + 1, every pair of nodes have the same set of pairs (v, in v) (formally, there is common knowledge on a set of inputs), hence decisions can be taken considering only this set.

Recall that, in our algorithms, R(G, t) and D(G, t) are hard-coded for a given G and t. It is worth exploring if our techniques are useful for the case where the graph G is not known to the nodes. Indeed, it is a challenge to combine faulttolerant arguments with techniques of (failure-free) network computing [START_REF] Peleg | Distributed Computing: A Locality-Sensitive Approach[END_REF]. Our results for t = 0 correspond to network computing. Yet, the case of t > 0 for arbitrary or evolving networks is an intriguing and complex research question.

 by Fact 1, and then no node in A hears from v by round ecc G (v, Φ (t) all) in ϕ because ϕ and ϕ are identical in the first ecc G (v, Φ (t) all) rounds.

Theorem 3 .Lemma 6 .

 36 There is an oblivious algorithm solving consensus in r rounds under the set of failure patterns Φ ⊆ Φ (t) all if and only if every connected component C of IF G,Φ,r has a dominating node in V . The two directions of the theorem are proved by the next two lemmas. For any Φ ⊆ Φ (t) all , if every connected component C of IF G,Φ,r has a dominating node in V , then there is an oblivious algorithm solving consensus in r rounds under the set of failure patterns Φ. Proof. To solve consensus we only need to specify the decision function after r rounds of communication. For every connected component C of IF G,Φ,r , pick a dominating node v ∈ V of C. Let w be a node. The view view w of w determines to which connected component C the node (w, view w) belongs. The decision of w is the input value of the node v that dominates C.

Theorem 4 .

 4 If G is vertex-transitive, then there is no oblivious algorithm that solves consensus in fewer than radius(G, Φ (t) all) rounds. Proof. Clearly, the result holds if radius(G, Φ (t) all) = 0 (a single-node graph), and if radius(G, Φ

Figure 3 :Lemma 9 .

 39 Figure 3: The information flow graph IF K 3 ,Φ,1 appearing in the proof of Theorem 4, for K 3 and the failure pattern Φ defined there. ϕ ∅ denotes the failure pattern without failures, while ϕ x dirty denotes the failure pattern where x fails in round 1, sending a message to only one node.

Figure 4 :

 4 Figure 4: Q 3 , the 3-dimensional cube.

 and the set A of all nodes that are active in round ecc G (v t+1 , Φ

		x 1	x 2	x 3	x 4	x 5	x 6	x 7	x 8	x 9
						y			
			Figure 1: A graph for which P G,t ecc is not time optimal.
	ϕ ∈ Φ	(t)							

all

GANG, UNAM-PAPIIT grants IA102417, IN108720, IN108723, IN109917 and IN106520, Fondation des Sciences Mathématiques de Paris, and Austrian Science Fund (FWF) and netIDEE SCIENCE project P33775-N.

A preliminary version of this work appeared in the proceeding of SSS 2019 [5].

Information flow graph

Recall that the view of a node u in a given round r is the set of all pairs (v, in v) such that u hears from v by round r. The nodes of the information flow graph have the form (v, view v), meaning that node v has view view v in round r, and there is a directed edge from (v, view v) to (u, view u) if and only if (v, in v) ∈ view u , i.e., u hears from v by round r. Of course, these properties are conditioned by the actual failure pattern.

Consider a set of failure patterns Φ ⊆ Φ

all . Let u be a node that is active in round r in ϕ, for some r ≥ 1. Let view G (u, ϕ, r) denote the view of u in round r in ϕ.

Definition 4. The information flow graph in round r with respect to Φ is the directed graph IF G,Φ,r :

Note that a node u may have the same view in two distinct failure patterns ϕ, ψ ∈ Φ in round r, i.e., view

in ϕ} is called the r-round configuration for failure pattern ϕ. See Figure 2 for the information flow graph of the triangle K 3 , with one failure, and one communication round. Lemma 4. For every failure pattern ϕ ∈ Φ, and every r ≥ 1, the set config G (ϕ, r) induces a connected subgraph of IF G,Φ,r .

Proof. Let u and v be two nodes that are active in round r in ϕ. Since G is t + 1-connected, there is a path w 0 = u, w 1 , . . . , w k = v between u and v in G where all nodes w i , i = 0, . . . , k, are correct. Since r > 0, we have w i ∈ view G (w i+1 , ϕ, r), and thus there is an edge from (w i , view G (w i , ϕ, r)) to (w i+1 , view G (w i+1 , ϕ, r)) in IF G,Φ,r , for every i = 0, . . . , k -1. Therefore, there is a path from (u, view G (u, ϕ, r)) to (v, view G (v, ϕ, r)) in the subgraph of IF G,Φ,r induced by config G (ϕ, r).

Note that there is an edge from (u, view G (u, ϕ, r)) to (v, view G (v, ψ, r)) in IF G,Φ,r if and only if there exists ∈ Φ such that u and v are active in round r in , and view G (u, ϕ, r) = view G (u, , r), view G (v, ψ, r) = view G (v, , r) and u ∈ view G (v, , r). Furthermore, if there are two failure patterns ϕ and ψ yielding the same view for a node v but two different views for a node u, then either the edges from the two views of u to the view of v both exist, or neither exists. This is specified in the following lemma.