
HAL Id: hal-04287975
https://laas.hal.science/hal-04287975

Submitted on 15 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronous t-resilient consensus in arbitrary graphs
Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum, Matthieu

Roy, Corentin Travers

To cite this version:
Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum, Matthieu Roy, et al.. Syn-
chronous t-resilient consensus in arbitrary graphs. Information and Computation, 2023, 292,
pp.105035. �10.1016/j.ic.2023.105035�. �hal-04287975�

https://laas.hal.science/hal-04287975
https://hal.archives-ouvertes.fr

Synchronous t-resilient Consensus in Arbitrary
Graphs?,??

Armando Castañedaa, Pierre Fraigniaudb, Ami Pazc, Sergio Rajsbauma,
Matthieu Royd, Corentin Traverse,∗

aInstituto de Matemáticas, UNAM, Mexico
bIRIF, CNRS and Université Paris Cité, France

cLISN, CNRS and Université Paris-Saclay, France
dLAAS, CNRS, Toulouse, France

eLIS, Université Aix-Marseille, France

Abstract

We study the number of rounds needed to solve consensus in a synchronous
network G where at most t nodes may fail by crashing. This problem has been
thoroughly studied when G is a complete graph, but very little is known when G
is arbitrary. We define a notion of radius(G, t), that extends the standard graph
theoretical notion of radius, for considering all the ways in which t nodes may
crash, and we present an algorithm that solves consensus in radius(G, t) rounds.
Then we derive a lower bound showing that, among oblivious algorithms, our
algorithm is optimal for a large family of graphs including all vertex-transitive
graphs.

Keywords: Crash failures, Consensus, Combinatorial topology, Distributed
graph algorithms

1. Introduction

The problem. We consider a synchronous message-passing distributed system,
where at most t out of n nodes may fail by crashing. The nodes communicate by
sending messages to each other over the edges of an undirected graph G known
by the nodes. In the consensus problem each node is given an input, and after

?Supported by ANR Project DUCAT, INRIA Project GANG, UNAM-PAPIIT
grants IA102417, IN108720, IN108723, IN109917 and IN106520, Fondation des Sciences
Mathématiques de Paris, and Austrian Science Fund (FWF) and netIDEE SCIENCE project
P33775-N.

??A preliminary version of this work appeared in the proceeding of SSS 2019 [5].
∗Corresponding author
Email addresses: armando.castaneda@im.unam.mx (Armando Castañeda),

pierref@irif.fr (Pierre Fraigniaud), ami.paz@lisn.fr (Ami Paz), rajsbaum@im.unam.mx
(Sergio Rajsbaum), roy@laas.fr (Matthieu Roy), corentin.travers@lis-lab.fr (Corentin
Travers)

Preprint submitted to Elsevier April 1, 2023

some number of rounds produces an output, such that all outputs are the same
and must be equal to one of the inputs.

One of the earliest and most well-know facts in distributed computing is that
the number of rounds needed to solve consensus when G is the complete graph,
Kn, is t+ 1. Namely, for t ≤ n− 1, and any algorithm requires this number of
rounds in the worst case. The round complexity to solve consensus in Kn has
been thoroughly studied, but not for graphs other than the complete graph.

1.1. Results

This paper studies the number of rounds needed to solve consensus, as a
function of G and t. It presents two main contributions, inspired by the recently
introduced [6] information flow perspective.

First, it shows that for any given (t + 1)-node-connected graph G (i.e., a
graph that is connected after the removal of any t nodes), it is possible to solve
consensus tolerating t failures, in radius(G, t) rounds. Roughly, the eccentricity
of v against t failures, ecc(v, t), is the smallest number of rounds needed for a
node v to broadcast its input value, independently of the failure pattern (when
and how nodes crash). Then, radius(G, t) is equal to the smallest ecc(v, t), over
all nodes v. Both these notions extend the standard notions of eccentricity and
radius, and equal to them when t = 0. For example, radius(Kn, t) = t + 1 for
the complete graph and radius(Cn, 1) = n−1 for the cycle. For the wheel graph
Wn, composed of an (n − 1)-cycle and one extra node connected to all other
nodes, radius(Wn, 2) = n− 1 and radius(Wn, 1) = 1 + b(n− 1)/2c.

Second, the paper presents a matching lower bound, showing that our al-
gorithm is optimal among oblivious algorithms, in any graph that is vertex-
transitive. In an oblivious algorithm, the decision value of a node is based
solely on the set of input values it has seen so far. Roughly speaking, a graph is
vertex-transitive if it is highly symmetric. This is a large and well studied class
of graphs (see, e.g., [19]). A core difficulty in analyzing our model yields from
the “non-clean” crashes, that is, the fact that a node may fail “at the middle” of
a round, i.e., it may send messages to some of its neighbors, but not to others.
In fact, we show that, for clean crashes that take place initially (i.e., all failing
nodes do not perform any round of communication), a faster algorithm exists,
and the lower bound does not hold.

Direct generalizations of known upper and lower bound techniques from a
complete graph to general graphs seem difficult to obtain. Instead, both our
upper and lower bounds use novel ideas, which we discuss next.

1.1.1. Our upper bound techniques.

In a classic algorithm to solve consensus on a complete graph, e.g. [30],
nodes repeatedly send all the inputs they know, and at the end of round t+ 1,
each node that has not crashed, decides the smallest input value among the
values it has seen. The usual agreement argument is that among the t + 1
rounds there must be at least one in which no node crashes. All nodes that are
alive at the end of such a round have seen the same set of inputs, and there is

2

common knowledge [15] on a set of inputs. This argument holds only under the
assumption that the graph is complete. We use a similar idea on an arbitrary
graph, but based on a more general information flow argument [6].

Given a node v and its ecc(v, t), we show that at the end of round ecc(v, t),
either all alive nodes have received v’s input, or none has. For the complete
graph, ecc(v, t) = t + 1 for all nodes v, and indeed, for any node v, either all
nodes have received the input of v by round t+1, or no node will ever receive it.
This implies the correctness of the algorithm for the complete graph described
above. Notice that the eccentricity is not less than t+ 1, because the adversary
may create a hidden path, v1, . . . , vt such that v1 = v and each vi, 1 ≤ i ≤ t− 1,
fails in round i and sends a message to only vi+1 before failing.

We use this information flow perspective to derive simple consensus algo-
rithms for arbitrary graphs. Each node repeatedly forwards all the pairs (v, inv)
it knows about, where inv is the input value of node v. An algorithm is specified
by two functions: R(G, t) which returns the number of rounds to execute, and
D(G, t) which tells a node which value to decide, among the input values it has
seen. After R(G, t) rounds, the active nodes have the same view of the inputs of
a carefully chosen subset of t+ 1 nodes, thus, after R(G, t) rounds, D(G, t) can
pick deterministically the input of one of these nodes. Remarkably, our lower
bound shows that this is not necessarily the case after fewer rounds.

1.1.2. Our lower bound techniques.

There are several lower bound proofs for the number of rounds to solve con-
sensus under crash failures for the case when G is a complete graph. The classic
t+ 1 lower bound proof style proceeds by a rather complex backward induction
(a detailed description appears in [26]). Later on, simpler forward induction
proofs were discovered [1, 27], following the classical bivalency arguments that
were originally developed for proving the impossibility of solving consensus in
asynchronous systems [18].

The aforementioned proofs hold for general graphs as well, namely, t + 1
rounds is a lower bound for solving consensus on any graph G. However, for
general graphs this bound is very weak, as it does not take into consideration
the structure of the graph. An obvious example is a cycle with t = 1: our lower
bound is n− 1, while the standard approaches give a lower bound of 2 rounds.

Our lower bound technique is different from both the backward and the
forward arguments. It is inspired by the topological techniques for distributed
computing [21], though we do not use topology explicitly. Our lower bound
technique is similar to the connectivity analysis of the protocol complex, the
structure of states at the end of executions of an algorithm after a certain number
of rounds. However, instead of working with the protocol complex, we consider
an information flow directed graph version based on failure patterns, without
including input values. We prove that consensus is solvable by an oblivious
algorithm if and only if all connected components of the information flow graph
have a dominating node, namely, a node with an edge from it to any other
node in its connected component. In [6] we introduced this information flow
perspective, and used it to study set agreement and approximate agreement.

3

The seminal paper [15] shows that, as soon as there is common knowledge of
a clean round (where a node that crashes does not send any messages), it is also
common knowledge that nodes have identical views of the initial configuration.
As a consequence, any action that depends on the system’s initial configuration
can be carried out simultaneously in a consistent way by the set of active nodes
at any round k ≥ t+ 1, if it can be carried out at all. Our lower bound is larger
than t + 1 on general graphs, and hence shows how the round in which nodes
have common knowledge of a subset of the input configuration is affected also
by the structure of the graph.

1.2. Related work

Consensus in the failure-prone synchronous model has been thoroughly stud-
ied since the beginning of the distributed computing field in the late 1970’s [35].
A variety of aspects have been considered, including the number of rounds (in
great detail, including worst case, early deciding, simultaneous, unbeatability,
etc.), number and size of messages, variants of consensus, in static and dynamic
networks, and under various failure models. We only mention some of the most
relevant papers, among a vast literature, which is covered only partially even
by surveys, e.g. [8, 30] and textbooks on the field, e.g. [4, 26, 31].

For general graphs, since early on there has been an interest in charac-
terizing the graphs where consensus is solvable, initially for Byzantine fail-
ures [13, 14, 17]. It was observed early on [25] that t+1 connectivity is necessary
and an exponential algorithm was described. The algorithms for Byzantine
settings also work in our model. However, they have not been optimized for
the number of rounds, and furthermore, our setting requires only t + 1 node-
connectivity, while an algorithm tolerating Byzantine failures requires n ≥ 3t+1,
and node-connectivity at least 2t + 1 [13]. Very recently, consensus algorithms
for general graphs were designed, for local broadcast Byzantine failures [23].
One algorithm works in the local broadcast model on a graph under the weakest
requirements—minimum degree 2t, and (b3t/2+1c) node-connected; however, it
has an exponential time complexity. A different consensus algorithm terminates
in 3n rounds, but only assuming the graph is 2t-connected. There has also been
work on characterizing the directed graphs for which fault tolerant synchronous
consensus is solvable, both under crash and under Byzantine failures [33, 34].

We are not aware of any previous lower bound techniques for solving con-
sensus in an arbitrary graph G. A simple lower bound, that can be proven
using standard indistinguishability arguments, is the maximum radius among
the graphs created by removing at most t nodes from G. However, this yields
only a trivial 1-round lower bound for the complete graph. A lower bound of
t+1 rounds for the complete graph was proven using other methods, specifically
crafted for the complete graph case, first for Byzantine failures [16], later for
the case were digital signatures can be used [14], and finally to crash failures
(see, e.g., [20]).

Our lower bound technique is mainly inspired by the topological techniques
for distributed computing [21], and more specifically by the topological struc-
ture of the executions of a synchronous algorithm after a certain number of

4

rounds [22]. Indeed, the technique used for deriving our second algorithm is
reminiscent of topological existential upper bounds proofs used in the past [3, 9].
Hidden paths have played an important role in the design of early-deciding con-
sensus algorithms in the complete graph [7].

Research on dynamic networks also characterizes families of networks for
which consensus (or a variant of it) is solvable [10, 12, 28, 32, 36]. Interestingly,
dynamic networks research and works on synchronous fault-tolerant consen-
sus [33, 34] share the idea of picking a node as a source, and having all nodes
deciding on the input of this source. In Theorem 3 we present an information
flow characterization for consensus, in terms of such a source. Our notion of
a core set (see Section 3.2) can be seen as a refinement of such notions, de-
fined in order to optimize the number of rounds. Interestingly, [28] presents a
topological solvability characterization of consensus using the point set topology
techniques introduced in [2].

2. Preliminaries

Model of Computation. We consider the standard synchronous message-passing
model of computation where at most t nodes may fail by crashing. A set of n ≥ 2
nodes V communicate through reliable bidirectional channels E defining a graph
G = (V,E). In the remainder of the paper, we fix G and t, and assume t < κ(G),
the node connectivity of G, i.e., the minimum number of nodes whose deletion
disconnects G. Fixing G means that the algorithm performed at each node
may depend on the graph G, and on the node’s location in it. This assumption
allows us to focus solely on the uncertainty caused by crashes, and not by the
structure of the network, like it is the case in the classical framework G = Kn,
the complete graph on n vertices. Each node u of G is identified by a name,
which is unique in G, that can be viewed as an integer ID in {1, . . . , n}. For
the sake of simplifying the presentation, we do not make a distinction between
the node v itself, and its name. For instance, when referring to the “smallest
node”, we merely refer to “the node with smallest name”.

An execution proceeds in a infinite sequence of synchronous rounds, starting
in round 1. In every round, each node v first performs some local computation,
then sends a message to each of its neighbors in G, denoted N(v), and then
receives the messages sent to it from N(v) in that round. When a node crashes
in round r, it fails to send its message to some of its neighbors in round r,
and sends no message in subsequent rounds. We focus on full information
algorithms, i.e., each message sent by a node contains all the node’s state.

A failure pattern ϕ for G and t specifies, for each node that fails, in which
round it fails, and which messages it fails to send. It is a set of triples of the
form (v, Fv, fv), indicating that v crashes in round fv, in which it does not send
the messages to the neighbors in Fv ⊆ N(v), where Fv 6= ∅. Note that we may
have Fv = N(v), in which case the crash is called clean. Since at most t nodes
can fail, |ϕ| ≤ t, and since nodes do not recover from a failure, if (v, Fv, fv) ∈ ϕ
and (u, Fu, fu) ∈ ϕ, then v 6= u.

5

For an execution with failure pattern ϕ, the faulty nodes are those that
appear in a triplet in ϕ; the others are the correct nodes. A node is active in
round r in ϕ if it is correct, or if it fails in a round later than r. A node that
crashes with Fv = N(v) is said to crash cleanly in ϕ.

Consider any input assignment to the nodes. Our algorithms are of the
following form. Initially, for each node v with input inv, its view is {(v, inv)}.
In each round, each node v sends its view to N(v), and at the end of the round
it updates its view with the new input value-pairs it receives.

Given a failure pattern ϕ, we say that u hears from v in ϕ, if in some round u
receives a message containing the input of v. Similarly, we say that u hears from
v by round r in ϕ if u receives a message with v’s input in round r, or before. In
other words, there is a causal path from u to v [24] in an execution with failure
pattern ϕ. In more detail, there is a causal path u = u0 → . . . → u` = v from
u to v if there exist `+ 1 distinct nodes u0, . . . , u` with u0 = u and u` = v such
that for each i, 1 ≤ i ≤ ` :

• ui ∈ N(ui−1) and

• If ui−1 fails at round r in ϕ then either r > i, or r = i and ui−1 sends a
message to ui in round r, i.e. ui /∈ Fui−1

.

Clearly, the existence of such a path depends on ϕ, but not on the input assign-
ment. Thus, to analyze the structure of all possible failure patterns, we ignore
the input values. This is what we do next, where we may identify ϕ with the
infinite execution with that failure pattern.

Eccentricity and Radius in Failure Patterns. Let distG(u, v) denote the distance
between nodes u and v in G = (V,E). The eccentricity of a node v ∈ V is
defined as eccG(v) = maxu∈V distG(u, v). The diameter of a graph is defined as
maxv∈V eccG(v), and its radius as minv∈V eccG(v). We generalize the notions
of eccentricity and radius to the synchronous t-resilient model.

In the following, failure patterns are denoted by lower case Greek letters
ϕ,ψ, . . ., and sets of failure patterns are denoted by upper case Greek letters

Φ,Ψ, We denote by Φ
(t)
all the set of all failure patterns for G and t. The

failure pattern in which no nodes crash is ϕ∅, and hence Φ
(0)
all = {ϕ∅}.

Definition 1. Given a node v ∈ V and a failure pattern ϕ ∈ Φ
(t)
all , the eccentric-

ity eccG(v, ϕ) ∈ N ∪ {∞} of v in ϕ is the minimum number of rounds required
for all correct nodes to hear from v (i.e., there is causal path from v to every
correct node), or ∞ if not all correct nodes hear from v. If eccG(v, ϕ) ∈ N, we
say that v floods to the correct nodes in ϕ.

Consider any ϕ. Notice that since G is at least (t + 1)-connected, and at
most t nodes crash, if a correct node u hears from v, then every correct node
receives a message from v (because a message can get from u to every correct
node). We thus have the following claim.

6

Fact 1. For every v ∈ V , and every ϕ ∈ Φ
(t)
all , if eccG(v, ϕ) =∞ then no correct

node hears from v in ϕ.

Definition 2. For v ∈ V and Φ ⊆ Φ
(t)
all , such that there is at least one ϕ ∈ Φ

with eccG(v, ϕ) ∈ N, let

eccG(v,Φ) = max{eccG(v, ϕ) : ϕ ∈ Φ, eccG(v, ϕ) ∈ N}.

Notice that, for any Φ containing failure patterns where v is correct, there
is at least one ϕ ∈ Φ with eccG(v, ϕ) ∈ N.

Lemma 1. For v ∈ V and ϕ ∈ Φ
(t)
all , let A be the set of all active nodes in round

eccG(v,Φ
(t)
all) under ϕ. Either all nodes in A hear from v by round eccG(v,Φ

(t)
all),

or no node in A hears from v by round eccG(v,Φ
(t)
all) in ϕ.

Proof. Let ϕ′ ∈ Φ
(t)
all be the failure pattern identical to ϕ in the first eccG(v,Φ

(t)
all)

rounds, but with all the nodes of A correct in ϕ′. Then, the nodes in A have

the same view in both ϕ and ϕ′ in round eccG(v,Φ
(t)
all).

If eccG(v, ϕ′) ∈ N, by Definition 1, all nodes in A hear from v by time

eccG(v, ϕ′), which is at most eccG(v,Φ
(t)
all), by Definition 2. The same is true for

ϕ, as ϕ and ϕ′ are identical in the first eccG(v,Φ
(t)
all) rounds.

If eccG(v, ϕ′) = ∞, no node in A hears from v in ϕ′, by Fact 1, and then

no node in A hears from v by round eccG(v,Φ
(t)
all) in ϕ because ϕ and ϕ′ are

identical in the first eccG(v,Φ
(t)
all) rounds.

Note that Lemma 1, which holds for the family Φ
(t)
all , may not hold for every

family Φ of failure patterns. Indeed, the failure pattern ϕ′ constructed from ϕ
in the proof of Lemma 1 needs to belong to Φ, which is to say that Φ must be
stable by the transformation changing ϕ into ϕ′, which is not true for all Φ, but

holds for Φ
(t)
all .

Definition 3. Let Φ ⊆ Φ
(t)
all such that for every v ∈ V there is at least one

ϕ ∈ Φ with eccG(v, ϕ) ∈ N. The radius of G with respect to Φ is defined as
radius(G,Φ) = minv∈V eccG(v,Φ).

For t = 0, our notion of eccentricity and radius coincides with the classical

graph-theoretic definition, i.e., eccG(v,Φ
(0)
all) = eccG(v) and radius(G,Φ

(0)
all) =

radius(G). Moreover, in the complete graph Kn, we have radius(Kn,Φ
(t)
all) = t+1,

which together with Lemma 1 implies the correctness of the simple algorithm
discussed in the Introduction.

3. Consensus Algorithms in Arbitrary Graphs

We consider the usual consensus problem in which each node starts with an
input value, defined by the following properties.

7

• Termination: Every correct node decides a value

• Validity: The decision of a node is equal to the input of some node;

• Agreement: The decisions of any pair of nodes are the same.

This version of consensus is sometimes called uniform since the agreement
property requires that all decisions must be the same. In the nonuniform version
of the problem, it is required that only the decisions of correct nodes are the
same. In our consensus algorithms all decisions are taken at the same time, and
hence they solve both versions of the problem.

Oblivious algorithms. Recall that in our algorithms, a node resends to its neigh-
bors the set of input values it has received, each one together with the name of
the node that has the corresponding input value. Thus, to specify a consensus
algorithm, we define a function R(G, t) that returns a round number, stating
that all correct nodes decide in round R(G, t). Also, we define a decision func-
tion D(G, t) used by a node to select a consensus value from its view (possibly
taking in consideration the names of the nodes that proposed this inputs, and
the structure of G and t). Formally, D(G, t) is a function from the set with all
views to the output set. In a t-fault tolerant oblivious consensus algorithm for
G, after R(G, t) rounds of communication (independently of the failure pattern
or the input assignment), each node selects a value from its view, as specified
by the function D(G, t). We stress that G is fixed in the paper, and R(G, t) and
D(G, t) are not computed by the nodes, they are given as part of the algorithm.
(Note however that if the nodes “know” G, t, and there relative positions in the
graph, then they can compute these functions locally).

3.1. A naive algorithm

We describe a naive algorithm, PG,t
ecc = (Recc(G, t),Decc(G, t)), based on a

simple idea. Let us order the n nodes of G as v1, . . . , vn, with

eccG(vi,Φ
(t)
all) ≤ eccG(vi+1,Φ

(t)
all) (1)

for 1 ≤ i < n. In particular, we have radius(G,Φ
(t)
all) = eccG(v1,Φ

(t)
all).

Let Recc(G, t) = eccG(vt+1,Φ
(t)
all), and Decc(G, t) be the function that, given a

view, returns the input of the smallest1 node among the nodes in {v1, . . . , vt+1}.

Theorem 1. Algorithm PG,t
ecc solves consensus in eccG(vt+1,Φ

(t)
all) rounds.

Proof. The algorithm satisfies termination as all correct nodes run Recc(G, t) =

eccG(vt+1,Φ
(t)
all) rounds. For validity, the definition of eccG(vt+1,Φ

(t)
all) and Equa-

tion 1 imply that all nodes receive at least one input of a node in {v1, . . . , vt+1}
by round eccG(vt+1,Φ

(t)
all), in every ϕ ∈ Φ

(t)
all . For agreement, consider any

1Assuming V is a totally ordered set.

8

x1 x2 x3 x4 x5 x6 x7 x8 x9

y

Figure 1: A graph for which PG,t
ecc is not time optimal.

ϕ ∈ Φ
(t)
all and the set A of all nodes that are active in round eccG(vt+1,Φ

(t)
all) in

ϕ. Lemma 1 and Equation 1 imply that either all nodes in A have received vi’s

input, 1 ≤ i ≤ t+1, in round eccG(vt+1,Φ
(t)
all) in ϕ, or none of them has received

it in that round. Therefore, all nodes in A have the same view of the inputs of
the nodes v1, . . . , vt+1, hence Decc(G, t) returns the same value to all of them.

It is easy to come up with graphs for which this solution is not optimal, in
terms of number of rounds.

Lemma 2. There is a graph G for which PG,t
ecc is not time optimal, with t = 1.

Proof. Consider the graph G with n = 2k+ 2 nodes, k ≥ 4, consisting of a path
(x1, . . . , x2k+1) plus a universal node y connected to every xi, i = 1, . . . , 2k + 1
(See figure 1 for the case k = 4.). Set t = 1.

Observe that if y does not crash, then for every i, 1 ≤ i ≤ 2k + 1, every
node hears from xi in at most 3 rounds, unless xi crashes cleanly in the first
round. If y crashes at the first round, at least one node hears from xi not
before at least k round (the exact number depends on i). As per y, observe
that eccG(y,ΦN

y) = 2k+ 1, which is reached when y crashes at round 1, sending
a message only on the edge {y, x1}. A systematic analysis demonstrates that

radius(G,Φ
(t)
all) = eccG(xk+1,Φ

N
xk+1

) = k, i.e., v1 = xk+1. Similarly, we have

eccG(xk,Φ
N
xk

) = k+ 1, and v2 = xk. Therefore, the naive algorithm performs in
Recc(G, 1) = k + 1 rounds in G, with Decc(G, 1) using the set D = {xk, xk+1}.

Instead, consider the set D′ = {y, xk+1}, and perform flooding for k = R−1
rounds, with the objective of having nodes collecting the inputs of the nodes
in D′. If the actual failure pattern ϕ satisfies ϕ ∈ ΦN

xk+1
, then every correct node

receives the input of xk+1 by the end of round k, as eccG(xk+1,Φ
N
xk+1

) = k.
Otherwise, i.e., if ϕ ∈ Φ∞xk+1

, then, by Fact 1, no correct nodes receive the
input of xk+1, no matter how many rounds of flooding are performed. On the
other hand, we have eccG(y,Φ∞xk+1

) = 1, because y does not crash in any failure
pattern in Φ∞xk+1

as, by Fact 2, xk+1 must be the (unique) node that crashes in
Φ∞xk+1

. In other words, either (1) all correct nodes receive the input from xk+1

in k rounds, or (2) no correct node receives this input, but they all have received
the input from y. Therefore, if the nodes adopt the input of xk+1 whenever they
receive it, or the input of y whenever they have not received the input of xk+1,
then consensus is reached, after k < R rounds.

9

3.2. An adaptive-eccentricity based algorithm

The algorithm PG,t
ecc is based on a core set of nodes {v1, . . . , vt+1}, consisting

of the first t + 1 nodes in order of ascending eccentricity. We show here that
there is a more clever way of selecting a core set of t + 1 nodes. The corre-
sponding algorithm, PG,t

adapt = (Radapt(G, t),Dadapt(G, t)), is similar, except that,

Radapt(G, t) = radius(G,Φ
(t)
all). As before, Dadapt(G, t) returns the input of the

smallest node among the core set, but now the core set is {s1, . . . , st+1}, as
defined next.

The first node s1 is the same v1 as in PG,t
ecc . To choose the i-th node, we

consider all the un-chosen nodes, and their eccentricity only among the failure
patterns where the previously selected nodes have ∞ eccentricity, and take the
node that minimizes this quantity.

Formally, to define the core set of t + 1 nodes, we construct a sequence of

pairs (si,Φi), with si ∈ V , and Φi ⊆ Φ
(t)
all , for i = 1, . . . , t + 1, inductively, as

follows. For every node v ∈ V , let Φ∞v = {ϕ ∈ Φ
(t)
all : eccG(v, ϕ) = ∞} and

ΦN
v = {ϕ ∈ Φ

(t)
all : eccG(v, ϕ) ∈ N}.

Let Φ0 = Φ
(t)
all , and, for i = 1, . . . , t+ 1, let{
si = arg minv∈Vr{s1,...,si−1} eccG(v,ΦN

v ∩ Φi−1),

Φi = Φ∞si ∩ Φi−1,
(2)

where, for i = 1, we interpret {s1, . . . , si−1} as the empty set. In other words,
Φi = Φ∞s1 ∩ · · · ∩ Φ∞si , and also Φi = Φi−1 r ΦN

si . Observe that, for every
i = 1, . . . , t + 1, and every v ∈ V r {s1, . . . , si−1}, ΦN

v ∩ Φi−1 is not empty
as it contains the failure pattern in which all nodes s1, . . . , si−1 crash cleanly
at the first round, and no other node crashes. Also note that eccG(s1,Φ

N
s1) =

radius(G,Φ
(t)
all).

For example, in Kn, we have eccKn
(si,Φ

N
si) = t − i + 2 for i = 1, . . . , t + 1

whenever t < n − 1. For t = n − 1, we have eccKn(si,Φ
N
si) = n − i for i =

1, . . . , n. In the cycle Cn with t = 1, we have eccCn(s1,Φ
N
s1) = n − 1 and

eccCn
(s2,Φ

N
s2) = bn−1

2 c. For the graph G in Figure 1, s1 = x5 and s2 = y,

eccG(s1,Φ
N
s1) = radius(G,Φ

(1)
all) = 4, and eccG(s2,Φ

N
s2) = 1.

The core set for G, t is {s1, . . . , st+1}, and the core sequence for G is the
ordered sequence (s1, . . . , st+1). A crucial property of this sequence is that,
while the sequence (eccG(vi,Φ

N
vi))1≤i≤t+1 defined in Eq. (1) is non decreasing,

and may even be increasing, the sequence (eccG(si,Φ
N
si ∩Φi−1))1≤i≤t+1 defined

in Eq. (2) is non increasing, and is actually always decreasing. Intuitively, this is
because the maximization in the computation of eccG(v,ΦN

v∩Φi) for determining
si+1 is taken over the set ΦN

v ∩Φi which is smaller than the set ΦN
v ∩Φi−1 used

for the computation of si.

Lemma 3. Consider the core sequence (s1, . . . , st+1) and the pairs (si,Φi) de-
fined in Eq. (2). Then, eccG(si,Φ

N
si ∩ Φi−1)) > eccG(si+1,Φ

N
si+1
∩ Φi)), for

i ∈ {1, . . . , t}.

10

The proof of this lemma uses the following fact:

Fact 2. For every v ∈ V , and every failure pattern ϕ ∈ Φ
(t)
all , if eccG(v, ϕ) =∞

then v crashes at round 1 in ϕ.

Proof. Assume for contradiction that v does not crash an in the first round, but
still, eccG(v, ϕ) = ∞. As degG(v) ≥ κ(G) > t and since v does not crash in
round 1, there is a correct node that receives the input of v in round 1. By the
contrapositive of Fact 1, eccG(v, ϕ) ∈ N: a contradiction.

We now are ready to prove Lemma 3.

Proof of Lemma 3. Fix 1 ≤ i ≤ t. Recall that si+1 is defined as

si+1 = arg min
v∈Vr{s1,...,si}

eccG(v,ΦN
v ∩ Φi).

Thus, it is enough to identify a node v /∈ {s1, . . . si} that satisfies eccG(si,Φ
N
si ∩

Φi−1) > eccG(v,ΦN
v ∩ Φi). We show that a neighbor v of si satisfies this. Let

v /∈ {s1, . . . si} be a neighbor of si. Note that such a neighbor v exists, as
degG(si) ≥ κ(G) > t. Let ϕ ∈ ΦN

v ∩ Φi, i.e., ϕ ∈ Φi and eccG(v, ϕ) < ∞. For
each (w,Fw, fw) ∈ ϕ, define the triplet (w,F ′w, ϕ

′
w) as follows:

F ′w =

 Fw if w /∈ {s1, . . . , si}
N(w) if w ∈ {s1, . . . , si−1}
N(w) r {v} if w = si

and

f ′w =

{
fw + 1 if w /∈ {s1, . . . , si}
1 if w ∈ {s1, . . . , si}

.

Let ϕ′ be the failure pattern defined by these triplets. That is, s1, . . . , si−1 fail
cleanly in the first round, si sends a message to v and then fails, and the rest
of the nodes fail as in ϕ, but one round latter.

The crux of the proof lays in the following fact: eccG(v, ϕ) = eccG(si, ϕ
′)−1.

To see this, note that the set of correct nodes in ϕ and ϕ′ is the same, and let
u be such a correct node. As eccG(v, ϕ) < ∞, there exists a causal path from
v to u under ϕ. By Fact 2, the nodes s1, . . . , si crash at round 1 in ϕ, so the
path does not go through them. The failure pattern ϕ′ is designed such that
the same path exists in ϕ′, even when starting in round 2. Hence, there is a
causal path from s1 to u in ϕ′. This path starts by a message from s1 to v in
the first round, and continues as the previous path, until u. This implies that
eccG(v, ϕ) ≥ eccG(si, ϕ

′)− 1. The proof of the opposite inequality is almost the
same. Namely, any causal path in ϕ′ starting from s1 must contain a path from
v that starts one round later, and it exists in ϕ as well.

It follows that eccG(si, ϕ
′) <∞, and hence ϕ′ ∈ ΦN

si . In addition, s1, . . . , si−1

fail cleanly in the first round, so ϕ′ ∈ Φi−1. Hence, ϕ′ ∈ ΦN
si ∩ Φi−1, and

eccG(si, ϕ
′) ≤ eccG(si,Φ

N
si ∩ Φi−1). Thus, eccG(v, ϕ) = eccG(si, ϕ

′) − 1 <
eccG(si, ϕ

′) ≤ eccG(si,Φ
N
si ∩ Φi−1)). As this holds for any ϕ ∈ ΦN

v ∩ Φi, the
claim is proved.

11

Note that, as for Lemma 1, Lemma 3 may not hold for every family Φ 6= Φ
(t)
all

of failure patterns. Indeed, the failure pattern ϕ′ constructed from ϕ in the proof
of Lemma 3 needs to belong to Φ.

Theorem 2. Algorithm PG,t
adapt solves consensus in radius(G,Φ

(t)
all) rounds.

The correctness proof of PG,t
adapt is very similar to that of PG,t

ecc :

Proof. Let ϕ ∈ Φ
(t)
all , and consider an execution of Algorithm PG,t

adapt with failure
pattern ϕ for R rounds. Let j be the smallest index of a node sj in the core set
such that some correct node v hears from sj . Such an index j must exist since
at least one node in the core set is correct in ϕ, and it hears from itself. We thus
have ϕ ∈ ΦN

sj ∩ Φj−1, which implies eccG(sj , ϕ) ≤ ecc(sj ,Φ
N
sj ∩ Φj−1). It then

follows from Lemma 3 that eccG(sj , ϕ) ≤ radius(G,Φ
(t)
all) = R. From Fact 1, we

deduce that all correct nodes have received the input of sj in the first R rounds,
and the choice of j assures that this is the smallest-indexed node in the core set
that any of the correct nodes has received, which completes the proof.

Finally, observe that PG,t
ecc performs in eccG(vt+1,Φ

(t)
all) rounds according to

the notations of Eq (1), while PG,t
adapt performs in radius(G,Φ

(t)
all) = eccG(v1,Φ

(t)
all)

rounds according to the same notations.

3.3. Implementing the algorithms with small messages

Our algorithms PG,t
ecc and PG,t

adapt are full information, and hence in every round
each node sends all inputs it knows, for a total of O(n(log n+ log |U |)) bits per
message, where U is the input space. The algorithms however can be imple-
mented using small messages of only O(log n + log |U |) bits. Indeed, in both
algorithms, there is a node set S of size t+ 1 such that, in round R(G, t), each
node decides the input of the smallest node in S it is aware of. Therefore, it
is enough that, in every round, each node sends only the pair (v, inv) with the
smallest node v ∈ S it is aware of. Specifically, if |U | is at most polynomial in n,
this gives a simple consensus algorithm exchanging messages on O(log n) bits.

4. The Lower Bound

In this section we present the notion of information flow graph (Section 4.1),
and a solvability characterization for consensus based on this notion (Section 4.2).

We then show that PG,t
adapt is time optimal for vertex-transitive graphs (Sec-

tion 4.3), among oblivious algorithms. Recall that in an oblivious algorithm,
the decision value of a node is based only on the set of input values it has seen so
far. Algorithms PG,t

ecc and PG,t
adapt are oblivious. We stress that the notion of infor-

mation flow graph, the results we prove about it, and our consensus solvability
characterization, apply for any graph, not only for vertex-transitive graphs.

12

4.1. Information flow graph

Recall that the view of a node u in a given round r is the set of all pairs
(v, inv) such that u hears from v by round r. The nodes of the information
flow graph have the form (v, viewv), meaning that node v has view viewv in
round r, and there is a directed edge from (v, viewv) to (u, viewu) if and only if
(v, inv) ∈ viewu, i.e., u hears from v by round r. Of course, these properties are
conditioned by the actual failure pattern.

Consider a set of failure patterns Φ ⊆ Φ
(t)
all . Let u be a node that is active in

round r in ϕ, for some r ≥ 1. Let viewG(u, ϕ, r) denote the view of u in round
r in ϕ.

Definition 4. The information flow graph in round r with respect to Φ is the
directed graph IFG,Φ,r:

• V (IFG,Φ,r) = {(u, viewG(u, ϕ, r)) : u ∈ V is active in round r in ϕ ∈ Φ};

• E(IFG,Φ,r) =
{(

(u, viewG(u, ϕ, r)), (v, viewG(v, ϕ, r))
)

: u ∈ viewG(v, ϕ, r)
}

.

Note that a node u may have the same view in two distinct failure pat-
terns ϕ,ψ ∈ Φ in round r, i.e., viewG(u, ϕ, r) = viewG(u, ψ, r), in which case
(u, viewG(u, ϕ, r)) and (u, viewG(u, ψ, r)) correspond to the same node of IFG,Φ,r.
Moreover, we have (u, viewG(u, ϕ, r)) 6= (v, viewG(v, ϕ, r)) for any two distinct
nodes u, v, even if viewG(u, ϕ, r) = viewG(v, ϕ, r).

The set configG(ϕ, r) = {(v, viewG(v, ϕ, r)) : v ∈ V is active in round r in ϕ}
is called the r-round configuration for failure pattern ϕ. See Figure 2 for the
information flow graph of the triangle K3, with one failure, and one communi-
cation round.

Lemma 4. For every failure pattern ϕ ∈ Φ, and every r ≥ 1, the set configG(ϕ, r)
induces a connected subgraph of IFG,Φ,r.

Proof. Let u and v be two nodes that are active in round r in ϕ. Since G
is t + 1-connected, there is a path w0 = u,w1, . . . , wk = v between u and
v in G where all nodes wi, i = 0, . . . , k, are correct. Since r > 0, we have
wi ∈ viewG(wi+1, ϕ, r), and thus there is an edge from (wi, viewG(wi, ϕ, r)) to
(wi+1, viewG(wi+1, ϕ, r)) in IFG,Φ,r, for every i = 0, . . . , k − 1. Therefore, there
is a path from (u, viewG(u, ϕ, r)) to (v, viewG(v, ϕ, r)) in the subgraph of IFG,Φ,r

induced by configG(ϕ, r).

Note that there is an edge from (u, viewG(u, ϕ, r)) to (v, viewG(v, ψ, r)) in
IFG,Φ,r if and only if there exists % ∈ Φ such that u and v are active in round
r in %, and viewG(u, ϕ, r) = viewG(u, %, r), viewG(v, ψ, r) = viewG(v, %, r) and
u ∈ viewG(v, %, r). Furthermore, if there are two failure patterns ϕ and ψ
yielding the same view for a node v but two different views for a node u, then
either the edges from the two views of u to the view of v both exist, or neither
exists. This is specified in the following lemma.

13

configK3
(ϕu clean, 1)

configK3
(ϕu dirty, 1)

configK3
(ϕ∅, 1)

(u, {u, v, w})

(v, {u, v, w})(w, {u, v, w})

(u, {u, v})

(v, {u, v})

(u, {u,w})

(w, {u,w})

(w, {v, w})(v, {v, w})

Figure 2: IF
K3,Φ

(1)
all

,1
, with the configK3

(ϕ, 1) sets marked, for some ϕ ∈ Φ
(1)
all ; ϕ∅ denotes

the failure pattern without failures, ϕu clean the failure patter where u fails cleanly in round
1 and ϕu dirty the failure patter where u fails in round 1 and sends a message only to v.

Lemma 5. Let ϕ,ψ ∈ Φ and u, v ∈ V such that u and v are active in round
r in both ϕ and ψ. If

(
(u, viewG(u, ϕ, r)), (v, viewG(v, ϕ, r))

)
∈ E(IFG,Φ,r) and

viewG(v, ϕ, r) = viewG(v, ψ, r), then
(
(u, viewG(u, ψ, r)), (v, viewG(v, ψ, r))

)
∈

E(IFG,Φ,r).

Proof. If
(
(u, viewG(u, ϕ, r)), (v, viewG(v, ϕ, r))

)
∈ E(IFG,Φ,r), then it must be

that u ∈ viewG(v, ϕ, r), from which it follows that u ∈ viewG(v, ψ, r), and thus(
(u, viewG(u, ψ, r)), (v, viewG(v, ψ, r))

)
∈ E(IFG,Φ,r).

4.2. The solvability characterization

The next result provides a solvability characterization for consensus by obliv-
ious algorithms. In essence, it states that the number r of rounds should be large
enough so that every connected component of IFG,Φ,r has a dominating node.
A connected component of IFG,Φ,r is a connected component of the underlying,
undirected graph of IFG,Φ,r. We say that a node v ∈ V of the graph G dominates
a connected component C of IFG,Φ,r, if the set {(v, viewG(v, ϕ, r)) : ϕ ∈ Φ}
dominates C. That is, for every (w, viewG(w,ϕ, r)) in C, there is an arc from
the node (v, viewG(v, ϕ, r)) to (w, viewG(w,ϕ, r)).

Theorem 3. There is an oblivious algorithm solving consensus in r rounds un-

der the set of failure patterns Φ ⊆ Φ
(t)
all if and only if every connected component

C of IFG,Φ,r has a dominating node in V .

The two directions of the theorem are proved by the next two lemmas.

14

Lemma 6. For any Φ ⊆ Φ
(t)
all , if every connected component C of IFG,Φ,r has

a dominating node in V , then there is an oblivious algorithm solving consensus
in r rounds under the set of failure patterns Φ.

Proof. To solve consensus we only need to specify the decision function after r
rounds of communication. For every connected component C of IFG,Φ,r, pick a
dominating node v ∈ V of C. Let w be a node. The view vieww of w determines
to which connected component C the node (w, vieww) belongs. The decision of
w is the input value of the node v that dominates C.

Clearly, the algorithm satisfies termination and validity. For agreement, con-
sider any ϕ ∈ Φ. Let w and w′ be two nodes that are active in round r in ϕ.
By Lemma 4, the subgraph of IFG,Φ,r induced by configG(ϕ, r) is connected.
Therefore, (w, view(w,ϕ, r)) and (w′, view(w′, ϕ, r)) belongs to the same con-
nected component C of IFG,Φ,r, thus w and w′ decide the input of the same
node.

Lemma 7. For any Φ ⊆ Φ
(t)
all , if there is an oblivious algorithm solving con-

sensus in r rounds under the set of failure patterns Φ, then every connected
component C of IFG,Φ,r has a dominating node in V .

Proof. For establishing the lemma, we prove the contrapositive. Let Φ ⊆ Φ
(t)
all ,

and let C be a connected component of IFG,Φ,r. Assume that, for every u ∈ V ,
node u does not dominate C. We show that binary consensus in r rounds is
impossible. For this purpose, we use a connectivity argument, by proving the
existence of a path in the graph of configurations, between the configuration
in which all nodes have input 0, and the configuration in which all nodes have
input 1.

Let u1, . . . , un be an arbitrary ordering of all the nodes of V . Let (v1, . . . , vn)
be a sequence of nodes in V , and (ϕ1, . . . , ϕn) be a sequence of failure patterns
in Φ, such that ui /∈ viewG(vi, ϕi, r) and viewG(vi, ϕi, r) ∈ C for all 1 ≤ i ≤ n.
Specifically, vi is active in round r in ϕi. (vi, ϕi)1 ≤i≤n exists since no node
dominates C. Note that it may be the case that vi = vj for i 6= j.

Let Xi be the vector composed of n − i 0-entries, follow by i 1-entries, i.e.,
Xi(j) = 0 for 1 ≤ j ≤ n − i, and Xi(j) = 1 for n − i < j ≤ n. Specifically,
X0 = 0n is the all-0 vector, and Xn = 1n the all-1 vector. For every 0 ≤ i ≤ n,
let us consider the executions of an alleged r-round algorithm when the inputs
of u1, . . . , un are given by Xi, i.e., the input of uj is Xi(j) for j = 1, . . . , n. Let
1 ≤ j ≤ n be the minimum index such that, if the inputs are given by Xj and
the failure pattern is ϕj , then vj decides on 1. Note that such a value must
exist, since on Xn, node vn must decide 1.

Assume first that j = 1, i.e., on inputs X1 and failure pattern ϕ1, v1 decides
on 1. Consider the execution of the algorithm with the same failure pattern
ϕ1, but with inputs X0. This execution differs from the previous one only by
the input of u1, which is not seen by v1 as u1 /∈ viewG(v1, ϕ1, r). Hence, v1

must decide on 1 in this case as well. On the other hand, on the input vector
X0 = 0n, all nodes must decide 0, a contradiction.

15

Consider now the case of 1 < j ≤ n. In the connected component C, there is
a path P connecting (vj−1, viewG(vj−1, ϕj−1, r)) and (vj , viewG(vj , ϕj , r)). Let
us describe this path P as

(vj−1, viewG(vj−1, ϕj−1, r)) = (w0, viewG(w0, ψ0, r)),

(w1, viewG(w1, ψ1, r)), . . . , (wk−1, viewG(wk−1, ψk−1, r)),

(wk, viewG(wk, ψk, r)) = (vj , viewG(vj , ϕj , r))

By the minimality of j, we know that, on the input vector Xj−1, and with failure
pattern ϕj−1, node vj−1 decides on 0. Put differently, on the input vector Xj−1

and with failure pattern ψ0, node w0 decides on 0. Consider now two consecutive
nodes in the path P , say (wi, viewG(wi, ψi, r)) and (wi+1, viewG(wi+1, ψi+1, r)).
As commented earlier, there exists a failure % ∈ Φ such that

viewG(wi, ψi, r) = viewG(wi, %, r) and viewG(wi+1, ψi+1, r) = viewG(wi+1, %, r).

So, when running on input vector Xj−1 (or any other input vector), and with
failure pattern %, wi and w1i+1 decide the same. A simple induction on the
distance to node (w0, viewG(w0, ψ0, r)) in the path P implies that on Xj−1,
with failure pattern ϕj , vj decides on 0. We are now in a case similar to that
of j = 1: On the input vector Xj−1, with failure pattern ϕj , node vj decides
on 0. Instead, on the input vector Xj , with the same failure pattern ϕj , node vj
decides on 1. The only difference between Xj−1 and Xj is in the input of uj ,
which is not seen by vj as uj /∈ viewG(vj , ϕj , r). So vj must decide the same in
both cases, a contradiction.

4.3. Optimality of PG,t
adapt for symmetric graphs

To conclude, we use the characterization in Theorem 3 to show that PG,t
adapt

is time optimal for vertex-transitive graphs, among oblivious algorithms.
An automorphism of G is a bijection π : V → V such that, for every two

nodes u and v, {u, v} ∈ E ⇐⇒ {π(u), π(v)} ∈ E. A graph G = (V,E) is
vertex-transitive if, for every two nodes u and v, there exists an automorphism
π of G such that π(u) = v. For instance, the complete graphs Kn, the cycles Cn,
the d-dimensional hypercubes Qd, the d-dimensional toruses Cn1

× · · · × Cnd
,

the Kneser graphs KGn,k, and Cayley graphs, are all vertex-transitive. The
wheel, composed of a cycle and a center node connected to all cycle nodes, is
not vertex-transitive, since the center node has degree n − 1 while the cycle
nodes have degree 3.

Theorem 4. If G is vertex-transitive, then there is no oblivious algorithm that

solves consensus in fewer than radius(G,Φ
(t)
all) rounds.

Proof. Clearly, the result holds if radius(G,Φ
(t)
all) = 0 (a single-node graph), and

if radius(G,Φ
(t)
all) = 1, as consensus is trivially not solvable in zero rounds in

any graph with at least 2 nodes, even with no failures. So we assume now that

radius(G,Φ
(t)
all) ≥ 2.

16

We will show a result stronger that the one stated in the theorem, namely
we show that no oblivious algorithm can solve consensus in a vertex-transitive

graph G in a restricted set of failure patterns Φ (Φ
(t)
all (or Φ′ (Φ

(t)
all in the case

of the complete graph Kn with n−1 failures). That is, even if the algorithm has

only to deal with the n + 1 failure patterns in Φ (Φ
(t)
all (or Φ′ if G = Kn with

t = n − 1 failures), still consensus is not solvable in fewer than radius(G,Φ
(t)
all)

rounds.
Both sets of failure patterns Φ and Φ′ consist of the empty failure pattern

ϕ∅ and one failure pattern ϕs for each node s chosen from a larger set Φ̃. A
failure pattern ϕ belongs to Φ̃ if it consists of the union of two, possibly empty,
sets of failures: a hidden path ϕh and a set of clean failures ϕc occurring at
round 2. A hidden path starting at some node s is a failure pattern

ϕh = {(vi, Fvi , i), i = 1, . . . , k}

where 1 ≤ k ≤ t, v1 = s, and Fvi = N(vi) r {vi+1} for every 1 ≤ i ≤ k with

vk+1 a correct node. Hence, for any failure pattern ϕ ∈ Φ
(t)
all :

ϕ ∈ Φ̃ ⇐⇒ ϕ = ϕh ∪ ϕc

where ϕh is either empty or an hidden path starting at some node v and ϕc is
empty or has the form:

ϕc = {(u1, N(u1), 2), . . . , (u`, N(u`), 2)}

for some nodes u1, . . . , u` and ` ≤ t.

Remark.. In a vertex-transitive graph G, for every s ∈ V , radius(G,Φ
(t)
all) =

eccG(s,Φ
(t)
all). In fact, this is the only property of vertex-transitive graphs we

use, and the only way we use vertex-transitivity. Hence our theorem holds for
any graph satisfying the above property.

We will now show that eccG(s,Φ
(t)
all) = eccG(s, Φ̃) and therefore for every

s ∈ V , we can assign a failure pattern ϕs ∈ Φ̃ such that radius(G,Φ
(t)
all) =

eccG(s, ϕs). In what follows, let R = radius(G,Φ
(t)
all).

Lemma 8. For every node s, there exists a failure pattern ϕs ∈ Φ̃ such that

eccG(s, ϕs) = radius(G,Φ
(t)
all) = R. Moreover, if ϕs contains an hidden path, it

starts in s.

Proof. Let ϕ ∈ Φ
(t)
all be a failure pattern such that eccG(s, ϕ) = R. As observed

above, such a failure pattern exists because G is vertex-transitive. Based on ϕ,
we define another failure pattern ϕ̃. We show that ϕ̃ ∈ Φ̃, the hidden path (if
any) in ϕ̃ starts in s and eccG(s, ϕ̃) = R, which proves the lemma.

Since eccG(s, ϕ) = R, there is a correct node x such that every causal path
in ϕ from s to x has length at least R. Let u1 = s→ . . .→ uR → uR+1 = x be

17

such a path, of length exactly R (such a path must exist as otherwise eccG(s, ϕ)
would have been larger). In addition, let

` =

{
0 s is correct in ϕ
max{i : 1 ≤ i ≤ R, u1, . . . , ui fail in ϕ} otherwise.

Note that for each j, 1 ≤ j ≤ `, uj fails at round j or at a later round. For each
(v, Fv, rv) ∈ ϕ, let

F̃v =

{
N(v) \ {ui+1} if ∃i ≤ ` : v = ui
N(v) otherwise,

and

r̃v =

{
i if ∃i ≤ ` : v = ui
2 otherwise.

Finally, we set ϕ̃ = {(v, F̃v, r̃v) : ∃F, r, (v, F, r) ∈ ϕ}. That is, the set of nodes
that fail in ϕ and ϕ̃ is the same, and there is a hidden path from s to u` in ϕ̃.
Each node that fails in ϕ̃ and that is not in the hidden path fails cleanly in round
2. Therefore, ϕ̃ ∈ Φ̃. As there is a correct node (namely, u`) that hears from s,

every correct node hears from s in ϕ̃. Hence, eccG(s, ϕ̃) ≤ radius(G,Φ
(t)
all) = R.

Consider a causal path s = ũ1 → ũ2 → . . . → ũm = x from s to x in ϕ̃.
Nodes ũ1, . . . , ũ` coincide with nodes u1, . . . , u` as for each i, 1 ≤ i ≤ `−1, node
ui fails in round i and sends only to node ui+1. Since every faulty nodes not in
the hidden path fails cleanly in round 2 in ϕ̃, nodes ũ`, . . . , ũm are correct in ϕ̃,
and thus also in ϕ. Therefore, ũ1 → . . .→ ũm is also a causal path from s to x
in ϕ, from which we conclude that its length is at least eccG(s, ϕ) = R. As this
holds for any causal path from s to x in ϕ̃, eccG(s, ϕ̃) = R.

Next, we show that even if that algorithm has to deal with a restricted set
of failure patterns consisting in only n + 1 failure patterns, consensus is not

solvable in fewer than radius(G,Φ
(t)
all) rounds. In the general case, this set of

failure patterns is called Φ. It follows from Lemma 8 that for every s ∈ V , we

can assign a failure pattern ϕs ∈ Φ̃ such that radius(G,Φ
(t)
all) = eccG(s, ϕs) and

whose hidden path (if any) starts at s. Let Φ = {ϕs : s ∈ V } ∪ {ϕ∅}. These
configurations configG(ϕ, t) for ϕ ∈ Φ are depicted in Figure 3 for the case of
G = K3 and t = 1.

The case of the complete graph Kn with t = n − 1 needs special care. In
this case, we use a slightly different set of failure pattern denoted Φ′ to show

that consensus is not solvable in fewer than radius(Kn,Φ
(n−1)
all) = n − 1 = t

rounds. Given a node s, let ϕ′s be an hidden path of length n − 2. That is,
ϕ′s = {(v1, N(v) \ {v2}, 1), . . . , (vn−2, N(v) \ {vn−1}, n − 2)} where v1 = s, and
vn−1 is a correct node. Note that eccKn(s, ϕ′) = n − 1. Indeed, there are two
correct nodes in ϕ′ and only one of them, namely vn−1 has heard of s at the

beginning of round n− 1. As for any n-nodes graph G, radius(G,Φ
(t)
all) ≤ n− 1,

eccKn
(s, ϕ′) = n− 1 = radius(Kn,Φ

(n−1)
all). We set Φ′ = {ϕ′s : s ∈ V } ∪ {ϕ∅}.

Using Theorem 3, it is then sufficient to prove the following lemmas:

18

configK3
(ϕu dirty, 1)

configK3
(ϕw dirty, 1)

configK3
(ϕv dirty, 1)

configK3
(ϕ∅, 1)

Figure 3: The information flow graph IFK3,Φ,1 appearing in the proof of Theorem 4, for K3

and the failure pattern Φ defined there. ϕ∅ denotes the failure pattern without failures, while
ϕx dirty denotes the failure pattern where x fails in round 1, sending a message to only one
node.

Lemma 9. If G is not a complete graph, or G = Kn and t < n − 1, the
information flow graph IFG,Φ,R−1 is connected and has no dominating node.

Lemma 10. If G = Kn and t = n− 1, the information flow graph IFKn,Φ′,n−2

is connected and has no dominating node.

We start with the proof of Lemma 9.

Proof of Lemma 9. We first note that

V (IFG,Φ,R−1) = configG(ϕ∅, R− 1) ∪
(⋃
s∈V

configG(ϕs, R− 1)
)
.

Now, we prove the following three claims, which together show the connectivity
of the underlying graph of IFG,Φ,R−1:

1. The subgraph of IFG,Φ,R−1 induced by configG(ϕ∅, R− 1) is connected;

2. for every s ∈ V , the subgraph of IFG,Φ,R−1 induced by configG(ϕs, R− 1)
is connected;

3. and finally, configG(ϕs, R− 1) ∩ configG(ϕ∅, R− 1) 6= ∅.

The facts that the subgraphs of IFG,Φ,R−1 induced by configG(ϕ∅, R − 1)
and configG(ϕs, R− 1) are connected follow directly from Lemma 4.

To show that configG(ϕs, R−1)∩configG(ϕ∅, R−1) 6= ∅ for every node s ∈
V , we show that for every such s there is a node vs such that viewG(vs, ϕs, R−
1) = viewG(vs, ϕ∅, R − 1). To this end, we analyze the possible structures of

19

the failure pattern ϕs. Recall that ϕs is composed of a (possibly empty) hidden
path s = v1, . . . , vk+1 that starts in s and a set of nodes {v′1, . . . , v′`} that crash
cleanly in round 2. We consider two cases, according to the length k of the
hidden path in ϕs:

• k = 0. If no node crashes cleanly in round 2, ϕs = ϕ∅ and every node has
the same view at the end of round R− 1 in both failure patterns.

Let us assume that at least one node crashes cleanly in round 2. Let u
be a correct neighbor of v′1, which must exist since degG(v′1) ≥ κ(G) > t.
Assume for contradiction that there is a node u′ from which u hears in
the first R − 1 rounds when there are no failures, but from which it does
not hear in ϕs. That is:

u′ ∈ viewG(u, ϕ∅, R− 1) and u′ /∈ viewG(u, ϕs, R− 1).

Define a failure pattern ϕ′s identical to ϕs, except that the node u′ does not
crash in ϕ′s, and the clean failure of v′1 is replaced by (v′1, N(v1)r {u}, 1).
In other words, ϕ′s is the same as ϕs except that (1) u′ is removed from ϕs if
it happened that u′ = v′i for some i ∈ {2, . . . , `}, and (2) the clean crash of
v′1 at round 2 in ϕs is replaced by a crash in which v′1 sends to u at round 1.

As ϕ′s ∈ Φ
(t)
all , and radius(G,Φ

(t)
all) = R, there must exist a causal path from

v′1 to u′ under ϕ′s, which is composed of a message from v′1 to u, followed
by a path P from u to u′ of length at most R − 1. By the fact that G is
undirected, and by the construction of ϕ′s, the same path P in the opposite
direction is a causal path from u′ to u under ϕ′s, and also under ϕs.
Hence u′ ∈ viewG(u, ϕs, R− 1): a contradiction. As viewG(u, ϕs, R− 1) ⊆
viewG(u, ϕ∅, R−1), it follows that viewG(u, ϕs, R−1) = viewG(u, ϕ∅, R−1).

• k = 1. The analysis of this case is similar to the previous case. Consider
node v2, the neighbor of s that receives a message from s in the first round.
As v2 is the end of a hidden path, it is correct. Assume for contradiction
that viewG(v2, ϕs, R − 1) 6= viewG(v2, ϕ∅, R − 1). Hence, there exists a
node u′ : u′ ∈ viewG(v2, ϕ∅, R−1) and u′ /∈ viewG(v2, ϕs, R−1). Similarly
to the previous case, let ϕ′s be the failure pattern identical to ϕs, except
that u′ is correct in ϕ′s (ϕs and ϕ′s are thus the same if u′ is correct in

ϕs.). As ϕ′s ∈ Φ
(t)
all , and radius(G,Φ

(t)
all) = R, there must exist a causal

path from v1(= s) to u′ under ϕ′s, which is composed of a message from
v1 to v2, followed by a path P from v2 to u′ of length at most R − 1.
As in the previous case, the same path P in the opposite direction is
a causal path from u′ to v2 under ϕ′s, and also under ϕs. Therefore,
u′ ∈ viewG(v2, ϕs, R− 1): a contradiction.

• k ≥ 2. In this case, our goal is to show that viewG(vk+1, ϕs, R − 1) =
viewG(vk+1, ϕ∅, R − 1), where vk+1 is the last node of the hidden path
starting in s.

By the end of round k, vk+1 has heard from every node v1, . . . , vk in the
hidden path. Let u 6= vk+1 be a correct node. As eccG(s, ϕs) = R, u hears

20

from s at the latest at round R. Since vk+1 is the only active node that
has heard from s at the end of round k, a shortest causal path from s to u
consists of the hidden path v1(= s), . . . , vk+1 followed by a causal path P
from vk+1 to u of length at most R−k. Since every faulty node outside the
hidden path crashes cleanly in round 2, the path P contains only correct
nodes. Hence, the path P in the opposite direction is also a causal path
in ϕs, from u to s. Finally, consider a faulty node u′ which is not in
the hidden path: u′ fails cleanly in round 2. As degG(u′) ≥ κ(G) > t,
u′ has a correct neighbor u that hears from it in round 1. As seen above,
there is a causal path made of correct nodes and of length at most R− k
from u to vk+1. Hence, u hears from u′ by the end of round R − k + 1
at the latest. We conclude that vk+1 hears from all the nodes by the
end of round τ = max(k,R − k,R − k + 1) = max(k,R − k + 1) in ϕs.
As every causal path under ϕs is also a causal path when there are no
failures, viewG(vk+1, ϕs, τ) = viewG(vk+1, ϕ∅, τ). To conclude the analysis
of this case, we consider the following sub-cases depending on the relations
between τ and R− 1 :

– τ ≤ R − 1. As the view of vk+1 consists of all the nodes at the end
of round τ in both ϕs and ϕ∅, we have viewG(vk+1, ϕs, R − 1) =
viewG(vk+1, ϕ∅, R− 1), as desired.

– τ > R − 1. We have τ = k = R since k ≥ 2 and the length k of the
hidden path is at most R. Note that t nodes fail in ϕs. Otherwise,
as degG(vk+1) ≥ t, vk+1 has a correct neighbor u. The hidden path
can thus be extended by failing vk+1 in round k+1 with one message
sent from vk+1 to u in that round. In the resulting failure pattern ϕ′s,

eccG(s, ϕ′s) ≥ R+ 1 > radius(G,Φ
(t)
all) = R, which is a contradiction.

Let us also observe now that the number n of nodes satisfies n = t+1.
Since eccG(s, ϕs) = R, every correct node has heard from s in ϕs by
the end of round R = k. Note that vk+1 is the only correct node
that hears from s by the end of round R, and thus the only correct
node. As t nodes fails, the total number of nodes in G is n = t + 1.
Therefore, since for every node v degG(v) ≥ t = n − 1, G is the
complete graph Kn and t = n−1, which contradicts the assumptions
of the lemma.

Now, we show that, for every s ∈ V , s does not even dominate the subgraph
induced by configG(ϕs, R− 1). To see this, let us fix s ∈ V . Since eccG(s, ϕs) =

radius(G,Φ
(t)
all) = R, there exists a correct node us that has not heard from s

by the end of round R − 1 in ϕs. That is, s /∈ viewG(us, ϕs, R − 1). It follows
that s does not dominate configG(ϕs, R−1), and therefore it does not dominate
V (IFG,Φ,R−1), as claimed.

We now consider the case where G = Kn and t = n− 1

Proof of Lemma 10. As in the proof of Lemma 9, it follows from Lemma 4 that

21

1. The subgraph of IFKn,Φ′,n−2 induced by configG(ϕ∅, n− 2) is connected;

2. for every s ∈ V , the subgraph of IFG,Φ,n−2 induced by configG(ϕ′s, n− 2)
is connected.

It remains to show that for any node s, configKn
(ϕ′s, n−2)∩configKn

(ϕ∅, n−2) 6=
∅. Recall that ϕ′s consists in an hidden path of length n− 2 starting in v1 = s
and ending in some correct node vn−1. Let u denote the node that is not involved
in the hidden path, i.e., the node u such that {u} = V \ {v1, . . . , vn−1}.

By the end of round n − 2, vn−1 has heard from every node in the hidden
path v1, . . . , vn−2 and from node u in ϕ′s. As the graph is complete, vn−1

also hears from every node in the failure-free failure pattern ϕ∅. Therefore,
viewKn(vn−1, ϕ

′
s, n− 2) = viewKn(vn−1, ϕ∅, n− 2).

The rest of the proof, namely that no node dominates IFKn,Φ′,n−2, is the
same as in the proof of Lemma 9.

The theorem directly follows from the previous lemmas and the characteri-
zation in Theorem 3.

Theorem 5. If G is vertex-transitive, PG,t
adapt is time optimal among oblivious

algorithms.

We conjecture that PG,t
adapt is, among oblivious algorithms, time optimal for all

graphs and for the class Φ
(t)
all of all failure patterns. This conjecture is grounded

on the fact that Lemma 3 holds for all graphs, and not only for those that are
vertex-transitive. PG,t

adapt is however not optimal for specific classes Φ of failure
patterns, even in vertex-transitive graphs, as we show in the next section.

5. The Case of Clean Failures

An interesting and well studied type of failures are clean failures, i.e., failures
where the failing nodes do not send any messages. Here, we focus on initial
clean failures, i.e., crashes occurring before the failing nodes were able to send
any messages. We show that in this case, neither the naive algorithm nor our
adaptive algorithm PG,t

adapt are optimal, and we do so on a vertex-transitive graph.

This implies that considering Φ
(t)
all in our algorithm (Theorem 2) and in our lower

bound (Theorem 4) is required for these claims to hold.

Consider the graph Q3, i.e., the 3-dimensional hypercube with nodes marked
x1x2x3 ∈ {0, 1}3, and edges between two nodes of Hamming distance (i.e.,
number of different coordinates) equal to 1 — see Figure 4. Interestingly, this
graph was also used to prove an impossibility result related to routing with edge
failures [11]. The diameter of Q3 is 3, and its connectivity is 3 as well.

Let t = 2, and let us consider the set Φ
(2)
clean-init of clean initial failure patterns,

with at most 2 failures. Under this family of failure patterns, each node v has

eccentricity eccQ3(v,Φ
(2)
clean-init) = 4. To see this, consider, for example, the node

000, and the failure pattern where 001 and 010 fail (initially and cleanly). In this

22

000

001

010

011

100

101

110

111

Figure 4: Q3, the 3-dimensional cube.

case, every path from 000 must start with the edge (000, 100); from 100 to 011,
every path take 3 more edges, since this is their Hamming distance, hence the
distance between 000 and 011 is 4. Since all nodes have the same eccentricities,
the naive algorithm, Algorithm PQ3,4

ecc , solve consensus in 4 rounds. The radius

radius(Q3,Φ
(2)
clean-init) is also 4, so our algorithm, PQ3,2

adapt, also takes 4 rounds to
reach consensus.

To get a 3-round algorithm under Φ
(2)
clean-init, we note that if node 000 is

correct, and if it cannot flood in 3 rounds, this is because two nodes of Hamming
weight 1 (the nodes 001, 010, 100) have crashed. Moreover, in this case, the node
111 can flood in 3 rounds. We present the algorithm

PQ3,2
clean−init = (Rclean−init(Q3, 2),Dadapt(Q3, 2)),

where the flooding time is Rclean−init(Q3, 2) = 3, and the decision procedure
Dadapt(Q3, 2)) at each node u is as follows.

1. If node u receives at least two nodes of Hamming weight 1, and node u
received 000, then return the input of 000;

2. Otherwise, if node u receives 111, return the input of 111;

3. Otherwise, return the input of 001.

Theorem 6. Algorithm PQ3,2
clean−init solves consensus on Q3 with at most 2 clean

initial failures in 3 rounds.

Proof. The running time of the algorithm is clear from the choice Rclean(Q3, 2) = 3.
The correctness yields from a simple case analysis.

In a failure pattern ϕ1 where at most one node of Hamming weight 1 fails,
and 000 does not fail, we have eccQ3

(000, ϕ1) ≤ 3, and all nodes decide on the
input of 000, by Instruction 1.

In a failure pattern ϕ2 where two nodes of Hamming weight 1 fail, we have
that the node 111 does not fail and has eccQ3

(111, ϕ2) ≤ 3, and all nodes decide
on the input of 111 by Instruction 2.

We are left with the case of failure patterns where 000 fails, which leads to
two sub-cases. In a failure pattern ϕ3 where 000 fails while 111 does not fail, at

23

most one neighbor of 111 fails, 111 has eccQ3(111, ϕ3) = 2 and all nodes decide
on the input of 111 by Instruction 2.

Finally, in the failure pattern ϕ4 where 000 and 111 fail, node 001 does
not fail, has eccQ3

(001, ϕ4) = 3, and all nodes decide on the input of 001 by
Instruction 3.

Theorem 6 shows that PG,t
adapt, which was proved optimal for Φ

(t)
all (in vertex-

transitive graphs), is not optimal for all families Φ of failure patterns. In par-

ticular, PQ3,2
adapt is not optimal in Q3 for Φ

(2)
clean-init. We don’t know whether PG,t

adapt

is optimal for Φ
(t)
clean.

6. Conclusion

We have studied for the first time the number of rounds needed to solve
fault-tolerant consensus in a crash prone synchronous network with arbitrary
structure. We have defined a notion of dynamic radius of a graph G when t
nodes may crash, which precisely determines the worst case number of rounds
needed to solve oblivious consensus for vertex-transitive networks. The opti-
mality of our algorithm was shown through a novel consensus solvability char-
acterization in arbitrary networks, using the notion of information flow [6]. A
second consequence of the characterization is an abstract consensus algorithm
that is optimal for all graphs. Our focus has been in the worst-case number of
rounds. An interesting challenge would be to design early deciding algorithms;
a problem that is well-studied in the case of the complete graph e.g. [8].

An interesting future line of research is to study the case of non-oblivious al-
gorithms (such algorithms have been considered in the past, e.g. [31]). Remark-
ably, for the case of the complete communication graph, there is no difference
between these two types of algorithms: at the end of round t+ 1, every pair of
nodes have the same set of pairs (v, inv) (formally, there is common knowledge
on a set of inputs), hence decisions can be taken considering only this set.

Recall that, in our algorithms, R(G, t) and D(G, t) are hard-coded for a given
G and t. It is worth exploring if our techniques are useful for the case where the
graph G is not known to the nodes. Indeed, it is a challenge to combine fault-
tolerant arguments with techniques of (failure-free) network computing [29].
Our results for t = 0 correspond to network computing. Yet, the case of t > 0 for
arbitrary or evolving networks is an intriguing and complex research question.

References

[1] Marcos Kawazoe Aguilera and Sam Toueg. A simple bivalency proof that
t-resilient consensus requires t+1 rounds. Information Processing Letters,
71(3):155–158, 1999.

[2] Bowen Alpern and Fred B. Schneider. Defining liveness. Inf. Process. Lett.,
21(4):181–185, 1985.

24

[3] Hagit Attiya, Armando Castañeda, Maurice Herlihy, and Ami Paz. Bounds
on the step and namespace complexity of renaming. SIAM J. Comput.,
48(1):1–32, 2019.

[4] Hagit Attiya and Jenifer Welch. Distributed computing: fundamentals,
simulations, and advanced topics. Wiley series on parallel and distributed
computing. Wiley, 2004.

[5] Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum,
Matthieu Roy, and Corentin Travers. Synchronous t-resilient consensus
in arbitrary graphs. In 21st International Symposium Stabilization, Safety,
and Security of Distributed Systems, SSS, volume 11914 of Lecture Notes
in Computer Science, pages 53–68. Springer, 2019.

[6] Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum,
Matthieu Roy, and Corentin Travers. A topological perspective on dis-
tributed network algorithms. In 26th Int. Colloquium on Structural In-
formation and Communication Complexity, SIROCCO, volume 11639 of
Lecture Notes in Computer Science, pages 3–18. Springer, 2019.

[7] Armando Castañeda, Yannai A. Gonczarowski, and Yoram Moses. Unbeat-
able consensus. In Distributed Computing - 28th International Symposium,
DISC, pages 91–106, 2014.

[8] Armando Castañeda, Yoram Moses, Michel Raynal, and Matthieu Roy.
Early decision and stopping in synchronous consensus: A predicate-based
guided tour. In Amr El Abbadi and Benôıt Garbinato, editors, Networked
Systems (NETYS), LNCS, vol. 10299, pages 206–221. Springer, 2017.

[9] Armando Castañeda and Sergio Rajsbaum. New combinatorial topology
bounds for renaming: The upper bound. J. ACM, 59(1):3:1–3:49, 2012.

[10] Bernadette Charron-Bost and Shlomo Moran. Minmax algorithms for sta-
bilizing consensus. CoRR, abs/1906.09073, 2019.

[11] Marco Chiesa, Ilya Nikolaevskiy, Slobodan Mitrovic, Andrei V. Gurtov,
Aleksander Madry, Michael Schapira, and Scott Shenker. On the resiliency
of static forwarding tables. IEEE/ACM Trans. Netw., 25(2):1133–1146,
2017.

[12] Étienne Coulouma, Emmanuel Godard, and Joseph G. Peters. A charac-
terization of oblivious message adversaries for which consensus is solvable.
Theor. Comput. Sci., 584:80–90, 2015.

[13] Danny Dolev. The byzantine generals strike again. Journal of Algorithms,
3(1):14–30, 1982.

[14] Danny Dolev and Ray Strong. Authenticated algorithms for byzantine
agreement. SIAM Journal on Computing, 12(4):656–666, 1983.

[15] Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in
a byzantine environment: Crash failures. Information and Computation,
88(2):156–186, 1990.

[16] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to
assure interactive consistency. Information Processing Letters, 14(4):183 –
186, 1982.

25

[17] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossi-
bility proofs for distributed consensus problems. Distributed Computing,
1(1):26–39, Mar 1986.

[18] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility
of distributed consensus with one faulty process. J. ACM, 32(2):374–382,
1985.

[19] Chris Godsil and Gordon Royle. Algebraic Graph Theory. Graduate Texts
in Mathematics, 207. Springer-Verlag, New York, 2001.

[20] Vassos Hadzilacos. A lower bound for Byzantine agreement with fail–stop
processors. Technical Report 21–83, Department of Computer Science,
Harvard University, Cambridge, MA, July 1983.

[21] Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum. Distributed Com-
puting Through Combinatorial Topology. Morgan Kaufmann, 2013.

[22] Maurice Herlihy, Sergio Rajsbaum, and Mark R. Tuttle. An axiomatic
approach to computing the connectivity of synchronous and asynchronous
systems. Electr. Notes Theor. Comput. Sci., 230:79–102, 2009.

[23] Muhammad Samir Khan, Syed Shalan Naqvi, and Nitin H. Vaidya. Exact
byzantine consensus on undirected graphs under local broadcast model.
In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC, pages 327–336, 2019.

[24] Fabian Kuhn and Rotem Oshman. Dynamic networks: Models and algo-
rithms. SIGACT News, 42(1):82–96, 2011.

[25] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine gen-
erals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[26] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1996.

[27] Yoram Moses and Sergio Rajsbaum. A layered analysis of consensus. SIAM
J. Comput., 31(4):989–1021, 2002.

[28] Thomas Nowak, Ulrich Schmid, and Kyrill Winkler. Topological character-
ization of consensus under general message adversaries. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, PODC,
pages 218–227, 2019.

[29] David Peleg. Distributed Computing: A Locality-Sensitive Approach.
SIAM, Philadelphia, PA, 2000.

[30] Michel Raynal. Consensus in synchronous systems: A concise guided tour.
In 9th Pacific Rim International Symposium on Dependable Computing
(PRDC), pages 221–228, 2002.

[31] Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems - An
Algorithmic Approach. Springer, 2018.

[32] Nicola Santoro and Peter Widmayer. Agreement in synchronous networks
with ubiquitous faults. Theor. Comput. Sci., 384(2-3):232–249, October
2007.

[33] Lewis Tseng and Nitin H. Vaidya. Fault-tolerant consensus in directed
graphs. In Proceedings of the 2015 ACM Symposium on Principles of Dis-
tributed Computing, PODC, pages 451–460. ACM, 2015.

26

[34] Lewis Tseng and Nitin H. Vaidya. A note on fault-tolerant consensus in
directed networks. SIGACT News, 47(3):70–91, August 2016.

[35] John H. Wensley, Leslie Lamport, Jack Goldberg, Milton W. Green, Karl N.
Levitt, P. M. Melliar-Smith, Robert E. Shostak, and Charles B. Weinstock.
Sift: Design and analysis of a fault-tolerant computer for aircraft control.
In Proceedings of the IEEE, volume 66, pages 1240–1255, Oct 1978.

[36] Kyrill Winkler and Ulrich Schmid. An overview of recent results for con-
sensus in directed dynamic networks. Bulletin of the European Association
for Theoretical Computer Science (EATCS), 128:41–72, June 2019.

27

	Introduction
	Results
	Our upper bound techniques.
	Our lower bound techniques.

	Related work

	Preliminaries
	Consensus Algorithms in Arbitrary Graphs
	A naive algorithm
	An adaptive-eccentricity based algorithm
	Implementing the algorithms with small messages

	The Lower Bound
	Information flow graph
	The solvability characterization
	Optimality of PG,tadapt for symmetric graphs

	The Case of Clean Failures
	Conclusion

