C Van Geem

T Sim

KCD: a Collision Detector for Path Planning in Factory Models

A critical operation in robot path planning is the veri cation for collision between the robot and the obstacles in its environment. In this contribution we present a new collision detector KCD dedicated to path planning for mechanical devices and robots in industrial-size CAD models. We describe the architecture of KCD and the way in which it is applied in the path planning tool Move3D. We report on experimental results showing its performance.

Introduction

A collision detection algorithm takes as input a soup of possibly moving objects and determines whether or not any of these objects clash. The algorithm may return a boolean result, the minimal distance between the nearest pair of objects, all pairs of colliding objects, or an estimation of penetration in case of collision. Applications may have to feed the algorithm with a particular format or may need particular feedback. Preconditions on the representation of objects can be exploited by an algorithm (e.g. if all objects are convex) resulting in gain of e ciency over loss of generality.

In this paper we will apply collision detection in the frame of path planning with the probabilistic roadmap planning approach (PRM, see 13], 2]). This method constructs a roadmap (or graph) of randomly generated collision-free robot con gurations (nodes) connected by collision-free local paths (edges). A particular path planning problem is then reduced to a graph search. Our goal is to plan motions for mechanical devices (cranes, carts, trucks,...) and robots in complex CAD models of industrial sites (object representation by solids, CSG, and possibly non-convex polyhedra), where most objects do not move. This path planning problem is application oriented and the main topic of the European project Motion for Logistics (MOLOG).

In Section 2 we present a brief overview of the use of collision detectors in path planning and CAD modsupported by the MOLOG project (Esprit IV, LTR 28226), now at KINEO Computer Aided Motion.

elling. Section 3 presents the main contributions of this paper, which are the development of the collision detector KCD -dedicated to path planning for articulated devices in complex CAD models -and the way in which collision detection is used for path planning purposes in the platform Move3D (see 23]). KCD allows e cient planning of guaranteed collision-free paths. We report experimental results in Section 4, before concluding.

Related Work

Extensive and recent surveys on collision detection are published (e.g. 17], 12], 10]). Software of several collision detectors are freely available for research purposes. In this section we concentrate on the observations we made while reading about and experimenting with collision detection algorithms in the frame of path planning applications in industrial models.

Collision Detection Usually the input of a collision detector is a soup of objects, all objects can and do move a priori. Some CDs allow the user to de ne the pairs of objects that have to be tested or ignored; e.g. collision pairs in I Collide [START_REF] Cameron | Enhancing gjk: Computing minimum and penetration distances between convex polyhedra[END_REF]), V Collide [START_REF] Hubbard | Collision Detection for Interactive Graphics Applications[END_REF]).

Computation often falls apart in three stages: preselection of possibly colliding objects, focussing on entities of the selected objects more likely to collide, and precise computation of a collision or of a witness of disjointness. Pre-selection and entity focussing are usually based on computations with bounding volumes (BVs) that approximate the real objects.

The e ciency of a CD depends on the representation of the objects: the convexity in 5] allows ecient entity focussing. The choice of adequate BVs depends on the original objects: spherical shells [START_REF] Klosowski | E cient Collision Detection Using Bounding Volume Hierarchies of k-DOPs[END_REF]) and pie-slices (1]) are well-suited BVs for tesselated surfaces whereas oriented bounding boxes (OBBs, 8]) and k-DOPs [START_REF] Kavraki | Towards Planning for Elastic Objects[END_REF]) do better for rather spherical objects. Also, when objects move, their BVs must move or must be recomputed.

Di erent collision detectors use di erent representations and algorithms at the stage of precise computation and return di erent kinds of information. V Collide and RAPID [START_REF] Gilbert | A fast procedure for computing the distance between complex objects in three-dimensional space[END_REF]) test intersection between two triangles, hence only nd collisions between triangularized surfaces. SOLID [START_REF] Simeon | Computer aided motion: Move3d within molog[END_REF]) uses an iterative method to nd a witness of disjointness or a pair of nearest points of two convex solids. V-Clip [START_REF] Lin | Collision Detection between Geometric Models: A Survey[END_REF]) computes the distance between two non-intersecting convex polyhedra or a penetration measure in case of collision.

Path Planning Applications Several collision detection algorithms were used for path planning (e.g. RAPID in 14], I Collide in 22], V Collide in 19], SOLID in 3]). The choice of a particular CD algorithm is often based upon the feed-back given by the CD and needed for the planning algorithm. In 26] V-Clip is used because it returns information on penetration. Usually, whereas the planning problem is di cult to solve for a planning algorithm, the environments have simple geometry.

CAD Applications. Some contributions to the eld of CD are applied to industrial scenes. These include research aimed at the introduction of Virtual Reality techniques for car industry [START_REF] Wilmarth | MAPRM: A Probabilistic Roadmap Planner with Sampling on the Medial Axis of the Free Space[END_REF], 28]) and cooperation with Boeing (9], 15]). There exist also some path planning applications in industrial environments [START_REF] Nissoux | Visibility based probabilistic roadmaps[END_REF], 25]). In all these applications unimportant cavities are omitted, models are simpli ed, the number of calls to the CD minimized.

3 KCD for PRM in CAD Models.

Previously we used several of the above mentionned collision detection packages in the motion planning platform Move3D 23], but none of them are designed for the particular application in path planning for devices in CAD models. Therefore we decided to develop our own collision detector. KCD can be seen as a hybrid collision checker that contains pre-selection and entity focussing techniques as in V Collide for handling complex scenes, and precise computation techniques as in SOLID allowing to process composite models made up of possibly concave polyhedra together with volumic primitives (spheres, tubes, cones,...). Furthermore, when no collision is found, KCD can return a distance estimate to the nearest obstacle. In this section we rst indicate the particularities that motivate the architecture, after which follows its description.

KCD and CAD. Collision detection becomes more

time consuming in CAD models due to their high geometrical complexity. Hence we aim for a reduction of the size of the data structures proper to the collision checker without loss of exactness and solvability of the path planning problem. The limitation of the size of the data structures also leads to a faster initialization phase when charging a model.

We observed in experiments with V Collide that the notion of object is important. In a rst stage we dened a V Collide object for each of the polyhedra in the scene. This resulted in too many small axis aligned bounding boxes (AABBs) and most computation time was spent in the pre-selection stage. The OBB-trees on the set of the triangularized facets had an unecient height. Grouping the triangles of several polyhedra in one V Collide object increases performance. However, the notion of object in a CAD system usually groups primitives with the same semantics (e.g. the piping part of the environment) rather than the primitives of one geometrical object, potentially affecting the e cacy of the OBB-trees built on top of the grouped primitives. In the initialization phase of KCD we try to group the primitives automatically in a geometrically meaningful way.

Primitives are simple solids in many CAD systems. Therefore KCD allows a mixture of solids and convex facets. Solids need not to be approximated by polyhedra since in the third stage we apply the GJK algorithm.

The CAD models used in industrial applications may be recycled models, designed for other purposes than path planning. Often objects are more detailed than necessary for path planning. KCD lters away unnecessary details in a conservative way.

KCD and Path Planning. The pre-selection stage of KCD exploits the fact that in CAD path planning applications most objects of the model are xed. KCD pre-processes the static part of the model at the initialization phase of the internal data structures and thus avoids the general notion of collision pairs at the basis of the nbody mechanism in V Collide for the preselection of possibly colliding object pairs. Probabilistic Roadmap planners make extensive use of collision detection for node and edge veri cation. When the CD only returns a boolean answer, edge veri cation is done by a high number of calls to a static collision detector for con gurations along a chosen path between two nodes. In this case some collisions may not be detected when occuring between two consecutive tested collision-free con gurations. The path planner can bene t of supplementary information like a distance estimate to the nearest obstacle or BV. It allows fewer calls to the CD and guarantees collision-freeness of the paths along the edges of the roadmap. Moreover, path planning applications may require to take into account a user-de ned security distance; an extra reason to require distance estimation.

KCD Architecture.

In order to treat the static part of the model seperately, we introduce the notion of object type: static obstacle and moving object (for each link of a device as well as for a freight). KCD tests each moving object for collision with the obstacles, as well as pairs of moving objects. KCD only allows to de ne the pairs of moving objects to be tested, a necessary feature for articulated devices with adjacent always intersecting links in their geometrical model.

The choice of the bounding volumes (AABBs and OBBs) is also motivated by the observation that since most objects do not move, their bounding volumes must never be re-computed. Furthermore, the placement of OBBs around movable objects can be expressed with the same transformation matrix as for the movable object.

Initialization for pre-selection We rst structurize the static objects. We construct a hierarchy of AABBs and group the objects automatically according to their placement in workspace. We put an AABB around each of the primitives. Pairwize overlapping AABBs belonging to the same CADobject are grouped in an AABB on the next level in the hierarchy and de ne a geometrically meaningful KCD object. For the higher levels of the hierarchy we repeat the grouping of pairwize overlapping AABBs of any of the AABBs in the previous level. The AABB hierarchy is a tree with nodes having multiple child nodes. An AABB is placed around each movable object as well. The AABBs are used in the pre-selection stage.

Initialization for entity focussing We use binary OBB-trees around the KCD-obstacles and around each of the moving objects. The construction of these trees is done in two steps. Firstly an OBB-tree is constructed on each polyhedron and an OBB is places around each solid. Secondly an OBB-tree is constructed on top of these for each KCD-obstacle. The OBB-trees are binary trees constructed in a top-down fashion, starting of with one large OBB around the whole collection of geometrical data and creating two smaller OBBs around half of the geometrical data used for the construction of their parent box. The rst kind of OBB-tree takes as input the convex facets of the polyhedron and the triangles computed by a triangulation algorithm applied to its non-convex facets.

The second kind of OBB-tree takes as input the OBBs around the solids in the KCD-obstacle and the OBB in the root of the OBB-tree of the polyhedra in the KCD-obstacle. The resulting OBB-tree on the KCDobstacle is connected to the OBBs and OBB-trees at its leafs. Each movable object is treated in the same way as a KCD-obstacle for the OBB-tree construction.

Figure 1: object OBB-tree, AABBs of its primitives.

Precise computation As in SOLID, we use the enhanced GJK method (7], 4]) on the lowest level: simple solids can be treated as such (see 6]). Since we treat convex facets at the lowest level, we can put an OBB-leaf around a convex facet rather than only a triangle (as required by 8]).

Processing queries It is up to the user to decide whether KCD reports on collision by true or false without further information, or it returns a distance estimate in case of non-collision for each of the movable objects. At each of the three stages faster procedures return only boolean values. The distance estimate is the smallest value computed at one of the levels to decide for non-collision, and therefore is only a conservative estimate. The distance-mode also allows the user to set a safety distance.

The overlap test for AABBs is applied to the AABB hierarchy starting at the root of the tree. When all child boxes intersect an AABB of a movable object, testing is stopped at that level of the tree and the parent AABB is stored. This mechanism results in a collection of AABBs for each of the movable objects. Each AABB contains obstacles that potentially collide. If already at this stage no collision occurs, and if the user asked for a distance estimate, the smallest distance between the AABBs of the movable objects and the visited AABBs of the static environment is returned.

The overlap test for two OBBs limits computations more than the corresponding function in RAPID. The version returning a boolean answer tests at most 15 cases in its quest for a separating axis. A minor modi cation to this algorithm allows to compute the distance between the boxes. The overlap test is called recursively on the OBB-trees of objects in the AABBs selected at the rst stage. Again, if already at this stage no collision occurs, and if the user asked for a distance estimate, the smallest distance between the OBBs of the movable objects and the OBBs of the static environment is returned.

At the lowest level the GJK algorithm is called on the geometrical elements englobed by the leafs of the OBB-trees. As in SOLID, two di erent algorithms deliver two di erent types of answers: a boolean reply or a distance. This test is called when in both of the OBB-trees a leaf is reached.

Omitting details of the scene Another useful feature of KCD is the possibility to lter out details of objects that are useless for path planning purposes. We call a bounding box small when its volume (or the surface of degenerate bounding box around a facet) is smaller than v 3 (or v 2) for a given value v. At the initialization of the internal data we stop the top-down construction as soon as the parent bounding box groups only small bounding boxes. When the bounding box of a primitive or a facet is small, we do not call GJK for that primitive or facet. Similar to the ltering technique at the initialization of the internal data structures, the user can demand to omit detailed checking during the queries. Upon request, KCD does not descend any further as soon as a small bounding box is treated, even if this internal data structure exists. The result returned by KCD is thus guaranteed more conservative than without ltering.

Checking path validity For a tested collision-free con guration along a given path, KCD returns a distance estimate for each movable object, hence for each link of an articulated robot. This allows to compute a collision-free interval in the joint-space of the robot, and to cover the path by collision-free intervals around tested con gurations. Also, collisions along trajectories mostly occur somewhat further away from the collision-free initial and goal con gurations. One expects that dichotomic sampling of a path nds a collision sooner than when sampling the path stepwize. Since most local paths are in collision, dichotomy improves performance of the path planner, as our experiments show. Finally, in the case of articulated devices that may self-collide (e.g. some robot arms, humanoids), it is wise to check for self-collision before starting the computation with the rest of the model.

5 Experiments in Move3D.

We used the platform Move3D (see 23]) in order to experiment with KCD and to compare with V Collide. Models: We used the three scenes shown in Figures 2 for our experiments. The complexity of the di erent models is indicated in the table below. The rst line is the total number of polyhedra and solids in the model, the second line is the total number of solids, the third line is the total number of polyhedra. The fourth line is the number of static polyhedra and solids in the model, that is the initial number of AABBs before grouping in KCD objects. The fth line is the number of robot links, hence the number of movable KCD objects in the model. The sixth line is the number of CAD objects in the model, also the number of V Collide objects (both static and movable, since V Collide does not make the di erence). The last line is the number of KCD static objects, after automatic AABB grouping. In the pre-selection stage these are the leafs of the AABB hierarchy. This is also the maximal number of OBB-trees on KCD obstacles tested in the focussing stage against the movable OBB-trees of line 5. In the precise computation phase, KCD will act on solids and the facets of the polyhedra, whereas V Collide acts on the triangulated facets of all primitives (each solid is then approximated by a polyhedron).

Edf Results: The rst table re ects the computation time needed in order to generate 5 nodes of a graph with the PRM-visibility method (see 20]). Grouping several polyhedra in one object improves performance of V Collide due to a better pre-selection. Dichotomy for path veri cation results in less calls to the collision detector. The boolean static collision detecting by KCD is somewhat faster than V Collide. When KCD returns a distance estimate instead of a boolean, the number of calls can be reduced further for path veri cation. This leads to a further gain of e ciency for path planning although the static collision test is more time consuming when a distance must be computed. Note also that the path veri cation is certain when using the distance information. The third table compares the consumption of time and space in the initialization phase. KCD invests more time in the initialization phase but uses less memory than V Collide due to the di erent treatment of solids. When ignoring details, the initialization phase is executed faster and memory usage is further reduced. The last table shows that KCD can take into account a security distance without loss of e ciency. With a higher safety distance more collisions are found in the same amount of time.

CD-along

TPA sd=0.0 sd=50.0 sd=100.0 774/4.1 799/3.9 826/4.1 Safety distance (sd): number of hits/time in sec.

Conclusion.

We presented the new collision detector KCD -dedicated to path planning for articulated devices in complex CAD models. We described the way in which KCD is used for path planning purposes with the platform Move3D. Experiments show that KCD allows efcient planning of guaranteed collision-free paths. In future, it would be useful for path planners if KCD would return a penetration estimate in case of collision.

Figure 2 :

 2 Figure 2: Scenes EDF, Stabilizer and TPA.

 The next table compares the performance for static collision checking. Since a solid in the Stabilizer model are not longer approximated by a polyhedron and its OBB-tree but treated as a solid with just one OBB around it, the proper data structure of KCD is smaller than the one of V Collide and a signi cant gain of performance can be observed.

	CD	obj. path	time answer (sec.) to CD calls
	VCollide pol. stepwise VCollide obj. stepwise VCollide obj. dichotomy bool bool bool KCD obj. dichotomy bool KCD obj. dichotomy dist. Usage for PRM (model: Stabilizer). 2900 14039 118 14039 54 6093 24 6093 11 1822
	Model	hits/ calls	KCD KCD VCollide (bool) (dist.)
	EDF Stabilizer 249/1000 4568/10000 Static collision checking. 3.85 4.87	2.78 1.59	3.90 2.27

 /16sec./44Mb 20.0/21sec./39Mb Initialization (size v of negligable detail/time/memory).The following table shows a gain in performance of KCD when details of the scene (of volume smaller than v 3 or surface smaller than v 2) are ignored. Somewhat more collisions are found due to less precision, since we approximate details up to their somewhat larger bounding box.

	Stabilizer	TPA
	VCollide KCD KCD KCD 20.0Value v -/18sec./143Mb 0.0/23sec./96Mb 0.0/27sec./78Mb -/20sec./148Mb 10.0/19sec./61Mb 10.0/24sec./54Mb 0 30 100 300 Collision 250 253 256 256 Time (sec.) 2.11 1.96 1.90 1.85 Initial volume (model: Stabilizer, KCD: 1000 calls).