
HAL Id: hal-04292588
https://laas.hal.science/hal-04292588

Submitted on 17 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

KCD: a Collision Detector for Path Planning in Factory
Models

Carl van Geem, Thierry Simeon

To cite this version:
Carl van Geem, Thierry Simeon. KCD: a Collision Detector for Path Planning in Factory Models.
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2001, Hawai, United
States. �hal-04292588�

https://laas.hal.science/hal-04292588
https://hal.archives-ouvertes.fr


KCD: a Collision Detector for Path Planning in Factory Models.

C. Van Geem

�

, T. Sim�eon

LAAS-CNRS, Toulouse, France

Abstract

A critical operation in robot path planning is the

veri�cation for collision between the robot and the ob-

stacles in its environment. In this contribution we

present a new collision detector KCD dedicated to

path planning for mechanical devices and robots in

industrial-size CAD models. We describe the archi-

tecture of KCD and the way in which it is applied in

the path planning tool Move3D. We report on experi-

mental results showing its performance.

1 Introduction

A collision detection algorithm takes as input a soup

of possibly moving objects and determines whether or

not any of these objects clash. The algorithm may re-

turn a boolean result, the minimal distance between

the nearest pair of objects, all pairs of colliding ob-

jects, or an estimation of penetration in case of col-

lision. Applications may have to feed the algorithm

with a particular format or may need particular feed-

back. Preconditions on the representation of objects

can be exploited by an algorithm (e.g. if all objects

are convex) resulting in gain of e�ciency over loss of

generality.

In this paper we will apply collision detection in the

frame of path planning with the probabilistic roadmap

planning approach (PRM, see [13], [2]). This method

constructs a roadmap (or graph) of randomly gener-

ated collision-free robot con�gurations (nodes) con-

nected by collision-free local paths (edges). A partic-

ular path planning problem is then reduced to a graph

search. Our goal is to plan motions for mechanical de-

vices (cranes, carts, trucks,...) and robots in complex

CAD models of industrial sites (object representation

by solids, CSG, and possibly non-convex polyhedra),

where most objects do not move. This path planning

problem is application oriented and the main topic of

the European project Motion for Logistics (MOLOG).

In Section 2 we present a brief overview of the use

of collision detectors in path planning and CAD mod-

�

supported by the MOLOG project (Esprit IV, LTR 28226),

now at KINEO Computer Aided Motion.

elling. Section 3 presents the main contributions of

this paper, which are the development of the collision

detector KCD - dedicated to path planning for artic-

ulated devices in complex CAD models - and the way

in which collision detection is used for path planning

purposes in the platform Move3D (see [23]). KCD

allows e�cient planning of guaranteed collision-free

paths. We report experimental results in Section 4,

before concluding.

2 Related Work

Extensive and recent surveys on collision detection

are published (e.g. [17], [12], [10]). Software of

several collision detectors are freely available for

research purposes. In this section we concentrate on

the observations we made while reading about and

experimenting with collision detection algorithms in

the frame of path planning applications in industrial

models.

Collision Detection Usually the input of a colli-

sion detector is a soup of objects, all objects can and

do move a priori. Some CDs allow the user to de�ne

the pairs of objects that have to be tested or ignored;

e.g. collision pairs in I Collide ([5]), V Collide ([11]).

Computation often falls apart in three stages: pre-

selection of possibly colliding objects, focussing on en-

tities of the selected objects more likely to collide, and

precise computation of a collision or of a witness of dis-

jointness. Pre-selection and entity focussing are usu-

ally based on computations with bounding volumes

(BVs) that approximate the real objects.

The e�ciency of a CD depends on the representa-

tion of the objects: the convexity in [5] allows e�-

cient entity focussing. The choice of adequate BVs

depends on the original objects: spherical shells ([16])

and pie-slices ([1]) are well-suited BVs for tesselated

surfaces whereas oriented bounding boxes (OBBs, [8])

and k-DOPs ([15]) do better for rather spherical ob-

jects. Also, when objects move, their BVs must move

or must be recomputed.

Di�erent collision detectors use di�erent repre-

sentations and algorithms at the stage of precise



computation and return di�erent kinds of informa-

tion. V Collide and RAPID ([8]) test intersection

between two triangles, hence only �nd collisions

between triangularized surfaces. SOLID ([24]) uses

an iterative method to �nd a witness of disjointness

or a pair of nearest points of two convex solids.

V-Clip ([18]) computes the distance between two

non-intersecting convex polyhedra or a penetration

measure in case of collision.

Path Planning Applications Several collision

detection algorithms were used for path planning

(e.g. RAPID in [14], I Collide in [22], V Collide in

[19], SOLID in [3]). The choice of a particular CD

algorithm is often based upon the feed-back given by

the CD and needed for the planning algorithm. In

[26] V-Clip is used because it returns information on

penetration. Usually, whereas the planning problem

is di�cult to solve for a planning algorithm, the

environments have simple geometry.

CAD Applications. Some contributions to the

�eld of CD are applied to industrial scenes. These in-

clude research aimed at the introduction of Virtual Re-

ality techniques for car industry ([27], [28]) and coop-

eration with Boeing ([9], [15]). There exist also some

path planning applications in industrial environments

([21], [25]). In all these applications unimportant cav-

ities are omitted, models are simpli�ed, the number of

calls to the CD minimized.

3 KCD for PRM in CAD Models.

Previously we used several of the above mentionned

collision detection packages in the motion planning

platform Move3D [23], but none of them are designed

for the particular application in path planning for

devices in CAD models. Therefore we decided to

develop our own collision detector. KCD can be

seen as a hybrid collision checker that contains

pre-selection and entity focussing techniques as in

V Collide for handling complex scenes, and precise

computation techniques as in SOLID allowing to pro-

cess composite models made up of possibly concave

polyhedra together with volumic primitives (spheres,

tubes, cones,...). Furthermore, when no collision is

found, KCD can return a distance estimate to the

nearest obstacle. In this section we �rst indicate the

particularities that motivate the architecture, after

which follows its description.

KCD and CAD. Collision detection becomes more

time consuming in CAD models due to their high geo-

metrical complexity. Hence we aim for a reduction of

the size of the data structures proper to the collision

checker without loss of exactness and solvability of the

path planning problem. The limitation of the size of

the data structures also leads to a faster initialization

phase when charging a model.

We observed in experiments with V Collide that the

notion of object is important. In a �rst stage we de-

�ned a V Collide object for each of the polyhedra in

the scene. This resulted in too many small axis aligned

bounding boxes (AABBs) and most computation time

was spent in the pre-selection stage. The OBB-trees

on the set of the triangularized facets had an une�-

cient height. Grouping the triangles of several poly-

hedra in one V Collide object increases performance.

However, the notion of object in a CAD system usu-

ally groups primitives with the same semantics (e.g.

the piping part of the environment) rather than the

primitives of one geometrical object, potentially af-

fecting the e�cacy of the OBB-trees built on top of

the grouped primitives. In the initialization phase of

KCD we try to group the primitives automatically in

a geometrically meaningful way.

Primitives are simple solids in many CAD systems.

Therefore KCD allows a mixture of solids and con-

vex facets. Solids need not to be approximated by

polyhedra since in the third stage we apply the GJK

algorithm.

The CAD models used in industrial applications

may be recycled models, designed for other purposes

than path planning. Often objects are more detailed

than necessary for path planning. KCD �lters away

unnecessary details in a conservative way.

KCD and Path Planning. The pre-selection stage

of KCD exploits the fact that in CAD path planning

applications most objects of the model are �xed. KCD

pre-processes the static part of the model at the ini-

tialization phase of the internal data structures and

thus avoids the general notion of collision pairs at the

basis of the nbody mechanism in V Collide for the pre-

selection of possibly colliding object pairs.

Probabilistic Roadmap planners make extensive use

of collision detection for node and edge veri�cation.

When the CD only returns a boolean answer, edge

veri�cation is done by a high number of calls to a

static collision detector for con�gurations along a cho-

sen path between two nodes. In this case some colli-

sions may not be detected when occuring between two

consecutive tested collision-free con�gurations. The

path planner can bene�t of supplementary informa-

tion like a distance estimate to the nearest obstacle

or BV. It allows fewer calls to the CD and guarantees

collision-freeness of the paths along the edges of the



roadmap. Moreover, path planning applications may

require to take into account a user-de�ned security dis-

tance; an extra reason to require distance estimation.

4 KCD Architecture.

In order to treat the static part of the model seper-

ately, we introduce the notion of object type: static

obstacle and moving object (for each link of a device

as well as for a freight). KCD tests each moving ob-

ject for collision with the obstacles, as well as pairs of

moving objects. KCD only allows to de�ne the pairs

of moving objects to be tested, a necessary feature for

articulated devices with adjacent always intersecting

links in their geometrical model.

The choice of the bounding volumes (AABBs and

OBBs) is also motivated by the observation that

since most objects do not move, their bounding

volumes must never be re-computed. Furthermore,

the placement of OBBs around movable objects can

be expressed with the same transformation matrix as

for the movable object.

Initialization for pre-selection We �rst struc-

turize the static objects. We construct a hierarchy

of AABBs and group the objects automatically

according to their placement in workspace. We put

an AABB around each of the primitives. Pairwize

overlapping AABBs belonging to the same CAD-

object are grouped in an AABB on the next level in

the hierarchy and de�ne a geometrically meaningful

KCD object. For the higher levels of the hierarchy

we repeat the grouping of pairwize overlapping

AABBs of any of the AABBs in the previous level.

The AABB hierarchy is a tree with nodes having

multiple child nodes. An AABB is placed around

each movable object as well. The AABBs are used in

the pre-selection stage.

Initialization for entity focussing We use binary

OBB-trees around the KCD-obstacles and around

each of the moving objects. The construction of these

trees is done in two steps. Firstly an OBB-tree is con-

structed on each polyhedron and an OBB is places

around each solid. Secondly an OBB-tree is con-

structed on top of these for each KCD-obstacle. The

OBB-trees are binary trees constructed in a top-down

fashion, starting of with one large OBB around the

whole collection of geometrical data and creating two

smaller OBBs around half of the geometrical data used

for the construction of their parent box. The �rst

kind of OBB-tree takes as input the convex facets of

the polyhedron and the triangles computed by a tri-

angulation algorithm applied to its non-convex facets.

The second kind of OBB-tree takes as input the OBBs

around the solids in the KCD-obstacle and the OBB

in the root of the OBB-tree of the polyhedra in the

KCD-obstacle. The resulting OBB-tree on the KCD-

obstacle is connected to the OBBs and OBB-trees at

its leafs. Each movable object is treated in the same

way as a KCD-obstacle for the OBB-tree construction.

Figure 1: object OBB-tree, AABBs of its primitives.

Precise computation As in SOLID, we use the

enhanced GJK method ([7], [4]) on the lowest level:

simple solids can be treated as such (see [6]). Since

we treat convex facets at the lowest level, we can put

an OBB-leaf around a convex facet rather than only

a triangle (as required by [8]).

Processing queries It is up to the user to decide

whether KCD reports on collision by true or false with-

out further information, or it returns a distance esti-

mate in case of non-collision for each of the movable

objects. At each of the three stages faster procedures

return only boolean values. The distance estimate is

the smallest value computed at one of the levels to

decide for non-collision, and therefore is only a con-

servative estimate. The distance-mode also allows the

user to set a safety distance.

The overlap test for AABBs is applied to the AABB

hierarchy starting at the root of the tree. When all

child boxes intersect an AABB of a movable object,

testing is stopped at that level of the tree and the

parent AABB is stored. This mechanism results in a

collection of AABBs for each of the movable objects.

Each AABB contains obstacles that potentially col-

lide. If already at this stage no collision occurs, and

if the user asked for a distance estimate, the smallest

distance between the AABBs of the movable objects

and the visited AABBs of the static environment is

returned.

The overlap test for two OBBs limits computations

more than the corresponding function in RAPID. The

version returning a boolean answer tests at most 15



cases in its quest for a separating axis. A minor mod-

i�cation to this algorithm allows to compute the dis-

tance between the boxes. The overlap test is called

recursively on the OBB-trees of objects in the AABBs

selected at the �rst stage. Again, if already at this

stage no collision occurs, and if the user asked for a

distance estimate, the smallest distance between the

OBBs of the movable objects and the OBBs of the

static environment is returned.

At the lowest level the GJK algorithm is called on

the geometrical elements englobed by the leafs of the

OBB-trees. As in SOLID, two di�erent algorithms

deliver two di�erent types of answers: a boolean reply

or a distance. This test is called when in both of the

OBB-trees a leaf is reached.

Omitting details of the scene Another useful

feature of KCD is the possibility to �lter out details

of objects that are useless for path planning purposes.

We call a bounding box small when its volume (or

the surface of degenerate bounding box around a

facet) is smaller than v

3

(or v

2

) for a given value

v. At the initialization of the internal data we stop

the top-down construction as soon as the parent

bounding box groups only small bounding boxes.

When the bounding box of a primitive or a facet is

small, we do not call GJK for that primitive or facet.

Similar to the �ltering technique at the initialization

of the internal data structures, the user can demand

to omit detailed checking during the queries. Upon

request, KCD does not descend any further as soon as

a small bounding box is treated, even if this internal

data structure exists. The result returned by KCD

is thus guaranteed more conservative than without

�ltering.

Checking path validity For a tested collision-free

con�guration along a given path, KCD returns a dis-

tance estimate for each movable object, hence for each

link of an articulated robot. This allows to compute

a collision-free interval in the joint-space of the robot,

and to cover the path by collision-free intervals around

tested con�gurations. Also, collisions along trajec-

tories mostly occur somewhat further away from the

collision-free initial and goal con�gurations. One ex-

pects that dichotomic sampling of a path �nds a col-

lision sooner than when sampling the path stepwize.

Since most local paths are in collision, dichotomy im-

proves performance of the path planner, as our ex-

periments show. Finally, in the case of articulated

devices that may self-collide (e.g. some robot arms,

humanoids), it is wise to check for self-collision before

starting the computation with the rest of the model.

5 Experiments in Move3D.

We used the platformMove3D (see [23]) in order to

experiment with KCD and to compare with V Collide.

Figure 2: Scenes EDF, Stabilizer and TPA.

Models: We used the three scenes shown in Figures

2 for our experiments. The complexity of the di�er-

ent models is indicated in the table below. The �rst

line is the total number of polyhedra and solids in the

model, the second line is the total number of solids,

the third line is the total number of polyhedra. The

fourth line is the number of static polyhedra and solids

in the model, that is the initial number of AABBs be-

fore grouping in KCD objects. The �fth line is the

number of robot links, hence the number of movable

KCD objects in the model. The sixth line is the num-

ber of CAD objects in the model, also the number

of V Collide objects (both static and movable, since

V Collide does not make the di�erence). The last line

is the number of KCD static objects, after automatic

AABB grouping. In the pre-selection stage these are

the leafs of the AABB hierarchy. This is also the max-

imal number of OBB-trees on KCD obstacles tested in

the focussing stage against the movable OBB-trees of

line 5. In the precise computation phase, KCD will

act on solids and the facets of the polyhedra, whereas



V Collide acts on the triangulated facets of all prim-

itives (each solid is then approximated by a polyhe-

dron).

Edf Stab. TPA

1. primitives 869 4829 7353

2. solids 0 3002 6213

3. polyhedra 869 1827 1140

4. static prims. 850 4650 7199

5. robot links 1 4 3

6. VCollide obj . 35 144 86

7. KCD obstacles 169 388 1307

Complexity of the models.

Results: The �rst table re
ects the computation

time needed in order to generate 5 nodes of a graph

with the PRM-visibility method (see [20]). Grouping

several polyhedra in one object improves performance

of V Collide due to a better pre-selection. Dichotomy

for path veri�cation results in less calls to the colli-

sion detector. The boolean static collision detecting

by KCD is somewhat faster than V Collide. When

KCD returns a distance estimate instead of a boolean,

the number of calls can be reduced further for path

veri�cation. This leads to a further gain of e�ciency

for path planning although the static collision test is

more time consuming when a distance must be com-

puted. Note also that the path veri�cation is certain

when using the distance information.

CD- along time calls

CD obj. path answer (sec.) to CD

VCollide pol. stepwise bool 2900 14039

VCollide obj. stepwise bool 118 14039

VCollide obj. dichotomy bool 54 6093

KCD obj. dichotomy bool 24 6093

KCD obj. dichotomy dist. 11 1822

Usage for PRM (model: Stabilizer).

The next table compares the performance for static

collision checking. Since a solid in the Stabilizer model

are not longer approximated by a polyhedron and its

OBB-tree but treated as a solid with just one OBB

around it, the proper data structure of KCD is smaller

than the one of V Collide and a signi�cant gain of

performance can be observed.

hits/ KCD KCD

Model calls VCollide (bool) (dist.)

EDF 4568/10000 3.85 2.78 3.90

Stabilizer 249/1000 4.87 1.59 2.27

Static collision checking.

The third table compares the consumption of time and

space in the initialization phase. KCD invests more

time in the initialization phase but uses less memory

than V Collide due to the di�erent treatment of solids.

When ignoring details, the initialization phase is exe-

cuted faster and memory usage is further reduced.

Stabilizer TPA

VCollide -/18sec./143Mb -/20sec./148Mb

KCD 0.0/23sec./96Mb 0.0/27sec./78Mb

KCD 10.0/19sec./61Mb 10.0/24sec./54Mb

KCD 20.0/16sec./44Mb 20.0/21sec./39Mb

Initialization (size v of negligable detail/time/memory).

The following table shows a gain in performance of

KCD when details of the scene (of volume smaller than

v

3

or surface smaller than v

2

) are ignored. Somewhat

more collisions are found due to less precision, since

we approximate details up to their somewhat larger

bounding box.

Value v 0 30 100 300

Collision 250 253 256 256

Time (sec.) 2.11 1.96 1.90 1.85

Initial volume (model: Stabilizer, KCD: 1000 calls).

The last table shows that KCD can take into ac-

count a security distance without loss of e�ciency.

With a higher safety distance more collisions are found

in the same amount of time.

TPA sd=0.0 sd=50.0 sd=100.0

774/4.1 799/3.9 826/4.1

Safety distance (sd): number of hits/time in sec.

6 Conclusion.

We presented the new collision detector KCD - dedi-

cated to path planning for articulated devices in com-

plex CAD models. We described the way in which

KCD is used for path planning purposes with the plat-

form Move3D. Experiments show that KCD allows ef-

�cient planning of guaranteed collision-free paths. In

future, it would be useful for path planners if KCD

would return a penetration estimate in case of colli-

sion.

References

[1] G. Barequet, B. Chazelle, L. J. Guibas, J. S. B.

Mitchell, and A. Tal. BOXTREE: A Hierarchical Rep-

resentation for Surfaces in 3D. Computer Graphics

Forum, 15(3), September 1996.

[2] J. Barraquand, L. Kavraki, J.-C. Latombe, T. Li, and

P. Raghavan. A random sampling scheme for path

planning. The International Journal of Robotics Re-

search, 16(6):759{774, December 1997.

[3] V. Boor, M. H. Overmars, and A. F. Van der Stap-

pen. The gaussian sampling strategy for probabilistic

roadmap planners. In IEEE Int. Conf. on Robotics

and Automation, 1999.



[4] S. Cameron. Enhancing gjk: Computing minimum

and penetration distances between convex polyhe-

dra. In IEEE Int. Conf. on Robotics and Automation,

1997.

[5] J. D. Cohen, M. C. Lin, D. Manocha, and M. K.

Ponamgi. I-COLLIDE: An Interactive and Exact

Collision Detection System for Large-Scaled Environ-

ments. In Proc. ACM Int. 3D Graphics Conf., pages

189{196, 1995.

[6] E. G. Gilbert and C.-P. Foo. Computing the distance

between general convex objects in three-dimensional

space. IEEE Transactions on Robotics and Automa-

tion, 6(1):291{302, June 1990.

[7] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A

fast procedure for computing the distance between

complex objects in three-dimensional space. IEEE

Journal of Robotics and Automation, 4(2):193{203,

1988.

[8] S. Gottschalk, M. C. Lin, and D. Manocha. OBB-

Tree: A Hierarchical Structure for Rapid Interference

Detection. In Proc. of ACM Siggraph '96, 1996.

[9] M. Held, J. T. Klosowski, and J. S. B. Mitchell. Evalu-

ation of Collision Detection Methods for Virtual Real-

ity Fly-Throughs. In 7th Canadian Conference Com-

putational Geometry, 1995.

[10] P. M. Hubbard. Collision Detection for Interactive

Graphics Applications. PhD thesis, Department of

Computer Science, Brown University, October 1994.

[11] T. Hudson, M. Lin, J. Cohen, S. Gottschalk, and

D. Manocha. V-COLLIDE: Accelerated Collision De-

tection for VRML. In Proc. of VRML '97, 1997.

[12] P. Jim�enez, F. Thomas, and C. Torras. Collision

Detection Algorithms for Motion Planning. Robot

Motion Planning and Control, ed. J.P. Laumond,

Lecture Notes in Control and Information Sciences

229:305{343, 1998.

[13] L. Kavraki, P.

�

Svestka, J.-C. Latombe, and M. Over-

mars. Probabilistic roadmaps for path planning in

high-dimensional con�guration spaces. IEEE Trans-

actions on Robotics and Automation, 12(4), 1996.

[14] L. E. Kavraki, F. Lamiraux, and C. Holleman. To-

wards Planning for Elastic Objects . In Workshop on

Algorithmic Foundations of Robotics, pages 313{325,

1998.

[15] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sow-

izral, and K. Zikan. E�cient Collision Detection Us-

ing Bounding Volume Hierarchies of k-DOPs. IEEE

Transactions on Visualization and Computer Graph-

ics, 4(1), March 1998.

[16] S. Krishnan, A. Pattekar, M. C. Lin, and D. Manocha.

Spherical Shells: A Higher Order Bounding Volume

for Fast Proximity Queries. InWorkshop on Algorith-

mic Foundations of Robotics, pages 177{190, 1998.

[17] M. C. Lin and S. Gottschalk. Collision Detection be-

tween Geometric Models: A Survey. In Proc. of IMA

Conference on Mathematics of Surfaces, 1998.

[18] B. Mirtich. V-Clip: Fast and Robust Polyhedral Col-

lision Detection. Technical Report TR97-05, Mit-

subishi Electric Research Laboratory, 201 Broadway,

Cambridge, MA, 1997.

[19] C. Nissoux. Visibility and Probabilistic Methods for

Motion Planning in Robotics. PhD thesis, LAAS-

CNRS/Paul Sabatier University Toulouse, 1999.

[20] C. Nissoux, T. Sim�eon, and J.-P. Laumond. Visibility

based probabilistic roadmaps. In IEEE Int. Conf. on

Intelligent Robots and Systems, 1999.

[21] L. Overgaard, H. G. Petersen, and J. W. Perram. Mo-

tion planning for an articulated robot: A multi-agent

approach. In 6th. European Workshop on Modelling

Autonomous Agents in a Multi-Agent World, pages

171{182, 1994.

[22] T. Simeon, J.-P. Laumond, and C. Nissoux. Visibility-

based probabilistic roadmaps for motion planning.

Advanced Robotics Journal, 14(6):445{550, 2001

(shorter version also published in Int. Conf. on In-

telligent Robots and Systems, 1999).

[23] T. Simeon, J.-P. Laumond, C. Van Geem, and

J. Cortes. Computer aided motion: Move3d within

molog. In IEEE Int. Conf. on Robotics and Automa-

tion, 2001.

[24] G. van den Bergen. A fast and robust gjk implementa-

tion for collision detection of convex objects. Journal

of Graphics Tools, 4(2):7{25, 1999.

[25] C. Van Geem, T. Sim�eon, J.-P. Laumond, J.-L.

Bouchet, and J.-F. Rit. Mobile analysis for feasi-

bilities studies in cad models of industrial environ-

ments. In IEEE Int. Conf. on Robotics and Automa-

tion, 1999.

[26] S. A. Wilmarth, N. M. Amato, and P. F. Stiller.

MAPRM: A Probabilistic Roadmap Planner with

Sampling on the Medial Axis of the Free Space. In

IEEE International Conference on Robotics and Au-

tomation, pages 1024{1031, 1999.

[27] G. Zachmann. Real-Time and Exact Collision Detec-

tion for Interactive Virtual Prototyping. In ASME

Design Engineering Technical Conferences, 1997.

[28] G. Zachmann. Rapid Collision Detection by Dynam-

ically Aligned DOP-Trees. In IEEE Virtual Reality

Annual International Symposium, 1998.


