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Incremental Topological Modeling using Local Vorono -like Graphs

In the eld of mobile robotics, one important issue is to allow the robot to navigate in an a priori unknown and non speci c large scale environment. Large dimensions raise strong limitations of geometric modeling, and topological or mixed metric-topological models are now studied to better t the problem.

In this paper, we present a new method for incrementally building a topological model of an indoor environment from sensor range data. The approach consists in merging each local perception of the topology with the current state of the global graph. This local topology is captured through the construction of a Vorono -like graph that takes into account not only visible features but also visibility constraints (hidden regions, limited sensing ranges, ...). We give the outline of the method and show rst encouraging results on real data.

Introduction

This paper addresses the issue of long term navigation in an a priori unknown, large scale environment. Large dimensions have dramatic consequences on localization since odometric pose estimate increasingly degrades as the robot moves around.

There exist some e ective simultaneous mapbuilding and localization methods (e.g 2, 3]) but they su er from a rather costly learning scheme in terms of memory space and computation time. Indeed, they are based on localizing the robot in a global metric map of the environment, which becomes di cult in a large scale environment because of large position uncertainty. Some authors also de ned sensor based strategies to deal with uncertainties 1, 4, 5, 6] but they assume some a priori knowledge and/or are limited to local navigation.

In such wide environments, a topological representation 8, 10, 11, 13, 14] may be more e ective because it provides a compact model that allows fast route planning and reduces the amount of stored data, as well as the computation time for learning. There are two common approaches to topological modeling. Thrun 13] proposes a strategy that constructs a topological graph over a metric representation of the environment by partitioning the map into adjacent regions separated by narrow passages. It gains from both types of representation (metric and topological) but also su ers from the disadvantages of the metric map. Navigation techniques using such topological/metric descriptions have also been investigated (eg. 14] based onto Markov processes).

The other class of methods tries to construct a topological model directly from sensor data. [START_REF] Kuipers | A robot Exploration and Mapping Strategy Based on a Semantic Hierarchy of Spatial Representations[END_REF], Dubek proposes a hybrid topological-metric model where nodes of the topological graph are local metric descriptions of \Islands of reliability". (see also 12] for a similar approach). Choset describes in 8] a sensor-based exploration procedure allowing a mobile robot to trace the Vorono of the environment from sonar inputs. The system incrementally constructs a graph connecting meet points lying at the intersection of Vorono 's edges. At each step, sonar data are used to maintain the robot onto the graph and to locally extend the edge currently traced with a single point.

Our topological model also derives from the Vorono structure. However, the approach we propose to build this model exploits the richness of the information that can be collected by a laser range nder. Local Voronolike graphs are computed from the segmented range data and used to incrementally build the topological model. The potential interest of such approach is that matching local graphs with the partially constructed graph may allow to better maintain the reliability of the topological map.

The paper is organized as follows. Section 2 gives an overview of the approach. Section 3 presents how the local model is obtained from sensor data. Section 4 proposes a procedure for local merging of local and global models, along with a loop detection scheme to allow modeling cyclic environments. Section 5 gives some preliminary results on a real environment.

2 Overview of the Approach

The problem addressed in this paper is illustrated by gure 1. The left part shows the whole set of segments constructed from the sensor range data collected by a mobile robot during an experiment where the robot moved within the lab. One can note in the gure that many segments are duplicated and seem as shifted and twisted. This is the consequence of the dead-reckoning error accumulated by the robot during its displacements. The aim of this work is to be able of incrementally constructing a topological model of the map, such as the one depicted at the right part of the gure. The approach is based on the assumption that the explored world can be reliably modeled by segments obtained from a range nder performing an horizontal scan. We consider a laser sensor that has both limited distance and angular ranges (see Fig 3). Given a set of points collected by the sensor, a segmentation algorithm produces a sequence of possibly disconnected segments modeling the sensed obstacles. Discontinuities in the sequences of segments may be due to occlusions, specular limitation of the sensor (see Fig 4), or \unperfect" segmentation. By appending escapelines departing from each discontinuity, we construct a generalized star-shaped visibility polygon which represents the current free space area perceived by the robot. 
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The Vorono Diagram is a classical structure for path planing 1] de ned by the set of points equidistant to at least two obstacles. Three-equidistant points correspond to possible bifurcations. Thus the Vorono Diagram provides a natural way to de ne a graph that explicitly captures the topology of the free space.

Considering the generalized visibility polygon as the free space area, we extract the local topology using an algorithm originally presented in 7]. The principle consists in tracing incrementally the Vorono by moving a virtual point denoted R, initially placed at the sensor's position. An initialization step rst computes the retraction of R onto the diagram. Successive steps computed based on the geometric analysis of the neighborhood of R (vertices on the boundary, nearest obstacles...) trace the current edge until R reaches a 3-equidistant point. A node is created at this position, with departing edges. The algorithm then selects one unexplored edge of the new node and continues tracing. It terminates when all the edges have been explored. As illustrated by Fig 5, each of the portions of the edges is labeled as de nitive (if based only on boundary segments) or temporary ( when at least one escapeline is involved). When one temporary portion intersects with another edge, the corresponding node is also labeled as temporary. Temporary nodes are likely to drift around their current position inside a presencearea. This area can be over-estimated by a circular region de ned by the extremal positions of the implicated escape-lines (see Fig. 6). This area will eventually contain at least one de nitive node.

Structure of the Local Map

Mainly because of unperfect (noisy) data segmentation, this rough graph must be ltered to keep the useful edges for navigation. In particular we discard the edges based on too at concave vertices or due to narrow passages that do not allow the robot to navigate.

Nodes of the graph are described by their uncertain position (because of the uncertain position of the robot), the anticlockwise ordered set of edges emanating from them (see Fig 7) indexed with relative departing angles, a temporary/de nitive attribute, and a con dence degree that re ects the persistence of the node along the successive local views (see next section).

Each of the edges is described by a sequence of portions. A portion is either a straight or curve segment which has an approximate length. It is also assigned a temporary/de nitive attribute and distance to the environment is stored for each extremity. Global attributes of the entire edge can be derived from a simple integration of the local attributes of the successive portions. At each step of the exploration, the system gets the topology of the nearby environment. We assume that we can get a retraction of the robot position onto the graph and determine which is the direction of displace-ments on the corresponding edge. Consequently, we naturally use the local graph to locally update the ongoing part of the current global graph.

Moreover, considering small displacements, we expect that an important part of the local graph will remain qualitatively identical over successive views. However, temporary nodes will have slightly changed and some nodes may have appeared or disappeared, as illustrated in gure 8. The gure shows the local graph constructed at two close positions of the robot. In the right gure, the specular phenomenon present in the left one has disappeared so that two new nodes can be modeled, while one node already present in the left gure has turned from temporary to de nitive.

We next describe a procedure allowing to identify these local changes. Then we address the issue of loop detection to handle situations where the robot discovers again a previously modeled region of the environment. 
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The point is to determine, for each node N l of the local graph if it is already modeled in the global graph or not. The key idea is that the topological feature represented by N l in the local graph is already modeled in the global one if we can reach a node N g in the global graph by mean of a path topologically equivalent to the one that leads to N l in the local graph. This accessibility procedure works as follows. Note D the closer extremity of the local graph to the robot position. We construct a path from D to N l as a set of nodes fL i g to be traversed. Now examine this path \node-by-node". To switch from one node L i to the next, we de ne manoeuvres. Arriving at Continuing this accessibility procedure for each L i leads to one of the following situations :

Both N l and a corresponding global node N g are reached. Then N l is used to update N g 's description, and N g 's con dence degree is increased (eg. nodes L 2 and L 3 of g 10). N l is reached but a still pending edge of the global graph has been reached. N l is connected to this edge with a default value of the con dence degree (eg. node L 4 ). N l is situated before the presence area of the corresponding node reached in the global graph. This can occur when the perceptual situation has changed so that a new node is discovered. N l is inserted in the global graph with a default condence degree (eg. node L 1 ). One L i lies after the presence area of the reached global node G i . Then we determine if it is consistent with the new robot position, in particular considering possible occlusions and specularity. If it is, the accessibility procedure continues without updating anything; if not, the con dence degree of G i is decreased and a copy of G i is inserted in the local graph to allow continuing the procedure. N l stands inside the presence area of the reached global node G i , but they have di erent topologies. This is possible only if G i is constructed over escape-lines that have strongly evolved in the local perception (see g 8). N l is inserted but with a low degree of con dence if it is not the case. This accessibility procedure performs a local growth of the global model, without considering closing-loop situations.

Loop Detection

At each step of the construction, the system must detect if the robot comes to explore again a region it has already modeled or not. Loop detection is a tricky issue of topological modeling. In large scale environments, large dead-reckoning errors prevent from identifying the nodes using their position. To perform node matching, some authors have proposed various criteria based on the nodes description. In 8] Choset uses four stable characteristics of the nodes. First, distance to nearest obstacles is examined. The number of emanating edges is also a relevant feature. A more distinctive criterion is the comparison on departure angles of the emanating edges. The last useful characteristic of a node is the distinction between edges terminating on obstacles boundary (named blind edges) and others.

In 9], the geometrical description of the edges is also used, but as the system builds the edges \pointby-point", it must trace the edge to get su cient information. In our model we already have the description of the edges (or at least part of it) when trying to identify a node, so we can use comparison of edges as a more discriminating criterion, in addition to the previous criteria.

The matching of edge description consists in comparing edge curvature and distance to obstacles all along the common de nitive part of both edges. Note that all necessary geometrical informations are stored into the edge structure of the graph.

For each de nitive node in the local graph, applying this multi-criteria matching may result in several candidate nodes if the robot position (and consequently nodes position ) is too uncertain. Then we use a classical scheme for generation and validation of hypothe- Let us explain this procedure on a (not so) simple example. Figure 11 shows a situation where the robot discovers a node (node 8) topologically similar to several candidate nodes (nodes 1, 2 and 3) already present in the model. Since the robot has covered a large distance, its position uncertainty has become important enough so that nodes 1, 2 and 3 lie in the uncertain domain of node 8. Then a list of hypotheses is initiated. Figure 11 shows how new nodes allow validation of some of the hypotheses. Node 9 is supposed to be one of nodes 1,2 or 3. Two hypotheses are made that respectively connect node 1 to node 2 and node 2 to node 3. The procedure continues until node 11 leads to the conclusion that none of the hypotheses can be validated because node 5 is topologically di erent from node 4 which is the only following node from node 3. Thus nodes 8, 9 and 10 are new ones. Note that even if there is only one candidate node at the rst step of a closing loop situation, the loop is not necessary e ective. So the hypothesis must be stable over a few steps to be con rmed (or not). One may also note that the local topogical map computed with our approach may allow a more e ective matching since the topology of the neighbor nodes can also be used when matching local nodes into the gobal model. Such neighboring information possibly allows to eliminate some potential candidates , leading to a reduced number of hypotheses. This is illustrated by the slightly modi ed example of Fig. 12. Here, the robot perceives two nodes (nodes 8 and 9) when arriving in the vicinity of node 8, and thus can directly conclude that node 8 cannot be either of nodes 1, 2 nor 3 (because none of these nodes is connected to a node such as node 9).

When a loop has been identi ed, we make a systematic comparison between each encountered node respectively in the old and new part of the hypothesis, backtracking from the last node of the hypothesis until the end of the revisited region is detected. Then the loop is connected erasing the revisited part of the model, and the robot position is corrected.

Experimental Results

We performed some experiments using our robot Hi-lare2 as a mobile sensor to collect laser range data. The robot was manually driven across the lab and the segmented data were stored every 20 cm. The gures below detail some steps of the construction of the topological graph shown in Fig. 1. Each of the local view contains an of 20 segments in a room-like neighborhood, and less than 10 segments in a corridor. In the rst case the average computation time of the local graph is about 0.5s. In the corridor case, the local graph is obtained after less than 20ms.

One can also note over the successive steps that the global graph is roughly divided into a de nitive and a temporary part. Recently discovered nodes are often temporary but they are updated in further exploration so that the temporary part of the global graph tends to converge towards the real skeleton of the environment. Note in gure (b) that because of occlusions and specularity, the local graph only builds a \very temporary" node (at the bottom of the gure), whereas gure (c) shows that the following steps allowed modeling more nodes. Figure (d) explicitly shows that the local graph may not be connex. The last gure (e) corresponds to the robot entering a corridor. Note that despite a quite large sensing range (over 10 meters) the local model (side walls) remains rather limited because of specularity.

Future Work and Conclusion

We have developed a new approach for directly constructing a topological model of an indoor structured environment from local range data. The model is obtained incrementally by merging each local topological graph with the current state of the model. Some encouraging results have been obtained on a real environment and we are currently validating the loop detection scheme.

Future work will concentrate on extracting exploration and navigation strategies, and also on demonstrating the robustness of the approach for long range navigation.
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 1 Figure 1: Topological map built in a real environment

FigureFigure 2 Figure 3 :

 23 Figure 2: ApproachFigure 2 summarizes the scheme we adopted for topological modeling. As the robot is exploring the
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 4 Figure 4: Escape-lines: Thick solid lines are the segments built from sensor data and thin solid lines are the escape-lines.
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 5 Figure 5: Local Vorono graph. The graph drawn with thick solid lines represents the de nitive part of the local model, while dashed edges are based on escape-lines and are only temporary. Empty squares are placed over each node.
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 6 Figure 6: Presence area for one node: N' and N" are the equivalent position of the node N without considering each of the two escape-lines.

  Figure 7: Topological Node
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 8 Figure 8: Local evolution: lled black squares represent de nitive nodes whereas empty squares denote temporary nodes. From the left to the right gure the specularity disappeared and a new node is created lying inside the presence area of an existing node
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 9 Figure 9: Manoeuvres arriving at a node one node, the robot can either keep forward (KF), turn right (TR), turn left (TL), avoid right (AR) or avoid left (AL) (see gure 9). Note D 0 the retraction of D onto the global graph. Starting from D 0 we examine the rst encountered node G 0 and compare it with the rst local node L 0 . For the equivalence to be acceptable, both nodes L 0 and G 0 must o er compatible manoeuvres.
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 10 Figure 10: Local evolution: Thick lines are the global model and thin lines are the local graph.
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 11 Figure 11: Loop situation and generated hypotheses ses.Let us explain this procedure on a (not so) simple example. Figure11shows a situation where the robot discovers a node (node 8) topologically similar to several candidate nodes (nodes 1, 2 and 3) already present in the model. Since the robot has covered a large distance, its position uncertainty has become important enough so that nodes 1, 2 and 3 lie in the uncertain domain of node 8. Then a list of hypotheses is initiated. Figure11shows how new nodes allow validation of some of the hypotheses. Node 9 is supposed to be one of nodes 1,2 or 3. Two hypotheses are made that respectively connect node 1 to node 2 and node 2 to node 3. The procedure continues until node 11 leads to the conclusion that none of the hypotheses can be validated because node 5 is topologically di erent from node 4 which is the only following node from node 3. Thus nodes 8, 9 and 10 are new ones. Note that even if there is only one candidate node at the rst step of a closing loop situation, the loop is not necessary e ective. So the hypothesis must be stable over a few steps to be con rmed (or not).
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 12 Figure 12: Loop detection using neighboring information
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 13 Figure 13: Experiment: The whole set of sensed segments and the rst ltered local graph The dimensions of the environment explored during this experiment are about 20 10 meters and the topological graph of Fig. 1 contains 22 nodes (10 of them are de nitive nodes). The initial state of the global graph (corresponding to the rst local graph) is shown in Fig. 13. This local graph was obtained after ltering of the graph displayed in Fig. 14.
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 14 Figure 14: First local graph before ltering

  A few steps of the global constructionFor each step, the left part corresponds to the local graph displayed with the local data (thick solid lines are the boundary segments and thin dashed lines are the escape-lines). The right part of the gure shows the new global graph after graph matching. Black squares denote de nitive nodes whereas grey ones are only temporary. Thick solid lines are de nitive edges of the graph and thin dashed ones represent temporary portions.
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