T Sim

Dacre-Wright

A Practical Motion Planner for All-terrain Mobile Robots

This paper addresses the motion planning problem for wheeled vehicules moving on rough terrains 1 . First, we formalize the placement problem for the case of a rather complex locomotion system consisting of n wheels attached to the robot body by passive suspensions. We next analyze the geometric and kinematic constraints acting on the placements of the robot. Finally, we present a planning method that computes a safe and feasible path between two given placements of the robot. The approach basically consists in searching a path into a graph built incrementally during the exploration of a discrete 3D con guration space. The algorithms have been implemented and simulation results are reported at the end of the paper.

Introduction

There is an increasing interest in developping mobile robots for applications requiring autonomous navigation on natural terrains (planetary exploration 4] 5], public safety robotics and other hazardous missions 8] 9]). This paper addresses the path planning problem for such all-terrain mobile robots.

Research in motion planing has been very active over the past decade. Most of the work has addressed the problem of nding a collision-free path for manipulators or for mobile robots moving in planar environments (see 6] for a detailed survey).

However, motion planning is almost inexistent in the litterature for mobile robots moving on non-planar terrains. There already exists all-terrain mobile robots which use simple path generation techniques for their autonomous navigation. These approches use the terrain model to characterize the traversability of small terrain patches (roughness of the patch, preferred crossing direction,. ..). In 4] 10], paths are computed from this characterization by gradient propaga-tion techniques. The AMR robot 8] uses a 2D pathplanner similar to the one presented in 2] to plan a path that avoids the patches classi ed as obstacle.

These simple techniques are certainly su cient for the case of benign terrains. However, they will fail to nd a safe path for a robot moving on a rough terrain: in this case, the binary notion of obstacles and non obstacles regions does not hold anymore; the obstacles depend on the ability of the robot to cross over the irregularities of the terrain and their characterization requires to better formalize the constraints acting on the placement of the robot on the terrain.

We are aware of a very few contributions that consider this new path planning problem. A geometric 3D planner is described in 12] for the very simple case of a 3-wheels robot moving on a polygonal terrain. Related work is reported in 9] for the Intelligent Locomotion of a four tiltable track robot. We recently proposed 3] a free-space structuring algorithm based on the characterization of con guration space regions for which the locomotion architecture guarantees terrain irregularities absorption and stability of the vehicle. Finally, Shiller addressed in 11] the problem of nding a time optimal trajectory for a point robot moving on a terrain. The dynamics of the vehicle is used to take into account tip-over constraints.

In this paper, we present an extension of the planning approach proposed in 12]. This extension allows the planner to deal with more complex (and realistic) locomotion structures. We also describe several algorithms which signi cantly improve the e ciency of the planner.

2 General statements

Overview of the Approach

We consider an articulated robot moving on a terrain. The robot consists of a body and n wheels attached to it by passive suspensions. These suspensions allow the wheels to remain in contact with the terrain. However, they also complicate the placement of the robot which results from the interaction between the wheels and the terrain, and from the balance of the suspensions. We consider that a safe trajectory needs to satisfy the following constraints, called placement constraints:

(C1) the wheels remain in contact with the ground. (C2) the suspensions cannot be stretched beyond some limit length. (C3) the robot does not tip-over, which requires that the projection of its gravity center remains inside the convex hull of the projections of all the contact points (called the support polygon). (C4) the robot does not collide with the terrain. Given an initial and a goal placement of the robot, our purpose is to plan a feasible trajectory (with respect to the non-holonomic constraint of the robot) that satis es these placement constraints. The remaining of this section describes the models used to represent the vehicle and the terrain. In section 3, we give a formal statement of the problem and we de ne the three dimensional con guration space CS which will be used to search for a solution. Section 4 details several algorihms that are used by the path-planner presented in the last section.

The Vehicle Model

The body of the robot is modeled by a polyhedron R. We de ne a local frame R rob = (G; u; v; w), where G is the gravity center of the robot, and (u; v; w) are respectively its longitudinal, lateral and vertical axis (see Fig. 1). The n wheels are attached to R by passive suspensions which are modeled by springs. We assume that, when all the springs are in their steady state, the wheels belong to the same plane P S perpendicular to w axis, at height w 0 in the local frame. Then, the coordinates of wheel i are (u i ; v i ; w 0 +l i) where u i and v i are some xed values related to the geometry of the robot, and l i is the algebraic extension of the spring (l i = 0 being its natural length). That means that the springs always keep a vertical orientation in the robot's frame. Fig. 1 shows an example of a 6-wheels robot, with the parameters detailed above.

Moreover we consider that two control parameters allow to drive and to steer the vehicle: the linear velocity v lin (mesured along u) and the angular velocity v rot (mesured around w).

The Terrain Model

The terrain is known through a discrete elevation map, that is the elevation values z on a discrete regular grid in (x; y). For each patch de ned by this grid, the terrain is modeled by the non planar face z = a:x + b:y + c:x:y + d which interpolates the four corresponding 3D points of the elevation map. The coe cients (a,b,c,d) associated to the patch (i; j) are directly obtained from the elevations z i;j ,z i+1;j ,z i+1;j+1 ,z i;j+1 and from the size ter of the patch. Fig. 2 shows an example of a rough terrain.

M(p) = T (x; y; z)R(w;)R(v;)R(u;):
Therefore, a complete placement of the robot is given by (6 + n) independant parameters : the 6-dimensional vector p = (x; y; z; ; ;) for the position of the robot's body the n spring extensions l i , for the wheel positions.

The Con guration Space

Nevertheless, the interactions with the terrain constrain these parameters and therefore reduce the dimension of the robot's con guration space. We consider the three dimensional Con guration Space CS = R 2 S 1 induced by the parameters x; y and of vector p. To any con guration q = (x; y;) corresponds a complete placement of the robot. Section 3.3 explains how its n + 3 remaining parameters z(q), (q), (q) and the l i (q) can be obtained.

We de ne the admissible con guration space CS free CS as the set of all con gurations q 2 CS for which the associated placement satis es the placement contraints. The planning problem can be therefore formulated as the problem of computing a path connecting two given con gurations and lying in CS free .

The Placement Problem

The placement of the robot results from its weight and the reaction of the ground exerted through the springs. The static equilibrium state is reached when the total energy of the robot is minimized. In the following, we consider a simple energy function, including only the compression energy of the springs:

E = P n i=1 kl i 2
where k is the sti ness coe cient of the springs.

Moreover, we only need to consider the placements which keep all the wheels in contact with the terrain (C1). Let us denote by L i (p) the function which associates to a given value of the vector p, the value of the spring extension l i such that the wheel i is in contact (without intersecting) with the terrain (see Fig. 3).

Therefore, the energy can be expressed as a function of the placement E(p) = P n i=1 kL 2 i (p) and for a given q, the remaining parameters of vector p result from the minimization of this function. Vector (z(q); (q); (q)) is the solution of: The spring extensions l i (q) are obtained from the evaluation of the functions L i (p) for the computed placement. Section 4.1 details more precisely the algorithms which have been implemented to solve this problem.

min z; ; n X i=1 L 2 i (p) (1)

The Nonholonomic Constraint

In order to establish the nonholonomic constraint applying to the motions of the vehicle, let us consider the velocity vector v G of the origin G of R rob . Since the axis of the wheels always remain colinear to the lateral axis v of R rob , the velocity vector v G is perpendicular to v: v G = v lin :(u + w)

This expression is similar to the classical nonholonomic contraint _ y = _ xtan established for the case of a mobile robot moving in a two dimensional workspace (see for example 7] 1]). We recall that such a constraint restricts the set of achievable velocities at any con guration to a two dimensional subspace of the tangent space (_ x; _ y; _). However the system remains fully controllable, that is: any two con gurations lying in the same connected component of CS free can be connected by a path respecting the kinematic constraint (3).

In our case, the equations of the feasible motions are nevertheless more involved than the one obtained for the planar case. We describe in section 4.3 a simple method to produce paths which satisfy approximatively this constraint.

We describe now the algorithms which have been developped to solve some of the problems mentionned above. These algorithms are used by the path-planner presented in Section 5.

Placement Computation

Two algorithms have been implemented to obtain a solution to the placement problem. The rst one, denoted PLACE(q), is based on standard minimization techniques which compute the minimum of a multivariable function (Eq. 1). This method simply requires to evaluate the functions L i (p). This evaluation is described in section 4.1.1. The second algorithm, denoted PLACE APP (p) allows to compute much more e ciently an approximate placement. Section 4.1.2 describes this algorithm and discusses the reliability of the solution.

Computing the L i (p)

For a given value of p, the n functions L i (p) are computed as follow: Let us rst consider the case of a ponctual wheel (identi ed to its center). Its position is determined in R rob by the vector (u i ; v i ; w 0 + l i).

Thus, the parameter l i allows to move this point along the w axis of R rob . This motion corresponds to a line parametrized in the reference frame by the point (x i ; y i ; z i ; 1) t = M(p)(u i ; v i ; w 0 ; 1) t and the direction n = M(p)(0; 0; 1; 0) t . Let z = f(x; y) denote the analytic expression of the terrain surface. A positive (resp. negative) value of z i f(x i ; y i) means that for a null value of l i , the wheel lies over (resp. under) the terrain. Therefore the value of L i (p) can be simply determined from the computation of the rst intersection point between the terrain model and the half-line issued from this point (x i ; y i ; z i) t in direction n (resp. in direction n). The same algorithm can be extented to account for the shape of the wheels by considering a discrete number of \control points" placed on its surface. In this case, L i (p) corresponds to the minimum of the values obtained for each of the control points.

Approximate Placement

The method consists in applying iteratively a least square algorithm to improve an initial estimation [START_REF] Barraquand | Robot Motion Planning: A distributed Representation Approach[END_REF] of the parameters z, and . Each iteration is aimed to decrease the value of E(p). Let z k , k and k denote the value of the placement parameters at the beginning of iteration k. For the corresponding placement denoted p k , the algorithm L i (q) described in the previous section allows to compute the value E k = E(p k) [START_REF] Barraquand | Robot Motion Planning: A distributed Representation Approach[END_REF] the initial values are 0 = 0 = 0 and z 0 = f (x G ; y G) and the n contact points P i between the wheels and the terrain. The least square method is then used to obtain the equation of the plane which minimizes the quadratic mean of the distances to the points P i . The new values of the placement parameters are deduced from this plane: k+1 and k+1 are computed such that the vertical axis w of R rob coincides with the plane normal. z k+1 is computed such that all the wheels contact this plane for a null deformation of the springs (see Fig. 4).

The procedure is iterated while E k < E k 1 . When the algorithm stops at iteration k, it simply returns the vector p k 1 and the spring elongations L i (p k 1).

Obviously, this iterative method is not garanteed to exactly converge to the solution of equation 1. However, the following remarks justify its interest: First, it is much more e cient than the algorithm PLACE(q). Second, experimental tests performed with several terrain models, show that this simple method returns a placement very close to the one computed with PLACE(q) when the portion of the terrain lying under the robot is relatively smooth. For the case of large terrain irregularities, PLACE APP (q) does not always succeed in decreasing E to its minimal value and therefore a larger error is possibly introduced by the algorithm. However, when this case occurs, some of the computed values l i (q) are generally too large to satisfy condition (C2) and consequently, the placement will not be considered as valid.

Validity of a Con guration

We consider now the problem of checking wether a given con guration q belongs to CS free or not.

Deformation of the Suspensions

Let L max be the maximal deformation allowed for the springs. A con guration q veri es (C2) i : 8i 2 1; n]; jl i (q)j < L max (4)

Stability of the Placement

According to constraint (C3), the vertical projection of G has to belong to the support polygon. The shape of this polygon is clearly a function of , and of the lengths (l i) i=1:::n . However, we assume that the less stable position is obtained when all the springs are the longest. The stability thus only depends on and , and the subset S] 2 ; 2 2 verifying this condition can be easily determined [START_REF] Dacre-Wright | Free Space Representation for a Mobile Robot moving on a Rough Terrain[END_REF] . Thus, constraint C2 is veri ed for a given q i : ((q); (q)) 2 S

(5)

Collision-free Placement

Figure 5: The hierarchical model (levels 5,6,7,8) for the terrain shown in Figure 2 Basically, the collision checker consists in verifying that the polygonal faces5 of the polyhedron R(q) do not intersect any of the underlying surface patches of the terrain model.

In order to improve the e ciency of the algorithm, we construct a hierarchical model (a quadtree) from the surfacic model of the terrain. The root of the quadtree (ie. the rectangloid cell corresponding to the de nition domain of the terrain) is recursively subdivided into smaller cells. To each of these cells, we associate the extremal elevations z min and z max of the corresponding portion of the terrain. Thus, each level of the quadtree determines a set of cuboids that approximate the terrain geometry. The maximal level is obtained when the size of the cells is equal to the resolution ter of the elevation map. Figure 5 shows the higher levels of the quadtree decomposition for the terrain model shown in Figure 2. The following procedure is recursively applied, starting from the root of the quadtree, to e ciently check the non collision between a polygonal face P of the polyhedron R(q) and the terrain. If the upper and lower horizontal faces of the cuboid associated to a given node do not intersect P (see Fig 6-a), then we are certain that P does not collide with the terrain. Similarly, when both faces intersect P (see Fig 6-b) we can directly conclude the existence of a collision. Otherwise, we need to consider a ner approximation of the terrain by analyzing the four descendant of this node. When a leaf of the quadtree is reached and does not allow to conclude [START_REF] Giralt | The French Planetary Rover VAP: Concept and Current Developments[END_REF] , a more expensive test with the corresponding patch surface can be applied.

Computing Feasible Trajectories

Given a constant control (v lin ; v rot) applied when the vehicle is at con guration q 0 = (x 0 ; y 0 ; 0), we want to compute the con guration q 1 = (x 1 ; y 1 ; 1) reached after the application of the control during a short time interval dt.

Let R 0 = (G 0 ; u 0 ; v 0 ; w 0) be the frame which coincides with R rob when the robot is at q 0 . We simplify the problem by assuming that, during the motion from q 0 to q 1 , G remains in the plane de ned by (G 0 ; u 0 ; v 0) (see Fig 7).

Under this assumption, and for xed values of (v lin ; v rot), the trajectory of G relatively to R 0 corresponds to a circular arc [START_REF] Latombe | Robot Motion Planning[END_REF] in the plane (G 0 ; u 0 ; v 0). This circular arc is centered at (0; ; 0) and its radius is given by = v lin =v rot . Therefore, after the time interval dt, the origne G of R rob arrives at position 6 this case rarely occurs [START_REF] Latombe | Robot Motion Planning[END_REF] or a straight line segment when vrot = 0 5 The Path Planner

Principle

Given two con gurations q i and q g , we want to compute a feasible path connecting q i to q g and lying in CS free .

The planner is based on a slighly modi ed version of the planning approach proposed in 1] for the optimal maneuvering of non-holonomic mobile robots moving in a two dimensional workspace. We recall that this approach basically consists in generating a graph G of discrete con gurations that can be reached from q i by applying sequences of xed controls during a short time interval. The xed controls generally correspond to drive forward or backward with a null or a maximal angular velocity which steers the vehicle toward the left or the right: (v lin ; v rot) 2 f V lin ; V lin g f V rot ; 0; V rot g (6) In order to limit the size of the graph, the con guration space is initially decomposed into an array of m small cuboid cells. This array is used during the search to keep track of small CS-regions (the cuboids) which have already been crossed by some trajectory. The successors generated into a marked cell are discarded and therefore, one node is at most generated in each cell.

We use a classical A algorithm to search the graph G. Starting with q i as current node, this node is expanded ie. its successors are computed and are stored into a list. The next iteration selects the best element of the list, which becomes in turn the current node to be expanded. The procedure is repeated until the goal is reached. six controls de ned in (6), the algorithm tries to compute a neighbor q next as follows: For a given control (v lin ; v rot) a successor q 0 of q cur is rst computed as indicated in section 4.3. The algorithms described in section 4.1 and 4.2 allow to obtain the corresponding placement and to check the validity of q 0 . If q 0 does not satisfy the placement constraints, the current control does not allow any node creation and the next control is considered. Otherwise, the same process is repeated from q 0 until a cell C next adjacent to C cur is reached. A graph node is associated to the reached con guration q next only if the cell C next has not been yet visited. The corresponding control and its duration are stored into the arc linking q cur to q next .

Neighbors of the Current Node

Cost of the Arcs

The cost assigned to the arc connecting two adjacent nodes is computed from the distance between the two con gurations associated to these nodes. This distance is ponderated in order to penalize the changes of control and the trajectories for which the angles (q), (q) or some of the lengths l i (q) are close to the limits imposed by the placement constraints (C2) and (C3). Therefore, the minimum-cost trajectory returned by the planner realizes a compromise between the distance crossed by the vehicle, the security along the path and a small number of maneuvers.

Choice of the Parameters and Complexity Issues

Note that during the node expansion, the placement constraints are checked in a discrete way after each incremental motion (v lin :dt; v rot :dt). In order to be garanteed that the placement constraints remain satis ed during the incremental motions, the choice of these parameters needs to be related to the resolution ter of the elevation map. They are chosen in such a way that the horizontal motion of any point of the robot is less than ter. An upper-bound dep max of this displacement can be estimated as follows: Let D max be the maximal distance from the origin G of R rob to any point of the robot and let us consider that a linear velocity v lin is applied during the time interval dt with a xed radius of curvature = v lin =v rot . The horizontal motion of any point of the robot can be upper-bounded by dep max = v lin :dt + v rot :D max . Therefore dl = v lin :dt is chosen such that: dl + D max : ter

The richness of the search space (ie. the size of graph G) is directly related to the cell decomposition of CS. Note that several incremental motions are generally needed to compute, for a given control, the neighbor of the current con guration (ie. to move from C cur to C next). A decomposition into large cells allows the planner to search e ciently for a solution into a reduced search space. For the case of constrained environments, requiring important maneuvering capacities of the vehicle, this reduced search space is unlikely to contain a solution, and the planner needs therefore to be called with a ner decomposition.

Let O(n cs) be the number of discretization points along each coordinate axis of CS and let O(n 2 ter) be the number of patches describing the terrain model. The graph G contains in the worst case O(n 3 cs) nodes (and arcs). Each node expansion requires 8 O(n ter =n cs) calls to the algorithms described in section 4. Therefore these algorithms are called at most O(n ter :n 2 cs) times during the search. n ter is given by the precision of the terrain model. n cs can be seen as a \tuning" parameter which allows to realize a compromize between the completeness of the planner and its e ciency.

Simulation results

The algorithms presented above have been implemented in C and the planner runs on a Silicon Graphics Indigo Workstation. We experimented the planner with several simulated robot (with up to 8 wheels) and di erent terrain models. The size of the terrains was approximatively ten times superior to the size of the vehicle. For a discretization of CS into 64 3 cells 9 the computation times ranged from a 10 seconds up to a few minutes to nd a solution (or to report failure). Figures 9 and10 show two examples of trajectories computed by the planner for a six-wheels robot. [START_REF] Laumond | Feasible Trajectories for Mobile Robots with Kinematic and Environment Constraints[END_REF] the number of incremental motions linearly depends on the ratio between size of the CS cells and the length dl which is proportional to the size ter of the terrain patches. [START_REF] Laurette | Supervision and Control of the AMR intervention robot[END_REF] for a unit size vehicle, this correponds to cells whose size is 1/6 along the x and y axis and 5 degrees along the axis 6 Conclusion In this paper, we have addressed the path planning problem for the case of a mobile robot moving on rough terrains. From a formalization of the placement problem and of the constraints acting on the robot placements, we have proposed a discrete con guration space approach to solve the problem. We have described e cient algorithms which have been implemented in a path planner. The experiments show the ability of the planner to solve problems of practical interest in a reasonable amount of time.

Figure 1 :

 1 Figure 1: Model of the vehicle

Figure 2 :

 2 Figure 2: An example of terrain

Figure 3 :

 3 Figure 3: De nition of L i (p)

 v G in the reference frame yields the following constraint: _ xsin _ ycos = :sin

Figure 4 :

 4 Figure 4: Iterative computation of the approximate placement

Figure 6 :

 6 Figure 6: Polygon/quadtree collision checking

Figure 7 :

 7 Figure 7: The kinematic constraint (:sin ; :(1 cos); 0) where = v rot :dt corresponds to the angle between u 0 and u.The coordinates of the con guration q 1 are obtained by expressing these values into the reference frame (O; x; y; z) from the matrix M(p 0).

Figure 8 Figure 8 :

 88 Figure 8 details how the current node q cur (belonging to the cell C cur) is expanded. For each of the

This work has been done in the framework of the Automatic Planetary Rover project conducted by the French Spatial Agency. It was partially supported by C.N.E.S. and by the ECC Esprit 3 Program within Project 6546 PROMotion.

j j < 2 ; j j < 2 .

In the current implementation S is simply approximated by an enclosed rectangular domain max; max] max; max]

In fact only the ones whose outer normal points toward z