
HAL Id: hal-04295493
https://laas.hal.science/hal-04295493

Submitted on 20 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Practical Motion Planner for All-terrain Mobile
Robots

Thierry Simeon, Benoit Dacre-Wright

To cite this version:
Thierry Simeon, Benoit Dacre-Wright. A Practical Motion Planner for All-terrain Mobile Robots.
IEEE/FSR International Conference on Intelligent Robots and Systems (IROS), Jul 1993, Yokohama,
Japan. �hal-04295493�

https://laas.hal.science/hal-04295493
https://hal.archives-ouvertes.fr

IEEE Int. Conf. on Intelligent Robots and Systems (IROS'93)

July 1993, Yokohama (Japan)

A Practical Motion Planner for All-terrain Mobile Robots

T. Sim�eon B. Dacre-Wright

LAAS-CNRS

7, avenue du Colonel-Roche

31077 Toulouse Cedex - France

Abstract

This paper addresses the motion planning problem for

wheeled vehicules moving on rough terrains

1

. First, we

formalize the placement problem for the case of a rather

complex locomotion system consisting of n wheels attached

to the robot body by passive suspensions. We next ana-

lyze the geometric and kinematic constraints acting on the

placements of the robot. Finally, we present a planning

method that computes a safe and feasible path between two

given placements of the robot. The approach basically con-

sists in searching a path into a graph built incrementally

during the exploration of a discrete 3D con�guration space.

The algorithms have been implemented and simulation re-

sults are reported at the end of the paper.

1 Introduction

There is an increasing interest in developping mobile

robots for applications requiring autonomous naviga-

tion on natural terrains (planetary exploration [4][5],

public safety robotics and other hazardous missions [8]

[9]). This paper addresses the path planning problem

for such all-terrain mobile robots.

Research in motion planing has been very active

over the past decade. Most of the work has addressed

the problem of �nding a collision-free path for manip-

ulators or for mobile robots moving in planar environ-

ments (see [6] for a detailed survey).

However, motion planning is almost inexistent in

the litterature for mobile robots moving on non-planar

terrains. There already exists all-terrain mobile robots

which use simple path generation techniques for their

autonomous navigation. These approches use the ter-

rain model to characterize the traversability of small

terrain patches (roughness of the patch, preferred

crossing direction,. . .). In [4][10], paths are com-

puted from this characterization by gradient propaga-

1

This work has been done in the framework of the Auto-

matic Planetary Rover project conducted by the French Spatial

Agency. It was partially supported by C.N.E.S. and by the ECC

Esprit 3 Program within Project 6546 PROMotion.

tion techniques. The AMR robot [8] uses a 2D path-

planner similar to the one presented in [2] to plan a

path that avoids the patches classi�ed as obstacle.

These simple techniques are certainly su�cient for

the case of benign terrains. However, they will fail to

�nd a safe path for a robot moving on a rough terrain:

in this case, the binary notion of obstacles and non

obstacles regions does not hold anymore; the obstacles

depend on the ability of the robot to cross over the

irregularities of the terrain and their characterization

requires to better formalize the constraints acting on

the placement of the robot on the terrain.

We are aware of a very few contributions that con-

sider this new path planning problem. A geometric 3D

planner is described in [12] for the very simple case of a

3-wheels robot moving on a polygonal terrain. Related

work is reported in [9] for the Intelligent Locomotion

of a four tiltable track robot. We recently proposed [3]

a free-space structuring algorithm based on the char-

acterization of con�guration space regions for which

the locomotion architecture guarantees terrain irregu-

larities absorption and stability of the vehicle. Finally,

Shiller addressed in [11] the problem of �nding a time

optimal trajectory for a point robot moving on a ter-

rain. The dynamics of the vehicle is used to take into

account tip-over constraints.

In this paper, we present an extension of the plan-

ning approach proposed in [12]. This extension allows

the planner to deal with more complex (and realistic)

locomotion structures. We also describe several algo-

rithms which signi�cantly improve the e�ciency of the

planner.

2 General statements

2.1 Overview of the Approach

We consider an articulated robot moving on a ter-

rain. The robot consists of a body and n wheels at-

tached to it by passive suspensions. These suspensions

allow the wheels to remain in contact with the terrain.

However, they also complicate the placement of the

robot which results from the interaction between the

wheels and the terrain, and from the balance of the

suspensions. We consider that a safe trajectory needs

to satisfy the following constraints, called placement

constraints:

(C1) the wheels remain in contact with the ground.

(C2) the suspensions cannot be stretched beyond

some limit length.

(C3) the robot does not tip-over, which requires that

the projection of its gravity center remains inside

the convex hull of the projections of all the con-

tact points (called the support polygon).

(C4) the robot does not collide with the terrain.

Given an initial and a goal placement of the robot,

our purpose is to plan a feasible trajectory (with re-

spect to the non-holonomic constraint of the robot)

that satis�es these placement constraints. The re-

maining of this section describes the models used to

represent the vehicle and the terrain. In section 3, we

give a formal statement of the problem and we de�ne

the three dimensional con�guration space CS which

will be used to search for a solution. Section 4 details

several algorihms that are used by the path-planner

presented in the last section.

2.2 The Vehicle Model

The body of the robot is modeled by a polyhedron

R. We de�ne a local frameR

rob

= (G;u;v;w), where

G is the gravity center of the robot, and (u;v;w) are

respectively its longitudinal, lateral and vertical axis

(see Fig. 1).

v
w

u
G

M
0

v
iui

wo

li

s

Figure 1: Model of the vehicle

The n wheels are attached to R by passive sus-

pensions which are modeled by springs. We assume

that, when all the springs are in their steady state,

the wheels belong to the same plane P

S

perpendicu-

lar to w axis, at height w

0

in the local frame. Then,

the coordinates of wheel i are (u

i

; v

i

; w

0

+ l

i

) where u

i

and v

i

are some �xed values related to the geometry

of the robot, and l

i

is the algebraic extension of the

spring (l

i

= 0 being its natural length). That means

that the springs always keep a vertical orientation in

the robot's frame. Fig. 1 shows an example of a

6-wheels robot, with the parameters detailed above.

Moreover we consider that two control parameters

allow to drive and to steer the vehicle: the linear ve-

locity v

lin

(mesured along u) and the angular velocity

v

rot

(mesured around w).

2.3 The Terrain Model

The terrain is known through a discrete elevation

map, that is the elevation values z on a discrete

regular grid in (x; y). For each patch de�ned by

this grid, the terrain is modeled by the non pla-

nar face z = a:x + b:y + c:x:y + d which interpo-

lates the four corresponding 3D points of the eleva-

tion map. The coe�cients (a,b,c,d) associated to the

patch (i; j) are directly obtained from the elevations

z

i;j

,z

i+1;j

,z

i+1;j+1

,z

i;j+1

and from the size �ter of the

patch. Fig. 2 shows an example of a rough terrain.

Figure 2: An example of terrain

3 Formulation of the Problem

3.1 The Placement Parameters

A position of the robot's body is de�ned by the 6-

dimensional vector p = (x; y; z; �; �;), where (x; y; z)

are the coordinates of point G, and (�; �;) are re-

spectively the horizontal orientation of u axis, the roll

angle and the pitch angle

2

. These parameters de�ne

the transformmatrix from the robot frameR

rob

to the

2

j�j <

�

2

; j j <

�

2

.

refrence frame (O;x;y; z) in which the terrain model

is expressed:

M (p) = T (x; y; z)R(w; �)R(v;)R(u; �):

Therefore, a complete placement of the robot is

given by (6 + n) independant parameters :

� the 6-dimensional vector p = (x; y; z; �; �;) for

the position of the robot's body

� the n spring extensions l

i

, for the wheel positions.

3.2 The Con�guration Space

Nevertheless, the interactions with the terrain con-

strain these parameters and therefore reduce the di-

mension of the robot's con�guration space. We con-

sider the three dimensional Con�guration Space CS =

R

2

� S

1

induced by the parameters x; y and � of vec-

tor p. To any con�guration q = (x; y; �) corresponds a

complete placement of the robot. Section 3.3 explains

how its n + 3 remaining parameters z(q),�(q), (q)

and the l

i

(q) can be obtained.

We de�ne the admissible con�guration space

CS

free

� CS as the set of all con�gurations q 2 CS for

which the associated placement satis�es the placement

contraints. The planning problem can be therefore

formulated as the problem of computing a path con-

necting two given con�gurations and lying in CS

free

.

3.3 The Placement Problem

The placement of the robot results from its weight

and the reaction of the ground exerted through the

springs. The static equilibrium state is reached when

the total energy of the robot is minimized. In the

following, we consider a simple energy function, in-

cluding only the compression energy of the springs:

E =

P

n

i=1

kl

i

2

where k is the sti�ness coe�cient of

the springs.

Moreover, we only need to consider the placements

which keep all the wheels in contact with the terrain

(C1). Let us denote by L

i

(p) the function which asso-

ciates to a given value of the vector p, the value of the

spring extension l

i

such that the wheel i is in contact

(without intersecting) with the terrain (see Fig. 3).

Therefore, the energy can be expressed as a func-

tion of the placement E(p) =

P

n

i=1

kL

2

i

(p) and for

a given q, the remaining parameters of vector p re-

sult from the minimization of this function. Vector

(z(q); �(q); (q)) is the solution of:

min

z;�;

n

X

i=1

L

2

i

(p) (1)

u

w

w0

L2(p)

L3(p)

L1(p)

Figure 3: De�nition of L

i

(p)

The spring extensions l

i

(q) are obtained from the

evaluation of the functions L

i

(p) for the computed

placement. Section 4.1 details more precisely the al-

gorithms which have been implemented to solve this

problem.

3.4 The Nonholonomic Constraint

In order to establish the nonholonomic constraint

applying to the motions of the vehicle, let us consider

the velocity vector v

G

of the origin G of R

rob

. Since

the axis of the wheels always remain colinear to the

lateral axis v of R

rob

, the velocity vector v

G

is per-

pendicular to v:

v

G

= v

lin

:(�u+ �w) (2)

Expressing the coordinates (_x; _y; _z) of v

G

in the ref-

erence frame yields the following constraint:

_xsin� � _ycos� =

�

�

:sin� (3)

This expression is similar to the classical non-

holonomic contraint _y = _xtan� established for the

case of a mobile robot moving in a two dimensional

workspace (see for example [7] [1]). We recall that such

a constraint restricts the set of achievable velocities at

any con�guration to a two dimensional subspace of the

tangent space (_x; _y;

_

�). However the system remains

fully controllable, that is: any two con�gurations ly-

ing in the same connected component of CS

free

can

be connected by a path respecting the kinematic con-

straint (3).

In our case, the equations of the feasible motions

are nevertheless more involved than the one obtained

for the planar case. We describe in section 4.3 a sim-

ple method to produce paths which satisfy approxi-

matively this constraint.

4 Description of the Algorithms

We describe now the algorithms which have been

developped to solve some of the problems mentionned

above. These algorithms are used by the path-planner

presented in Section 5.

4.1 Placement Computation

Two algorithms have been implemented to obtain a

solution to the placement problem. The �rst one, de-

noted PLACE(q), is based on standard minimization

techniques which compute the minimum of a multi-

variable function (Eq. 1). This method simply re-

quires to evaluate the functions L

i

(p). This evalu-

ation is described in section 4.1.1. The second al-

gorithm, denoted PLACE

APP

(p) allows to compute

much more e�ciently an approximate placement. Sec-

tion 4.1.2 describes this algorithm and discusses the

reliability of the solution.

4.1.1 Computing the L

i

(p)

For a given value of p, the n functions L

i

(p) are

computed as follow: Let us �rst consider the case of a

ponctual wheel (identi�ed to its center). Its position

is determined in R

rob

by the vector (u

i

; v

i

; w

0

+ l

i

).

Thus, the parameter l

i

allows to move this point along

the w axis of R

rob

. This motion corresponds to a

line parametrized in the reference frame by the point

(x

i

; y

i

; z

i

; 1)

t

= M (p)(u

i

; v

i

; w

0

; 1)

t

and the direction

n = M (p)(0; 0; 1; 0)

t

. Let z = f(x; y) denote the an-

alytic expression of the terrain surface. A positive

(resp. negative) value of z

i

� f(x

i

; y

i

) means that for

a null value of l

i

, the wheel lies over (resp. under) the

terrain. Therefore the value of L

i

(p) can be simply de-

termined from the computation of the �rst intersection

point between the terrain model and the half-line is-

sued from this point (x

i

; y

i

; z

i

)

t

in direction �n (resp.

in direction n). The same algorithm can be extented

to account for the shape of the wheels by considering a

discrete number of \control points" placed on its sur-

face. In this case, L

i

(p) corresponds to the minimum

of the values obtained for each of the control points.

4.1.2 Approximate Placement

The method consists in applying iteratively a least

square algorithm to improve an initial estimation

3

of

the parameters z,� and . Each iteration is aimed to

decrease the value of E(p). Let z

k

,�

k

and

k

denote

the value of the placement parameters at the begin-

ning of iteration k. For the corresponding placement

denoted p

k

, the algorithm L

i

(q) described in the pre-

vious section allows to compute the value E

k

= E(p

k

)

3

the initial values are �

0

=

0

= 0 and z

0

= f(x

G

; y

G

)

and the n contact points P

i

between the wheels and

the terrain. The least square method is then used to

obtain the equation of the plane which minimizes the

quadratic mean of the distances to the points P

i

.

u

w

P1

w0

P2

P3

k

k

k−1

w

u

k−1

Gk−1

Gk

Figure 4: Iterative computation of the approximate

placement

The new values of the placement parameters are

deduced from this plane: �

k+1

and

k+1

are computed

such that the vertical axis w of R

rob

coincides with

the plane normal. z

k+1

is computed such that all the

wheels contact this plane for a null deformation of the

springs (see Fig. 4).

The procedure is iterated while E

k

< E

k�1

. When

the algorithm stops at iteration k, it simply returns

the vector p

k�1

and the spring elongations L

i

(p

k�1

).

Obviously, this iterative method is not garanteed to

exactly converge to the solution of equation 1. How-

ever, the following remarks justify its interest: First, it

is much more e�cient than the algorithmPLACE(q).

Second, experimental tests performed with several ter-

rain models, show that this simple method returns

a placement very close to the one computed with

PLACE(q) when the portion of the terrain lying un-

der the robot is relatively smooth. For the case of

large terrain irregularities, PLACE

APP

(q) does not

always succeed in decreasing E to its minimal value

and therefore a larger error is possibly introduced by

the algorithm. However, when this case occurs, some

of the computed values l

i

(q) are generally too large

to satisfy condition (C2) and consequently, the place-

ment will not be considered as valid.

4.2 Validity of a Con�guration

We consider now the problem of checking wether a

given con�guration q belongs to CS

free

or not.

4.2.1 Deformation of the Suspensions

Let L

max

be the maximal deformation allowed for

the springs. A con�guration q veri�es (C2) i�:

8i 2 [1; n]; jl

i

(q)j < L

max

(4)

4.2.2 Stability of the Placement

According to constraint (C3), the vertical projec-

tion of G has to belong to the support polygon. The

shape of this polygon is clearly a function of �, and

of the lengths (l

i

)

i=1:::n

. However, we assume that the

less stable position is obtained when all the springs are

the longest. The stability thus only depends on � and

 , and the subset S �] �

�

2

;

�

2

[

2

verifying this condi-

tion can be easily determined

4

. Thus, constraint C2

is veri�ed for a given q i�:

(�(q); (q)) 2 S (5)

4.2.3 Collision-free Placement

Figure 5: The hierarchical model (levels 5,6,7,8) for

the terrain shown in Figure 2

Basically, the collision checker consists in verifying

that the polygonal faces

5

of the polyhedron R(q) do

not intersect any of the underlying surface patches of

the terrain model.

In order to improve the e�ciency of the algorithm,

we construct a hierarchical model (a quadtree) from

the surfacic model of the terrain. The root of the

quadtree (ie. the rectangloid cell corresponding to the

4

In the current implementationS is simply approximated by

an enclosed rectangular domain [�

max

; �

max

]� [�

max

;

max

]

5

In fact only the ones whose outer normal points toward �z

de�nition domain of the terrain) is recursively sub-

divided into smaller cells. To each of these cells, we

associate the extremal elevations z

min

and z

max

of the

corresponding portion of the terrain. Thus, each level

of the quadtree determines a set of cuboids that ap-

proximate the terrain geometry. The maximal level

is obtained when the size of the cells is equal to the

resolution �ter of the elevation map. Figure 5 shows

the higher levels of the quadtree decomposition for the

terrain model shown in Figure 2.

P1

P2

P3

a/ b/

Figure 6: Polygon/quadtree collision checking

The following procedure is recursively applied,

starting from the root of the quadtree, to e�ciently

check the non collision between a polygonal face P of

the polyhedron R(q) and the terrain. If the upper

and lower horizontal faces of the cuboid associated to

a given node do not intersect P (see Fig 6-a), then we

are certain that P does not collide with the terrain.

Similarly, when both faces intersect P (see Fig 6-b)

we can directly conclude the existence of a collision.

Otherwise, we need to consider a �ner approximation

of the terrain by analyzing the four descendant of this

node. When a leaf of the quadtree is reached and does

not allow to conclude

6

, a more expensive test with the

corresponding patch surface can be applied.

4.3 Computing Feasible Trajectories

Given a constant control (v

lin

; v

rot

) applied when

the vehicle is at con�guration q

0

= (x

0

; y

0

; �

0

), we

want to compute the con�guration q

1

= (x

1

; y

1

; �

1

)

reached after the application of the control during a

short time interval dt.

Let R

0

= (G

0

;u

0

;v

0

;w

0

) be the frame which co-

incides with R

rob

when the robot is at q

0

. We sim-

plify the problem by assuming that, during the mo-

tion from q

0

to q

1

, G remains in the plane de�ned by

(G

0

;u

0

;v

0

) (see Fig 7).

Under this assumption, and for �xed values of

(v

lin

; v

rot

), the trajectory of G relatively to R

0

cor-

responds to a circular arc

7

in the plane (G

0

;u

0

;v

0

).

This circular arc is centered at (0; �; 0) and its radius

is given by � = v

lin

=v

rot

. Therefore, after the time

interval dt, the origne G of R

rob

arrives at position

6

this case rarely occurs

7

or a straight line segment when v

rot

= 0

θ0
θ1

(x ,y)1 1

(x ,y)0 0

O
x

y
z

α

R0

Figure 7: The kinematic constraint

(�:sin�; �:(1�cos�); 0) where � = v

rot

:dt corresponds

to the angle between u

0

and u.

The coordinates of the con�guration q

1

are obtained

by expressing these values into the reference frame

(O;x;y; z) from the matrix M (p

0

).

5 The Path Planner

5.1 Principle

Given two con�gurations q

i

and q

g

, we want to

compute a feasible path connecting q

i

to q

g

and lying

in CS

free

.

The planner is based on a slighly modi�ed version of

the planning approach proposed in [1] for the optimal

maneuvering of non-holonomic mobile robots moving

in a two dimensional workspace. We recall that this

approach basically consists in generating a graph G

of discrete con�gurations that can be reached from q

i

by applying sequences of �xed controls during a short

time interval. The �xed controls generally correspond

to drive forward or backward with a null or a maximal

angular velocity which steers the vehicle toward the

left or the right:

(v

lin

; v

rot

) 2 f�V

lin

; V

lin

g � f�V

rot

; 0; V

rot

g (6)

In order to limit the size of the graph, the con�gu-

ration space is initially decomposed into an array of m

small cuboid cells. This array is used during the search

to keep track of small CS- regions (the cuboids) which

have already been crossed by some trajectory. The

successors generated into a marked cell are discarded

and therefore, one node is at most generated in each

cell.

We use a classical A

�

algorithm to search the graph

G. Starting with q

i

as current node, this node is ex-

panded ie. its successors are computed and are stored

into a list. The next iteration selects the best element

of the list, which becomes in turn the current node to

be expanded. The procedure is repeated until the goal

is reached.

5.2 Neighbors of the Current Node

Figure 8 details how the current node q

cur

(belong-

ing to the cell C

cur

) is expanded. For each of the

 CS Obstacle

nextq1

q2next

q3next

qcur

nextq4

Figure 8: Computing the neighbors of q

cur

six controls de�ned in (6), the algorithm tries to com-

pute a neighbor q

next

as follows: For a given control

(v

lin

; v

rot

) a successor q

0

of q

cur

is �rst computed as

indicated in section 4.3. The algorithms described in

section 4.1 and 4.2 allow to obtain the corresponding

placement and to check the validity of q

0

. If q

0

does

not satisfy the placement constraints, the current con-

trol does not allow any node creation and the next

control is considered. Otherwise, the same process is

repeated from q

0

until a cell C

next

adjacent to C

cur

is reached. A graph node is associated to the reached

con�guration q

next

only if the cell C

next

has not been

yet visited. The corresponding control and its dura-

tion are stored into the arc linking q

cur

to q

next

.

5.3 Cost of the Arcs

The cost assigned to the arc connecting two adja-

cent nodes is computed from the distance between the

two con�gurations associated to these nodes. This dis-

tance is ponderated in order to penalize the changes

of control and the trajectories for which the angles

�(q), (q) or some of the lengths l

i

(q) are close to

the limits imposed by the placement constraints (C2)

and (C3). Therefore, the minimum-cost trajectory re-

turned by the planner realizes a compromise between

the distance crossed by the vehicle, the security along

the path and a small number of maneuvers.

5.4 Choice of the Parameters and Com-

plexity Issues

Note that during the node expansion, the placement

constraints are checked in a discrete way after each

incremental motion (v

lin

:dt; v

rot

:dt). In order to be

garanteed that the placement constraints remain sat-

is�ed during the incremental motions, the choice of

these parameters needs to be related to the resolu-

tion �ter of the elevation map. They are chosen in

such a way that the horizontal motion of any point of

the robot is less than �ter. An upper-bound dep

max

of this displacement can be estimated as follows: Let

D

max

be the maximal distance from the origin G of

R

rob

to any point of the robot and let us consider that

a linear velocity v

lin

is applied during the time inter-

val dt with a �xed radius of curvature � = v

lin

=v

rot

.

The horizontal motion of any point of the robot can

be upper-bounded by dep

max

= v

lin

:dt + v

rot

:D

max

.

Therefore dl = v

lin

:dt is chosen such that:

dl �

�

� +D

max

:�ter

The richness of the search space (ie. the size of

graph G) is directly related to the cell decomposi-

tion of CS. Note that several incremental motions are

generally needed to compute, for a given control, the

neighbor of the current con�guration (ie. to move from

C

cur

to C

next

). A decomposition into large cells allows

the planner to search e�ciently for a solution into a

reduced search space. For the case of constrained envi-

ronments, requiring importantmaneuvering capacities

of the vehicle, this reduced search space is unlikely to

contain a solution, and the planner needs therefore to

be called with a �ner decomposition.

Let O(n

cs

) be the number of discretization points

along each coordinate axis of CS and let O(n

2

ter

) be the

number of patches describing the terrain model. The

graph G contains in the worst case O(n

3

cs

) nodes (and

arcs). Each node expansion requires

8

O(n

ter

=n

cs

)

calls to the algorithms described in section 4. There-

fore these algorithms are called at most O(n

ter

:n

2

cs

)

times during the search. n

ter

is given by the precision

of the terrain model. n

cs

can be seen as a \tuning" pa-

rameter which allows to realize a compromize between

the completeness of the planner and its e�ciency.

5.5 Simulation results

The algorithms presented above have been imple-

mented in C and the planner runs on a Silicon Graph-

ics Indigo Workstation. We experimented the planner

with several simulated robot (with up to 8 wheels) and

di�erent terrain models. The size of the terrains was

approximatively ten times superior to the size of the

vehicle. For a discretization of CS into 64

3

cells

9

the

computation times ranged from a 10 seconds up to a

few minutes to �nd a solution (or to report failure).

Figures 9 and 10 show two examples of trajectories

computed by the planner for a six-wheels robot.

8

the number of incremental motions linearly depends on the

ratio between size of the CS�cells and the length dl which is

proportional to the size �ter of the terrain patches.

9

for a unit size vehicle, this correponds to cells whose size is

1/6 along the x and y axis and 5 degrees along the � axis

6 Conclusion

In this paper, we have addressed the path plan-

ning problem for the case of a mobile robot moving

on rough terrains. From a formalization of the place-

ment problem and of the constraints acting on the

robot placements, we have proposed a discrete con�g-

uration space approach to solve the problem. We have

described e�cient algorithms which have been imple-

mented in a path planner. The experiments show the

ability of the planner to solve problems of practical

interest in a reasonable amount of time.

References

[1] J. Barraquand and J.C. Latombe. On non-holonomic

mobile robots and optimal maneuvering. Revue

d'Intelligence Arti�cielle, 3(2), 1989.

[2] J. Barraquand and J.C. Latombe. Robot Motion Plan-

ning: A distributed Representation Approach. The In-

ternational Journal of Robotics Research, 10(5), 1991.

[3] B. Dacre-wright and T. Sim�eon. Free Space Represen-

tation for a Mobile Robot moving on a Rough Terrain.

In IEEE International Conference on Robotics and Au-

tomation, Atlanta (USA), 1993.

[4] E. Gat, M. Slack, D.P. Miller and R.J. Firby. Path

planning and execution monitoring for a Planetary

rover. In IEEE International Conference on Robotics

and Automation, Cincinnati (USA), 1990.

[5] G. Giralt and L. Boissier. The French Planetary Rover

VAP: Concept and Current Developments. In IEEE In-

ternational Conference on Intelligent Robots and Sys-

tems, Raleigh (USA), July 92.

[6] J.C Latombe. Robot Motion Planning. Kluwer, 1990.

[7] J.P. Laumond. Feasible Trajectories for Mobile Robots

with Kinematic and Environment Constraints. In In-

ternational Conference on Intelligent Autonomous Sys-

tems, Amsterdam (Netherland), 1986.

[8] R. Laurette, A. de St. Vincent, R. Alami, R. Chatila

and V. Perebaskine. Supervision and Control of the

AMR intervention robot. In Fifth International Con-

ference on Advanced Robotics, Pisa (Italy), 1991

[9] M. Iagolnitzer, F. Richard, J.F. Samson and P. Tour-

nassoud Locomotion of an all terrain mobile robot. In

IEEE International Conference on Robotics and Au-

tomation, Nice (France), 1992.

[10] E. Schalit. ARCANE: Towards utonomous Naviga-

tion on rough terrains In IEEE International Confer-

ence on Robotics and Automation, Nice (France).

[11] Z. Shiller and J.C. Chen. Optimal motion planning of

autonomous vehicles in three dimensional terrains. In

IEEE International Conference on Robotics and Au-

tomation, Cincinnati (USA), 1990.

[12] T. Sim�eon. Motion planning for a non holonomic mo-

bile robot on three dimensional terrains. In IEEE In-

ternational Workshop on Intelligent Robots and Sys-

tems, Osaka (Japan), November 91.

(A)

(B)

(C)

Figure 9: (A) The initial con�guration. (B) The goal con�guration. (C) The trajectory

computed by the planner (computation time 87sec.)

(A)

(B)

(C)

Figure 10: (A) The initial con�guration. (B) The goal con�guration. (C) The trajectory

computed by the planner (computation time 31 sec.)

