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Motion planning on rough terrain for an articulated vehicle in presence of uncertainties

This paper addresses motion planning for a mobile robot moving on a rough terrain. We proposed in 14] a geometrical planner for a particular architecture of robot. The approach was based on a discrete search technique operating in the (x; y; ) con guration space of the robot, and on the evaluation of elementary feasible paths between two con gurations. The overall e ciency of the approach was made possible by the use of fast algorithms for solving the placement problem and checking the validity of such placements. The contribution of this paper is twofold. First, we study the extension of this approach to an articulated vehicle composed of three axles connected to the chassis by joints allowing the roll and pitch movements. We also propose new algorithms to improve the robustness of the planner by considering additionnal constraints: uncertainties in the terrain model and existence of a free channel around the computed trajectory. Some simulation results presented at the end of the paper show the e ectiveness of the planner which turns out to be both fast and capable of solving di cult problems.

Introduction

Autonomous navigation on natural terrains is a complex and challenging problem with potential applications ranging from intervention robots in hazardous environments to planetary exploration.

Several systems for outdoor navigation have already been developped and demonstrated for speci c tasks, e.g., road following 15], or motion in rather limited environment conditions [START_REF] Thorpe | Toward autonomous driving : the cmu navlab. part i : Perception[END_REF][START_REF] Weisbin | Evolving directions in nasa's planetary rover requirements end technology[END_REF]. The UGV 7], as well as Ratler 8] achieve autonomous runs avoiding obstacles, but not coping to our knowledge with irregular terrain. The adaptive navigation approach currently developped at LAAS within the framework of the EDEN experiment 4] demonstrates fully autonomous navigation in a natural environment, gradually discovered by the robot. The approach combines various navigation modes in order to adapt the robot behaviour to the complexity of the environment.

In this paper, we concentrate on the motion planning algorithms required for the 3D navigation mode This work has been done in the framework of the Automatic Planetary Rover project conducted by the French Spatial Agency. It was partially supported by C.N.E.S. 12] which is applied when the terrain to be crossed is uneven. On such terrain, irregularities are important enough and a binary partition into crossable/forbidden regions is not anymore su cient: the notion of obstacle clearly depends on the capacity of the locomotion system to overcome terrain irregularities and also on speci c constraints acting on the placement of the robot over the terrain. The trajectory planner therefore requires a 3D description of the terrain, based on the elevation map, and a precise model of the robot geometry in order to produce collision-free trajectories that also guarantee vehicle stability and take into account its kinematic constraints.

Although a large amount of work has been devoted to motion planning 10], only a few contributions have been recently reported for the case of a vehicle moving on a terrain. First works 13] 11] addressed the problem of computing time optimal trajectories for a point robot subject to simple dynamic constraints. The planners proposed in 14] 6] 9] consider a geometric model of the robot by using discrete search techniques operating in the con guration space. Other interesting contributions studied the problem of simulating the motions of the vehicle along a precomputed path. The kinematic simulator described in 3] turns the problem into a minimization under constraints. The dynamic behavior of the robot can also be predicted by modeling the physics of the interactions between the wheels and the ground 2] 5]. As proposed in 5], both geometric and physical models could be combined during the planning phase. However, because of the high computational cost, it is generally preferable to favour a two phases approach which simulates the behaviour of the vehicle along a path precomputed by a geometric planner.

The paper is structured as follows: after a brief overview in section 2 of the planning approach of 14], the contributions of the paper, ie. the extension to an articulated vehicle and the integration of uncertainty constraints, are respectively detailed in sections 3 and 4. Finally, some experimental results are presented in the last section.

Given the models of the terrain surface and of the vehicle geometry, the problem is to nd a feasible motion between two con gurations, while respecting a set of geometric constraints related to the safeness of the motion. Typical validity constraints are: stability of the vehicle. collision avoidance of terrain irregularities. mechanical constraints expressing that the contact between the wheels and the terrain can be maintained without exceeding the limits of the articulations. The terrain is described by ruled surface patches dened from an elevation map in z associated with a regular grid in (x; y). The robot has an articulated chassis with passive joints allowing to adapt its shape to the terrain irregularities. Its placement p = (q; r(q)) is de ned by a con guration vector q = (x; y; ) specifying the horizontal position/heading, and by a vector r(q) of the n parameters associated to the values of the joints. The dependancies between the parameters of r and the con guration q come from the contact relations between the wheels and the terrain. The search space is thus reduced to the con guration space CS = (x; y; ) and we denote by C free the subset of CS where the validity constraints are veri ed. The motion planning problem can be classicaly formulated as the problem of nding a path connecting two given con gurations and lying in C free . Determining the validity of a con guration q however requires to compute its associated placement (q; r(q)). The next section details an e cient algorithm for solving this problem for a robot composed of several articulated axles.

The planning approach used in 14] builds incrementally a graph of discrete con gurations that can be reached from the initial position by applying sequences of discrete controls during a short time interval. Typical controls consist in driving forward or backwards with a null or a maximal angular velocity. Each arc of the graph corresponds to a trajectory portion computed for a given control. Only the arcs verifying the placement constraints mentionned above are considered during the search. In order to limit the size of the graph, the con guration space is initially decomposed into an array of small cuboid cells. This array is used during the search to keep track of small CS-regions which have already been crossed by some trajectory. The con gurations generated into a visited cell are discarded and therefore, one node is at most generated in each cell.

The A algorithm used to explore the graph returns a minimum cost trajectory which realizes a compromise between the distance crossed by the vehicle, the terrain di culty along the path and a small number of maneuvers. The heuristic function used to e ciently guide the search requires a preprocessing step: a cost bitmap is rst computed by evaluating for each patch of the terrain model, the slope and the roughness of a circular domain centered at this position, with a radius related to the size of the robot. A potential bitmap is then computed by using classical wave propagation techniques which integrate the cost across the bitmap, starting with a null potential at the goal position of the robot and propagating in priority the lowest cost pixels. During the planning step, the heuristic H(q) is computed, as in 1], by a linear combination of the potential evaluated at two control points of the robot.

3 Application to an Articulated Robot

Model of the robot

Let us consider a three-axle articulated robot (Fig. 1). We de ne a local frame R robot (M;x; ỹ;z) where M is the center of the middle axle, x is the longitudinal axis of the robot and z the vertical axis. Each axle is articulated around the x-axis; ' <axle> is the roll angle of an axle, measured with respect to the horizontal ỹ-axis. The axles are linked by two rigid bodies articulated around the ỹ-axis; F and R are the pitch angles of the front and the rear body, measured with respect to the horizontal x-axis. For this locomotion system, q = (x M ; y M ; ) and the other placement parameters of r are the roll angles ' F ; ' M ; ' R of the axles, the pitch angles F ; R of the bodies and the elevation z M of the middle axle.

The Placement Algorithm

As mentionned earlier, the role of this algorithm is to compute the vector r(q) associated with a given con guration q. After considering the case of a single axle, we show how this basic algorithm can be used for the placement of the chassis. Finally, the last subsection describes a preprocessing step which allows to signi cantly improve the e ciency of the algorithm when used by the planner.

Case of a single axle

Given the (x; y) position of the axle center and its orientation , the placement basically consists in nding the ' angle for which the right and left wheels, W r and W l have the same vertical distance to the terrain 1 . Let dist = F(') be the distance from W l to the terrain when W r is put in contact. Then we have: F(') = 2l sin ' (z l (') z r ('))

(1) where z l ('); z r (')) are the elevations of the wheels contacting the terrain for the xy-positions of their center associated with the angle ' (see Fig. 2). The placement is obtained for the solution ' sol of the equation F(') = 0. This equation cannot be solved analyt- The algorithm Place axle(x; y; ) presented below uses this remark to iteratively re ne an approximation of ' sol . At step i, evaluating z l (') z r (') for a value ' i and applying Eq. 2, allows to get the slope which would be the solution for a planar approximation of the terrain. The next value ' i+1 is computed from ' i and . begin i = 0; ' 0 = 0 dist 0 = F(' 0 ) while dist i > 1. estimate of ' i+1 as if the terrain was at: determination of (cf g.2) and dist = F( ) 2. computation of ' i+1 : the line passing through ( ; F( )) and (' i ; F(' i )) cuts the horizontal axis (F(') = 0) at ' i+1 . dist i+1 = F(' i+1 ) 3. i = i + 1 ' sol = ' i end Tests performed on highly irregular terrains show that function F(') varies very smoothly and that the risk of local minima is very limited between ' = 0 and the solution ' sol . In many cases, the solution is obtained after one iteration.

Placement of the chassis

The placement consists of three steps: the middle axle is rst placed by using the algorithm presented above. The parameters of the front and rear axles are then determined by another algorithm based on the same principle, but adapted in order to introduce the link with the middle axle as an additionnal constraint. Consider the case of the front axle 2 . Knowing the elevation z M of the middle axle, we can compute for a given value of parameter F , the coordinates (x F ; y F ; z F ) of the front axle's center F. Applying Place axle(x F ; y F ; ) determines ' F and the elevation z of F when the front axle is placed on the terrain, regardless of the link with the middle axle. Let G( F ) = z F z denote the di erence between both elevations. The constraint imposed by the link is veri ed for the solution of G( F ) = 0. The values of the parameters F and ' F are computed successively by an iterative algorithm Place other axle similar to the previous one. Each iteration rst evaluates i+1 regardless of the link with the middle axle: is determined from z, z M and the distance between both axles. Then we compute i+1 such that the line passing through ( ; G( )) and ( i ; G( i )) cuts the horizontal axis (G( ) = 0) at i+1 . Note that in this case, the evaluation of G( F ) requires a call to the function Place axle which is then used once for the initialisation and twice for each step of the algorithm. Again the solution is generally found in only one iteration. Figure 3 shows an example of placement computed by the algorithm.

Placement precomputation

The motion planner extensively uses the placement algorithms when evaluating the validity of the elementary motions generated during the search. Moreover the placement of the chassis requires itself several calls to the function Place axle. The aim of this preprocessing step is to signi cantly reduce the computationnal cost of the placement algorithm when used by the planner. It consists in slicing the orientation parameter, and in computing two surfaces denoted S ' (x; y) and S z (x; y) for each slice i . These surfaces respectively correspond to the roll angle and the elevation of the axle when it is placed at position (x; y), with an orientation i . Like the terrain, both surfaces are represented by ruled surfaces patches de ned from a elevation map in ' (or z axle ) associated with a regular grid in (x; y). They are computed by applying the function Place axle at every point of the grid 3 .

The online placement of the chassis simply computes the ' (or z) parameter for a position (x; y; ) of the axle, as follows:

for lying between i and i+1 = i + of the slicing, let S i ' and S i+1

' denote the associated 'surfaces. ' i = S i ' (x; y) and ' i+1 = S i+1 ' (x; y). the roll angle ' is obtained by a linear interpolation: ' = (' i+1 ' i ) i i+1 i + ' i

Validity constraints

These constraints are checked all along the elementary motions generated during the search for limiting the exploration to the C free regions.

Stability

The constraint used to check that some static stability conditions (eg. no tip-over and absence of sliding) are satis ed simply consists in verifying that the global roll and pitch angles of the robot do not exceed some prede ned stability limits. The global roll angle of the robot is de ned by the average of the three roll angles of the axles.

' F + ' M + ' R 3 < ' StabMax
The global pitch angle is de ned by the angle between the horizontal plane, and the line going through the centers of the front/rear axles. The pitch stability constraint is:

StabMin < R F 2 < StabMax

Mechanical constraints

These constraints correspond to angular limits for the relative angle between two successive axles j' M ' R j < ' max and j' M ' F j < ' max and for the angle made by the two bodies (concave or convex con guration of the robot) Min < F + R + < Max 3 to minimize the number of steps, the angle ' is initialized with the value computed for the previous point of the grid.

Collision

The last validity constraint considered in the current implementation guarantees that, except the wheels, the other parts of the locomotion system do not collide with the terrain irregularities. The algorithm described in 14] allows to e ciently check the collision between polygonal faces and the terrain surface. Applying this algorithm to eight rectangular faces is su cient to detect the collisions of the robot's axles/bodies. Each axle is represented by two faces, each being placed under the semi-axle and tangent to it (see Fig. 4). Only the lower faces of the two bodies are considered by the collision checker. Dealing with uncertainties constitutes an important issue of motion planning 4 since robots operating in real world setting are faced to several sources of uncertainties arising from inaccurate models of the environment, control errors and limited sensing accuracy. Consequently, the use of planners which do not explicitly consider uncertainties is limited to some simple situations where the errors remain small with respect to the task tolerances. This is generally not the case in the context of outdoor navigation. First, the terrain model is incrementally built from sensors data and the errors in some areas can be rather important. The complex physical interactions between the wheels and the terrain also result into possibly large control errors, and the robot does not precisely execute the planned motions. This section shows how to improve the robustness of the planner by the introduction of uncertainty constraints in the algorithms described above.

Uncertainties of the Terrain Model

The uncertainties can be propagated through the di erent steps of the terrain modelling in order to produce an elevation map with an error interval associated with each elevation of the grid points. The terrain is therefore represented by two surfaces (T min ; T max ) corresponding to the enveloppes obtained from the minimal/maximal elevations. The problem is to guarantee that the validity constraints imposed to the computed for the maximal R regions of the wheels tested between the lower faces of these volumes and the terrain surface (or with the upper envelope T max if the model uncertainties are also considered).

Experimental results

The algorithms have been implemented in C on a Silicon graphics indigo workstation with an R4000 processor, and the planner has been tested onto a number of di erent terrains. We describe below some of the experimental results obtained during these tests.

The terrain of the rst example is represented by a 100 75 elevation map. For this example, Figure 8 illustrates some intermediate data computed during the preprocessing step: the cost and potential used to guide the search (cf. Fig. 8-b) and surfaces S ' computed for -slices of 0 and 90 degrees (cf. Fig. 8c). Finally, the trajectory computed by the planner is shown in Fig. 8-d. For this example, we also give some indications concerning the performances of the algorithms described in the paper.

Preprocessing step: The CPU times and memory requirements of this step are reported in the following Table . The left/right columns respectively correspond to the case without/with model/control uncertainties. The rst line corresponds to the computation the parameters surfaces for ten -slices covering the interval 0; . The second line includes the cost/potential computation, and also the hierarchical terrain model used by the collision checker. After a preprocessing step of 8 sec., the trajectory of the rst example (Fig. 8-d) was found by the planner after less than one second. In this paper, we considered the di cult problem of planning safe motions for an articulated vehicle moving on rough terrains. The overall approach essentially consists in using discrete search techniques operating in the con guration space of the robot, and in evaluating the validity of elementary motions. This approach is made possible by the use of e cient algorithms to compute the robot's placements and to check their validity. We also proposed techniques which improve the robustness of the solution in presence of model and control errors. Experiments conducted with this planner on various terrains have demonstrated its capacity to solve rather di cult problems in a very reasonable amount of time.

Current work concerns the introduction into the planner of constraints related to the visibility and to the selection of landmarks which could be tracked at execution in order to decrease errors in localization. We also plan to integrate this planner into the outdoor navigation approach 4] currently developped at LAAS within the framework of the \EDEN" experiment, and to validate its e cacy in real world settings.
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 1 Figure 1: Model of the robot
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 2 Figure 2: Placement of an axleically since z l ('); z r (') closely depend on the terrain geometry. However one can remark that for the case of a at terrain having a slope , we would have: z l (') z r (') = cos ' tan (2) and that the solution ' sol would equal the slope .
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 3 Figure 3: Example of placement
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 4 Figure 4: Collision of an axle with the terrain
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 8 Figure 8: a/ the terrain model and the initial/ nal congurations. b/ the associated cost and potential functions. c/ the S' surfaces for = 0 and 90deg:. d/ the trajectory found by the plannerUncertainties:The second example illustrates the in uence of the uncertainties on the solutions produced by the planner. A rst trajectory (Fig.9-b) was generated in 2:5sec: without considering the uncertainties. Then we introduced the errors shown by Figure9.c in the terrain model of Figure9.a, and we imposed a 30cm width for the safety channel around the trajectory. The rst trajectory traversing the canyon is not anymore safe, and the solution found by the planner in 14:5sec: is shown in the last Figure.
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 9 Figure 9: a/ the terrain model and the initial/ nal con gurations. b/ a rst trajectory computed without considering uncertainties. c/ the uncertainties of the terrain model. d/ the trajectory computed in presence of model/position uncertainties

afterwards, the elevation of its center is easily deduced

Only two surfaces are used for all the wheels. They are

planner are satis ed for whatever terrain lying between both enveloppes.

Robot placement

The placement of the robot is now de ned by a vector (q; r(q)) where r represents, at con guration q, the possible intervals for the joints values. These intervals are computed by applying the algorithms described in x3.2 for the wheels placed either on the lower or upper enveloppes:

The minimal (resp. maximal) elevation of an axle is obtained when both wheels are placed on T min (resp. T max ).

The minimal (resp. maximal) value of ' <axle> is obtained when the left wheel is placed on T min and the right one on T max .

The minimal values of F and R are computed for the middle axle (both wheels) placed on T min and the other axle on T max (conversely for the maximal value). For each slice , the preprocessing step is applied four times to produce the surfaces S zmin ,S zmax and S 'min ,S 'max which represent the bounds on the axle parameters as functions of the (x; y) position. During the online placement of the chassis, the middle axle parameters z M and ' M are directly obtained from the precomputed surfaces. The function Place other axle is then applied to these surfaces to compute the parameter intervals ' F ; F and ' R ; R for the front and rear axles.

Validity constraints

The constraints are checked in the worst case situation obtained from the bounds of the placement intervals.

Stability:

The global roll angle is checked for the extreme values of ' <axle> :

The minimal pitch angle is obtained when the rear axle is placed on T max and the front one on T min (and conversely for the maximal value). This value may also vary as a function of the middle axle placement. However, we assume that this variation is small and the middle axle is placed on T min . Let Rtermin (resp.

Ftermin ) denote the pitch angle computed for the middle and rear (resp. front) axles placed on T min (cf.

Fig. 5). Then we have:

Mechanical constraints: The angular limit between two successive axles is checked when the roll angle of one is maximum and the other minimum:

MAX(j' Mmin ' Rmax j; j' Mmax ' Rmin j) < ' max MAX(j' Mmin ' Fmax j; j' Mmax ' Fmin j) < ' max and the minimal angle formed by the bodies is attained for the minimum value of both pitch angles (conversely for the maximum):

Collision Concerning the collision checker, the worst case corresponds to a placement of the robot on T min and a test of intersection with T max .

Uncertainty on the Robot Position

The robustness to the control errors is achieved by imposing the validity of a con guration domain around the planned trajectory. To guarantee the validity of the domain, we introduce the notion of neighbourhood N(q) induced by two parameters ( l; ): at any q, the robot may be translated by l along the segment normal to the trajectory, with an orientation (see Fig. 6). The free con guration space is now de ned as CS 0 free = fq 2 CS = N(q) CS free g. A con guration q is declared valid, only if all the congurations of its neighbourhood satisfy the validity constraints. 

Robot placement

For the placement, we have to compute the vector interval r(q) giving the limits of the parameter values for any con guration of N(q). The method proposed to solve this problem consists in transforming the position uncertainty into uncertainties on the elevations of the terrain model.

For a given neighbourhood N(q), the wheel elevations belong to an interval de ned by the extreme elevations, for any horizontal position of the wheel induced by N(q). As illustrated by Figure 7, this position domain can be approximated by a rectangular region R. Its size depends on ( l; ) and on the distance from the wheel center to the origin M of the robot's frame. Although it may overconstraint the problem when the terrain slope is important, ie. the produced placement intervals are larger than the expected ones, the advantage of this method is to handle position uncertainty with a low additionnal cost. Also, it allows to fuse both types of model/position errors in a very simple way, ie. by the union of the elevation intervals resulting from each source of uncertainty. The surfaces T 0 min are computed from the lower terrain enveloppe T min and conversely for maximal case.

Validity constraints

The stability and mechanical constraints are checked as for the case of the model uncertainty. The only adaptation concerns the faces considered by the collision checker. We rst compute the volume swept by the lower faces for the placement domain r computed at con guration q. The collisions are then