
HAL Id: hal-04295650
https://laas.hal.science/hal-04295650

Submitted on 20 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A collision checker for car-like robots coordination
Thierry Simeon, Stéphane Leroy, Jean-Paul Laumond

To cite this version:
Thierry Simeon, Stéphane Leroy, Jean-Paul Laumond. A collision checker for car-like robots coor-
dination. IEEE International Conference on Robotics and Automation (ICRA), May 1998, Leuven,
Netherlands. �hal-04295650�

https://laas.hal.science/hal-04295650
https://hal.archives-ouvertes.fr

IEEE Int. Conf. on Robotics and Automation

Leuven, May 1998

A collision checker for car-like robots coordination

T. Sim�eon S. Leroy J.P. Laumond

LAAS-CNRS

7, avenue du Colonel-Roche

31077 Toulouse Cedex - France

fnic,sleroy,jplg@laas.fr

Abstract: This paper presents a geometric algo-

rithm dealing with collision checking in the frame-

work of multiple mobile robot coordination. We con-

sider that several mobile robots have planned their own

collision-free path by taking into account the obstacles,

but ignoring the presence of other robots. We �rst

compute the domain swept by each robot when mov-

ing along its path; such a domain is called a trace.

Then the algorithm computes the coordination con�g-

urations for one robot with respect to the others, i.e.

the con�gurations along the path where the robot en-

ters the traces of the other robots or exits from them.

This information may be exploited to coordinate the

motions of all the robots.

1 Introduction

This paper presents a geometric algorithm dealing

with collision checking in the framework of multiple

mobile robot coordination. Path planning for multi-

ple robots has been addressed along two main axis:

centralized and decentralized approaches.

In the centralized approaches the search is per-

formed within the Cartesian product of the con�gu-

ration spaces of all the robots. While the problem

is PSPACE-complete [3], recent results by Svestka

and Overmars show that it is possible to design plan-

ners which are e�cient in practice (up to four mobile

robots) while being probabilistically complete [10]:

the underlying idea of the algorithm is to compute

a probabilistic roadmap constituted by elementary

(nonholonomic) paths admissible for all the robots

considered separately; then the coordination of the

robots is performed by exploring the Cartesian prod-

uct of the roadmaps.

In [1], Alami reports experiments involving ten mo-

bile robots on the basis of a fully decentralized ap-

proach: each robot builds and executes its own plan

by merging it into a set of already coordinated plans

involving other robots. In such context, planning is

performed in parallel with plan execution. At any

time, robots exchange information about their current

state and their current paths. Geometric computa-

tions provide the required synchronization along the

paths. If the approach is not complete (as a decentral-

ized scheme), it is su�ciently well grounded to detect

deadlocks. Such deadlocks usually involve only few

robots among the eet; then they may be overcome

by applying a centralized approach locally.

In this paper we propose an algorithm to solve the

following problem. Several mobile robots plan their

own collision-free path by taking into account the ob-

stacles and ignoring the presence of other robots. The

domain of the plane swept by each robot when mov-

ing along its path called a trace. The objective is

to compute the coordination con�gurations for one

robot with respect to the others, i.e., the con�gura-

tions along the path where the robot enters the traces

of the other robots or exits from them. This informa-

tion may be exploited to coordinate the motions of all

the robots.

Swept volume computation has already been pro-

posed for collision detection along a given path (see [4]

for a survey). For instance, in [2] the authors propose

an approximated method based on an approximation

of the trace by bounding boxes.

The algorithm presented in this paper does not

make any approximation of the traces. It is dedicated

to the following case: the paths of the robots are se-

quences of straight line segments and circular arcs of

angle lesser than � (e.g., Reeds and Shepp paths [9]).

This hypothesis is realistic from a path planning point

of view: it holds for any mobile robot (the existence of

a collision-free feasible path is equivalent to the exis-

tence of such a special sequence); moreover numerous

existing nonholonomic path planners compute solu-

tions of this type (eg. [6, 5, 7, 8]).

For a polygonal robot, the trace is a domain

bounded by arcs of a circle and straight line segments,

i.e. a so-called generalized polygon. In the following

developments we restrict ourselves to a rectangular

robot; the extension to a polygonal robot would need

technical and tedious developments in the computa-

tion of the traces that would not add any value to the

approach.

In the following section we present the geometric

structure of the traces. Then, we give an algorithm

to compute the collision subpaths with a generalized

polygon. The last section presents experimental re-

sults and we conclude on the interest of the algorithm

with respect to coordinated motion planning.

2 Computing robot traces

Computing the trace swept by a rectangular robot

along a path segment is obvious; it simply corresponds

to the rectangle elongated by the length of the path

segment.

Therefore, this section only concerns the case of arc

paths. Given a rectangular robot, a rotation center

c and a rotation angle �, we want to compute the

generalized polygon swept during the motion.

D

C

A

B

bl fl

l r

c

c

Figure 1: Canonical case: the rotation center c belongs to

one of the two grey regions

For symmetry reasons, the presentation is limited to

the following canonical case: the robot moves along

a forward left motion and bl > fl with fl (forward

length) and bl (backward length) as de�ned by Fig-

ure 1 (also remind that the angle � is smaller than

�). Also note onto the �gure the two situations that

may occur depending whether the rotation center c is

located inside or outside the robot.

2.1 Rotation center inside the robot

For a small � the trace contains four circular arcs

(centered at c) and eight segments (see Fig. 2-a). Each

arc goes from a vertex of the rectangle to the same

vertex rotated by �. Consecutive arcs (eg. A

a

!A

�

and

AIAθ

Bθ

BI Cθ

CI

Dθ

DI

B

A

c

D

C
A’

c

a/ � < �

A

b/ � = �

A

D’
c

C’

c

c/ � = �

D

d/ � = �

C

D"

c c

e/ � = �

D

0

f/ � > �

D

0

Figure 2: Trace evolution and critical angles

B

a

!B

�

) are connected by two segments (eg. A

�

s

!

A

I

s

!B). The full description of the trace obtained in

this case, is given by the outside sequence of Figure 3.

I

BI

θ>θA

θ>θD’ C

I

A

A

B
θ

C
θ

θ>θC

θ

θD
I

θ>θ

D

D

A

B C

D

A’
D’

D"
a

s

a

a

s

s

a

s

s

a

s
s

C’
s

a

a

s

s

s
s

a

a

Figure 3: The trace is obtained by following the sequences

associated to the critical values

Let us now increase the angle �. Figures 2-b to

2-f show the modi�cations onto the trace: the arcs

increase up to some critical �-value. The �rst critical

value �

A

(Fig. 2-b) occurs when A

�

crosses the edge

AB (at position A

0

= A

�

= A

I

). For � greater than

�

A

, the sequence A

a

! A

�

s

!A

I

s

! B which initially

connected the trace's vertices A and B is replaced by

the shorter sequence A

a

!A

0

s

!B. The rest of the trace

remains unchanged until the next critical value �

D

is

reached (when D crosses the edge C

�

D

�

at position

D

0

), reducing in a similar way the sequence between

vertices C

�

and D

�

. The next encountered critical

value �

C

(Fig. 2-d) modi�es the sequence between

vertices B

�

and C

�

and the last critical value �

D

0

(Fig.

2-e) occurs when D

�

crosses the edge DA at position

noted D

00

. After this fourth critical value, the shape

of the trace remains unchanged with only eight parts

(A

a

!A

0

a

!B

a

!B

�

s

!C

0

a

!C

�

s

!D

0

a

!D

00

s

!A).

A

B C

D

c

flbl

lrA’

D"

D’

C’

C

θA

θD’

θD

θ

Figure 4: The critical angles (�

A

; �

C

; �

D

; �

0

D

) and the as-

sociated critical points (A

0

; C

0

;D

0

;D

00

)

The four critical values only depend on the robot

geometry. Figure 4 explains how their expression can

be easily deduced from the parameters r; l; bl and bl.

Note however that their order may change depending

on the location of the rotation center c. More pre-

cisely, one can establish that the order only depends

on the relative situation of the two intervals [fl; bl]

and [r-l; r+l]. Figure 5 resumes the order associated

to each such case.

blfl
(θ θ θ θ)

A D C D’blfl
(θ θ θ θ)

C D’ A D blfl
(θ θ θ θ)

A D C D’

r+lr-l

blfl
(θ θ θ θ)

A C D’ D

fl bl
(θ θ θ θ)

C A D’ D

blfl
(θ θ θ θ)

A C D D’

Figure 5: The sorted critical values

This analysis allows us to derive a very simple algo-

rithm for the trace computation: once the ordered set

of critical �-values is determined, the trace is directly

obtained from the diagram of Figure 3. The choice of

the relevant sequences is made by comparing � to each

critical value.

2.2 Rotation center outside the robot

c

E
Eθ c

C’

a/ � < �

C

b/ � > �

C

Figure 6: Only two di�erent traces

As illustrated by Figure 6, this case introduces a

concave arc (issued from the trace swept by the edge

DA) which connects the two points E = (0; l) and E

�

(point E rotated by �). This case is however much

simpler than the previous one since the arcs swept by

the vertices A and D always remain interior to the

trace. Therefore, only the critical value �

C

may occur

in this case.

3 Collision subpaths

In this section, we present an algorithm which will

be used in section 4 to compute the coordination con-

�gurations for a robot with respect to the paths of

other ones.

The inputs of the algorithm are: an edge e = [A;B]

moving along a path (straight-line segment or circu-

lar arc) and a generalized polygon PG.

The output is the set of collision subpaths for which

the moving edge e collides with PG. Let s 2 [0; 1] be

the curve length along path and e(s) be the edge

placed at position s along . The collision subpaths

coll

are represented by the ordered set of collision

intervals S

i

de�ned by the s�values at which the i

st

collision either begins or stops between e(s) and PG.

3.1 Case of segment subpaths

Let us illustrate the algorithm on the canonical

example of �gure 7. The �gure shows the collision

subpaths that should be produced by the algorithm.

The bolded curves of PG's contour represent the only

curves that need to be considered for this computa-

tion.

c1 c2
c3

c4 c5

c6

c7
c8

PG

γ

e

δ

δ

B

A

B

A

Figure 7: Collision subpaths of a generalized polygon

Let us consider the points resulting from the inter-

section of PG's contour with the two lines �

A

and �

B

swept by the edge's endpoints along . The contour

of PG can be decomposed into elementary parts (i.e.

sequences of curves) connecting two such points. Ob-

viously, we only need to consider the parts that are

interior to the domain D lying between �

A

and �

B

.

Also note that these parts have to be treated di�er-

ently according to their intersection with �

A

and �

B

.

Some parts de�ne a start point (eg. c2; c6), an end

point (eg. c5; c7) or both endpoints (eg. c1; c8) of

a collision subpath, while others do not produce any

endpoint (eg. c3; c4).

-a

b b+

a++ a

-

a

b+

a -

+

-

-b

a+

-b b

Type 1 Type 2a Type 2b Type 3

δA

Bδ
e

Figure 8: The three elementary cases

Figure 8 shows how a part resulting from PG's de-

composition can be classi�ed according to the labels of

its start/end points. Each intersection point is labeled

as follows: when PG's contour (oriented clockwise) en-

ters into the domain D, the point is labeled a

+

or b

+

according to its location onto �

A

or �

B

. Labels a

�

or

b

�

are similarly assigned to the points at which the

contour exits domain D. Consider now for example a

part starting at a point labeled a

+

. This part either

ends at a point b

�

(type 1) or at a point a

�

(type

2a and 2b). In the �rst case, the part corresponds to

the beginning of a collision subpath. The end of the

collision subpath will be given by the next b

+

! a

�

part (type 3) encountered while following the contour.

In the second case, both endpoints belong to �

A

and

the part possibly generates a complete collision sub-

path when the start a

+

is located to the left of the exit

endpoint a

�

(type 2a). In the other case (type 2b), the

part does not need to be considered since the corre-

sponding collision subpath is necessarily included into

a larger one obtained from other parts of the contour.

Since each part corresponds to a connected sequence

of segments and circular arcs, one can easily check

that the collision subpaths endpoints only occur at

some points of the sequence (a vertex x

v

or a tangency

point x

t

between a circular arc and the edge e). Let

s(x) be the s-value along at which such point x

belongs to e(s). A start (resp. end) point is obtained

by considering the minimal (resp. maximal) value of

all the s(x) computed along the part.

The algorithm is �rst initialized by following PG's

contour (from any starting point), until a �rst inter-

section x

1

with �

A

or �

B

is found. Then the algo-

rithm continues to loop over the curves of PG until

the next intersection x

2

. Between x

1

and x

2

, it iter-

atively records the extremal values of the s(x) com-

puted at the encountered vertices or tangent points.

When x

2

is found, the collision subpath of the part is

obtained from extremal values, according to the labels

of x

1

and x

2

. The algorithm next considers the part

starting at point x

2

, and continues until PG's contour

has been completely scanned. At the end, some of the

produced collision intervals may intersect. Therefore

an additional step is required to compute their union.

The algorithm returns the ordered set of non overlap-

ping intervals included into the interval [0; 1] (i.e. the

collision subpaths of).

3.2 Case of arc subpaths

The principle of the algorithmremains similar to the

one described above for the case of segment subpaths.

case 1 case 2

c

BC c’

PG

PG

c’Ct

C
B

CA

e
CT

e
CA

c

Figure 9: The two cases of arc subpaths

Let us consider the trace swept by the edge e along

an arc of a circle with radius r and centered at c.

Two situations occur depending on the relative posi-

tion between e and c (Fig. 9). When the orthogonal

projection c

0

of c onto the line supporting e does not

belong to the edge (case 1), the domain D is limited

by an inner circle C

A

and an outer circle C

B

, both

centered at c and going through one of both edge's

endpoints. When c

0

belongs to edge e (case 2), the in-

ner circle corresponds to the circle C

t

that is tangent to

the edge, and the outer circle remains C

B

. The �gure

also shows for each case, the relevant parts of PG's

contour. These parts are limited by the intersections

with domain D and are labeled as explained in section

3.1.

case 1

t
c

case 2

c
C

C

t
C

x A

B

B C

CA

xA

xt

Figure 10: Relevant points considered by the algorithm

For a given part, Figure 10 shows that di�erent sets

of points have to be considered: the vertices x

v

(black

points onto the �gure) and the tangency points x

t

.

Moreover, case 2 requires to consider additional points

x

A

resulting from the intersection between C

A

and the

part.

CarcCt

e

c

tx

Figure 11: Tangent points between the moving edge e and

a circular arc

Remark: The tangency points x

t

between the mov-

ing edge e and a circular arc, are obtained by comput-

ing the common tangents between circle C

t

and the

support circle of the arc (see Figure 11). Points x

t

are

the tangent points of C

arc

which also belong to the

arc and to the domain D swept by the edge.

3.3 Complexity of the algorithm

The algorithm takes O(n) to loop over the n curves

of PG's contour and to compute its decomposition into

k parts connecting the 2k intersections with domain

D. At most one collision interval is computed for each

part. Therefore, O(k) (possibly) overlapping intervals

are produced at the end of the loop. The algorithm

then computes the sorted union of these O(k) inter-

vals; its overall complexity is therefore O(n+ klogk).

4 Application to car-like robot coordi-

nation

The algorithms introduced in both previous sections

are now applied in the framework of the motion coor-

dination problem.

Let us consider two paths

1

and

2

independently

planned by two car-like robots. Our objective is to

compute the coordination con�gurations for the �rst

robot with respect to the trace of the second one (i.e.

the con�gurations where the �rst robot enters or exits

the trace of the second one).

The trace of the second robot along

2

is �rst com-

puted (by using the algorithmof Section 2). This trace

is a generalized polygon.

The path

1

is a sequence of straight line segments

and arcs of a circle. For each element of the sequence

we have to compute the enter/exit con�gurations with

respect to the trace of the second robot. The robots

being rectangles, we apply the algorithm of Section 3

to the four edges of the �rst robot

1

. Each application

of the algorithm gives rise to collision subpaths along

1

. The union of the all collision subpaths provides

the �nal solution, i.e., the set of collision-free con�gu-

rations along

1

with the trace of the second robot.

Figure 12: A �rst example: a/ the paths

1

and

2

and

b/ the computed collisions subpaths

1

This assumes that the trace of the second robot is not small

enough to be included into the �rst robot at any point of

1

!. . .

Figures 12-13-14 show some examples computed by

the algorithm. For the �rst example, the left �gure

shows two paths

1

and

2

and the traces swept by

each robot along these paths. The collision subpaths

are represented in bold onto the right �gure which also

shows the robots placed at the extremities (the coor-

dination con�gurations) of these subpaths. The other

�gures show two examples involving three robots.

Figure 13: Coordination of three robots of di�erent size

Figure 14: Coordination of three robots along their

planned collision-free path

5 Conclusion

The collision checker algorithm presented in this pa-

per may be used in several frameworks. When all the

start and goal con�gurations of each robot are out-

side the traces of all the other ones, there exists a

coordinated motion allowing each robot to execute its

own motion in a coordinated way. The continuous

nature of the motion coordination problem is trans-

formed into a graph search working from the coordina-

tion con�gurations computed by our algorithm (see [1]

for an example of application).

Consider now the cases where a start or goal con-

�guration of a robot belongs to the trace of another

robot; these cases are easily detected by our algorithm.

We can imagine a (random) method computing a con-

�guration (replacing the start or goal con�guration)

outside all the traces. This new con�guration appears

as an intermediate goal to reach before (or after) ex-

ecuting the motions of all the other robots. Such an

operation may be repeated on all the robots generat-

ing deadlock situations.

References

[1] R. Alami, \Multi-robot cooperation based on a dis-

tributed and incremental plan merging paradigm,"

in Algorithms for Robotic Motion and Manipulation,

WAFR'96, J.P. Laumond and M. Overmars Eds, A.K.

Peters,1997.

[2] A. Foisy and V. Hayward, \A safe swept volume

method for collision detection," 6th International

Symposium of Robotics Research, Pittsburg, USA,

Oct 1993.

[3] Hopcroft and Wilfong, \Reducing multiple object mo-

tion planning to a graph searching", in SIAM Journal

of Computing , 15 (3), 1986.

[4] P. Jim�enez, F. Thomas and C. Torras, \Collision De-

tection Algorithms for Motion Planning", in Robot

motion Planning and Control, J.P. Laumond Ed.,

Lecture Notes in Control and Information Science,

1998.

[5] J.C. Latombe, \A Fast Path Planner for a Car-Like

Indoor Mobile Robot," in Ninth National Conference

on Arti�cial Intelligence, AAAI, pp. 659{665, Ana-

heim, CA, July 1991.

[6] J.P. Laumond, P. Jacobs, M. Ta��x, and R. Murray,

\A motion planner for nonholonomic mobile robot",

IEEE Trans. on Robotics and Automation, 10 (5),

1994.

[7] B. Mirtich, and J. Canny, \Using skeletons for

nonholonomic motion planning among obstacles,"

in IEEE Conf. on Robotics and Automation, Nice,

France, 1992.

[8] M. Overmars and P. Svestka, \A probabilistic learn-

ing approach to motion planning", in Algorithmic

Foundations of Robotics, WAFR'94, K. Goldberg et

al Eds, A.K. Peters, 1995.

[9] J. A. Reeds and R. A. Shepp, \Optimal paths for a

car that goes both forward and backwards," Paci�c

Journal of Mathematics, 145 (2), 1990.

[10] P. Svestka and M. Overmars, \Coordinated motion

planning for multiple car-like robots using probabilis-

tic roadmaps", in IEEE Conf. on Robotics and Au-

tomation, Nagoya (Japan), May 1995.

