
HAL Id: hal-04295697
https://laas.hal.science/hal-04295697

Submitted on 20 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mobility Analysis for Feasibility Studies in CAD Models
of Industrial Environments

Carl van Geem, Thierry Simeon, Jean-Paul Laumond, J.-L. Bouchet, J.-F. Rit

To cite this version:
Carl van Geem, Thierry Simeon, Jean-Paul Laumond, J.-L. Bouchet, J.-F. Rit. Mobility Analysis
for Feasibility Studies in CAD Models of Industrial Environments. IEEE International Conference on
Robotics and Automation (ICRA), May 1999, Detroit, United States. �hal-04295697�

https://laas.hal.science/hal-04295697
https://hal.archives-ouvertes.fr

Mobility Analysis for Feasibility Studies in CAD Models of

Industrial Environments

C. Van Geem

�

, T. Sim�eon, J-P. Laumond

LAAS-CNRS, Toulouse, France

J-L. Bouchet, J-F. Rit

EDF-DER, Chatou, France

Abstract

This paper presents a variant of a probabilist ap-

proach to motion planning. The objective is to face

large, complex industrial environments for mainte-

nance purpose. The contribution is based on a struc-

turing of the workspace into boxes that limits the size

of the graph to be searched. The algorithm was in-

tegrated in a commercial CAD system and real-size

experiments are presented.

1 Introduction

Feasibility studies for the planning of maintainance

interventions at industrial sites are often done using

CAD systems. Scenes have high complexity (more

than 10000 polyhedral facets). Commonly devices like

carts and cranes (with up to 4 DOFs, occasionally up

to 8 DOFs, a tree-like kinematic structure) intervene

and must carry objects through the scene. Searching

for collision free motions through densely populated

scenes tried by hand is a di�cult and time consum-

ing task. Automated mobility analysis therefore would

considerably help to improve quality and to reduce the

cost of such feasibility studies.

We chose to implement a probabilistic path plan-

ner constructing a connectivity graph in con�guration

space (C-Space), for the following reasons. Firstly,

that approach plans a path for a point in C-Space and

thus is independant as a method from the particular-

ities of the device. Speci�cities of the device can be

expressed by the use of a particular strategy (local

planner) for the connection of two con�gurations in

the graph. Due to the modularity of the probabilis-

tic path planning approach implementing and adding

another local planner is an easy programming task.

Due to the high complexity of the industrial scenes

we concentrated our e�orts on the strict limitation of

�

supported by Electricit�e de France (EDF-DER)

the size of the graph and the costly operations like

collision detection and search for connections between

nodes in the graph. We reject obsolete nodes corre-

sponding to easy to attain parts, and aim at attaining

narrow passages in the Workspace. A graph consist-

ing of a forest of trees su�ces to capture connectivity

of C-Space.

In recent years the Probabilistic Roadmap ap-

proach has become a popular method for path plan-

ning problems ([7], [2]), and �rst results of the analysis

of the method's behavior exist ([6]). The performance

of the method can be increased by strategies which

guide the algorithm in its random search for the con-

nectivity properties of free C-Space ([5], [1]). A �rst

step toward the application of the method in evolv-

ing industrial environments was done in [4] and [3], as

well as in [8] where an o�-line pre-computed roadmap

is updated during execution of a path.

The contributions presented here are the use of a

partitioning of Workspace in boxes (Section 3) in or-

der to �lter and select nodes on which costly opera-

tions are executed, the use of several local methods

for expressing particularities of the device and the in-

tegration of the planner in the CAD system ROBCAD,

product of Tecnomatix and used by EDF (Section 4).

Experimental results are presented in Section 5.

2 Algorithm

The probabilistic path planner approach consists of

two phases: a learning phase and a query phase. In

the learning phase a graph is constructed in C-Space.

Con�gurations are choosen randomly. If the device

in a new con�guration is not in collision, the con�g-

uration is added as a node to the graph. Then the

new node is connected by arcs to some other nodes

in the graph if a collision free path between them is

found. Such a path is searched for by a local method.

Usually the choice of con�gurations is not entirely ran-

dom, but in
uenced by guidelines chosen by the im-

plementor. Moreover, usually the generated graph is

re�ned further by some dedicated methods in order to

increase its quality. In the query phase an initial and

a goal con�guration is connected to the graph using a

local planner, and the solution is obtained by a graph

search. The graph can be re-used for several queries.

The main steps of our implementation are illus-

trated in the pseudo-code below.

1. PartitionWorkspace();

2. repeat f

ExtendGraphRandomly();

Re�nePoorlyVisitedBoxes();

Re�neUnreachedBoxes();

Re�neSmallTrees();

g

until(GraphConstructionCriterion())

3. Query();

4. EnhanceQuality();

In the learning phase the choice of con�gurations and

the re�nement is based upon a precomputed parti-

tioning of the Workspace in boxes (see Section 3 for

details). In the learning phase calls to random gen-

eration of nodes and calls for re�nement of the graph

constructed so far alternate until the graph reaches a

certain quality. The loop in step 2 is stopped based

upon an analysis of the evolution of the number of

trees in the graph as well as their relative sizes. When

a query resulted in a path, the quality of the path

initially found can be enhanced using an optimization

routine. Each of the four steps are accessible seper-

ately by the end-user through the interface.

3 Boxes and Learning Phase

Preprocessing the Workspace: As a preprocess-

ing step, we partition Workspace in boxes of di�erent

sizes (PartitionWorkspace()). The goal is to reduce

the number of poses of the device in easily reachable

parts of the Workspace and to augment the number

of poses in parts where obstacles are densely present

and holes (like door openings) in obstacles occur. We

attempt to create automatically large boxes in easily

reachable areas and small boxes elsewhere.

We start o� the construction of the partitioning

with a bounding box around Workspace. This bound-

ing box might be de�ned by the end-user using the

interface, or is a huge box by default. We recursively

cut the box in two smaller boxes (usually of a di�erent

size) by a cutting plane, if there are many (polyhedral)

obstacles which have at least one vertex in the box. We

cut alternately along the X, the Y, or the Z-direction

of the global coordinate system of the scene.

In order to cut a box B in two, we must select its

cutting plane. Suppose the box should be cut by a

plane perpendicular to the X-axis of the global coor-

dinate system. Then for each vertex v on the outer

facets of a polyhedral obstacle, v lying in B, we con-

sider the plane P

v

x

perpendicular to the X-axis. If

all vertices on the outer facets adjacent to v lie on

the same side of P

v

x

, we call P

v

x

a candidate plane

for B. We order the candidate planes P

v

x

according

to increasing X-coordinate value of the corresponding

vertices v. The cutting plane is the middle one in this

ordered list. Figure 1 illustrates this procedure.

A B

C D

Figure 1: Candidate Planes and Cutting Planes.

The cutting is stopped once a threshold on the total

number of boxes is reached, or when no box contains

more than a minimal number of obstacles.

In the following we will say that `con�guration c

corresponds to a box' if a user de�ned point on the

device, usually at the end-e�ector, ends up being po-

sitioned in the box when the device is put in con�gu-

ration c. Since a node in the graph is a con�guration

added to the graph, we say that `box B contains node

n' if the con�guration corresponds to B. We will say

that two boxes are `neighbors' if their intersection is

non-empty.

Use of Boxes in Learning Phase: We use boxes

on four places in the learning phase:

Firstly, when a random con�guration c is chosen

(ExtendGraphRandomly()) it is �rst determined to

which box it corresponds. If that box already con-

tains more than M nodes, we reject c. The parameter

M is increased at the end of each visit of the loop.

After a while we only test new con�gurations when

they correspond to poorly visited boxes.

Secondly, during the �rst re�nement step (Re-

�nePoorlyVisitedBoxes()) we consider all nodes in

boxes which contain less than m nodes). The pa-

rameter m is increased at each visit of the loop. We

randomly perturbate some or all of the C-Space coor-

dinates of these nodes. Doing so we make more nodes

in probably di�cult to reach areas.

Thirdly, in the re�nement step we also try to at-

tain boxes which contain no nodes (Re�neUnreached-

Boxes()). These boxes might not be reachable at all,

or only with extreme di�culty. In the re�nement step

we consider all nodes in all boxes neighboring empty

box B

e

and from thereon we try to move toward B

e

until the device is in B

e

or until we give up.

Fourthly, we never call the local planner to try to

connect two nodes in two di�erent non-neighboring

boxes.

Both the random generation of con�gurations and

the re�nement step tend to produce small trees. In

the re�nement step Re�neSmallTrees(), by randomly

perturbating some nodes in small trees, some small

trees get merged.

Performance: In Figures 2 and 3 each dot indicates

the position of a cart corresponding to a node (a con-

�guration in C-Space). Figure 2 shows the node dis-

tribution when just ExtendGraphRandomly() (that is,

without boxes) is used. Figure 3 shows the boxes and

nodes generated using re�nement and boxes.

Figure 2: Node distribution (without boxes).

The table below shows for the same example that

connectivity is captured better with fewer nodes and

after fewer calls to local planner and collision checker.

Figure 3: Node distribution (with boxes).

boxes no boxes

nodes 264 300

arcs 510 578

trees 9 11

local planner 3800 5398

collision test 57454 202442

In this table: the number of nodes, arcs, trees in the

graph; the number of calls to local planner and colli-

sion checker. In the case where boxes were not used,

the largest tree contained 273 nodes, whereas the few

other nodes were scattered about a tree of 15 nodes, a

tree of 4 nodes and 8 trees of one isolated node. When

boxes and re�nement were used, the number of nodes

per tree where 121, 45, 36, 27, 11, 11, 7, 3, and 3.

ExtendRandomly() boxes no boxes

generated 1998 723

�ltered 534 -

accepted 84 300

Re�nements

generated 2521 -

�ltered 2385 -

accepted 180 -

In this table: the number of con�gurations generated,

�ltered (by boxes, and thus tested for collision), ac-

cepted during the phase of random extension and dur-

ing the re�nement phases.

The table below shows the evolution of the con-

nectivity during the graph construction for the �rst

experiment in Section 5. In the �fth column (rej.) the

number of randomly generated poses which were re-

jected through the �ltering mechanism with boxes is

listed. In the last column (lp.) the number of calls to

the local planner is mentioned.

phase nodes arcs trees rej. lp.

E 24 30 9 108 87

P 30 44 8 178 129

U 31 46 8 213 135

T 64 120 3 213 468

E 70 132 1 234 513

In this table: E for ExtendGraphRandomly(), P for

Re�nePoorlyVisitedBoxes(), U for Re�neUnreached-

Boxes(), T for Re�neSmallTrees(). The number of

trees decreases until connectivity of C-Space is cap-

tured (in this experiment there is just one connected

component).

4 Integration into a CAD system

ROBCAD: The CAD system ROBCAD allows to

design complex scenes as well as to de�ne the kine-

matic properties of devices. It also provides a C-

library of functions which give access to geometri-

cal and kinematical data of the scene as well as to

some of its operations. In our implementation we used

the function of ROBCAD for static collision checking.

Very likely the path planner would bene�t from a well-

performing function for distance computation, but we

estimated the e�ort needed to implement one too big

and decided for functionalities with a higher priority.

Genericity: Particularities of certain devices (for

instance, for safety and controllability reasons it might

not be allowed to move more than one DOF of a crane

at a time), and kinematic constraints (carts, for in-

stance) can be expressed by the use of a particular

local planner. We provide a library currently contain-

ing four local planners. Through the interface, in each

stage of the algorithm the user can modify the choice

of the local planner used.

The �rst local planner (LIN) tries to connect two

con�gurations by a simple move along a straight line

in C-Space. This local planner is fast, but does not

always perform well in graph construction.

The second local planner (STEP) moves only one

joint at a time (a `Manhattan walk'). Sometimes such

a path can be found when a linear move in C-Space is

unsuccessful. Also, using the Manhattan walk in the

learning phase or for replacement of the path in the

path quality enhancement step, a path is found taking

into account this particularity of cranes.

A third local planner (RS) is dedicated to carts

with a non-holonomic constraint. It looks for a path

commonly known as a Reeds-Shepp path (made up of

straight line segments and circular arcs, [9]).

The fourth local planner (POT) uses a pseudo-

potential �eld approach. It looks for a path along

the linear line in C-Space. In case of a collision along

that line, the planner tries to circumvene the obstacle

by a small random walk away from the straight line.

This local planner is useful in the query phase when

initial or goal con�gurations are close to an obstacle.

Quality Improvement of a Path: Once a path

was found, the interface (EnhanceQuality()) allows

the end-user to improve a path to the needs of the

application. Two functionalities allow so.

The �rst tries to shorten the path. It selects ran-

domly two points on the path and tries to connect

them with the local planner choosen by the user. In

case of success, the part between these two points on

the curve is replaced. By repeatedly calling this pro-

cedure the path gets shorter. This is particularly true

since the initial path was found in a tree.

The second tries to replace the whole path by a new

path using the local planner choosen by the user. For

a cart (X;Y; �) with non-holonomic constraint any ge-

ometrical path can be transformed in a path of the

type Reeds-Shepp under some often ful�lled topologi-

cal condition. It therefore is useful to use a simple lo-

cal planner (LIN, STEP) in learning and query phase,

resulting in a geometrical path, and to replace that

path afterwards using RS. For a crane it can be use-

ful to transform a path generated with LIN by a path

computed with STEP so that no two joints move si-

multaneously.

5 Experiments

Figure 4: Devices.

Figure 4 shows three devices on which we carried out

the experiments. The �rst is a traveling crane with

4 DOFs (TTTR), the second a rotating crane with 4

DOFs (RTTR), the third a cart (X, Y , �). Typically

devices with such kinematic structures are used for

maintenance purposes in power plants of EDF. Joints

of cranes are not allowed to move but one at a time.

Carts usually have non-holonomic constraints.

Figure 5: initial and goal pose.

Figure 6: a path.

In the �rst (academical) experiment, a traveling crane

must move a (heavy) load up through the hole in the

middle
oor on the right, and down again through the

hole on the left.

Figure 5 shows initial and goal con�gurations. The

connectivity of the scene was captured by a graph of

70 nodes (consisting of 1 tree), constructed in 170 sec-

onds. The initial path was smoothened afterwards in

35 seconds. Figure 6 shows an example of a path found

by the planner.

Figure 7: initial and goal pose.

In the second experiment, a rotating crane must evac-

uate a bar from the centre of the scene to a position

on the left. Figure 7 shows initial and goal con�gura-

tion. A graph was constructed until a path was found.

Since our implementation uses a static collision detec-

tor along local paths, the size of a discrete step be-

tween two calls of the collision checker along a local

path in this scene must be very small. The graph was

constructed in 570 seconds. The path shown in Figure

8 was generated after a smoothening phase which took

40 seconds. Reusing the same graph for other queries

(other initial and goal con�gurations) delivered paths

as well except at some positions very di�cult to reach.

Figure 8: a path.

Figure 9: initial and goal pose.

In the third experiment, a cart in a nuclear power

plant must enter a door and set itself underneath the

steam generator. Figure 9 shows initial and goal con-

�guration. In a simpli�ed model of the environment

(model 1) a graph was constructed until a (geometri-

cal) path was found in 5 minutes. The transformation

of the geometrical path to a path taking into account

the non-holonomical constraints (using local planner

RS) took less than a minute. The resulting path is

shown in Figure 10. The graph did not capture well

enough the connectivity of C-Space. However, the in-

terface allows to de�ne new initial and goal con�gura-

tions and to relaunch the algorithm. The graph was

enriched during another 3 minutes, and the maneuver

Figure 10: a path.

shown in Figure 11 was found. We repeated this ex-

periment in the original more complex model (model

2), where we used local planner RS during graph gen-

eration. In 20 minutes a path was found and a good

quality graph of 46 nodes was generated.

Figure 11: a maneuver.

The table below indicates the geometrical complex-

ity of the respective scenes: the number of solids and

the number of facets.

traveling rotating cart in cart in

crane crane model 1 model 2

solids 18 270 374 1226

facets 124 8028 17089 27973

Note that the same algorithm was used for all three

experiments. Constraints related to the devices were

expressed in the choice of the local planner.

The interface allows two ways of use. A learning

phase can be launched as a pre-processing step and the

resulting graph can then be re-used for several queries.

Also, in a more interactive fashion, a graph can be

constructed until a particular pair of initial and goal

con�gurations is connected, and extended each time

a new query is needed. All experiments were carried

out on a SUN Ultra-1, 170 Mhz.

6 Conclusions

In this contribution we described the choices we

made to ful�ll the needs of a tool for mobility analy-

sis for feasibility studies of maintenance interventions.

We described how we implemented a path planner that

is well-adapted to the applications, and its interface.

The algorithm is generic in nature and successfully

applicable to realistic problems appearing in industrial

applications as reported here.

The current level of performance is promising but

can certainly be improved. Future developments

should include the development of a dedicated dy-

namical collision checker based upon distance mea-

surement and distance estimation, and applied to the

local paths. Also, during the learning phase an auto-

matical decision procedure to switch to another local

planner should speed up the convergence of the graph

to optimal connectivity.

References

[1] N. Amato, O. Bayazit, L. Dale, C. Jones, and

D. Vallejo. OBPRM: An obstacle-based PRM for 3D

workspace. In 3rd Workshop on Algorithmic Founda-

tions of Robotics, Houston, Texas, 5-7 March 1998.

[2] J. Barraquand, L. Kavraki, J.-C. Latombe, T. Li, and

P. Raghavan. A random sampling scheme for path

plannning. The International Journal of Robotics Re-

search, 16(6):759{774, December 1997.

[3] P. Ferbach. A method of progressive constraints for

nonholonomic motion planning. In IEEE Int. Conf. on

Robotics and Automation, 1996.

[4] P. Ferbach and J.-F. Rit. Planning nonholonomic mo-

tions for manipulated objects. In IEEE Int. Conf. on

Robotics and Automation, 1996.

[5] D. Hsu, L. Kavraki, J.-C. Latombe, R. Motwani, and

S. Sorkin. On �nding narrow passages with probabilis-

tic roadmap planners. In 3rd Workshop on Algorithmic

Foundations of Robotics, Houston, Texas, 5-7 March

1998.

[6] L. Kavraki, M. Kolountzakis, and J.-C. Latombe.

Analysis of probabilistic roadmaps for path planning.

In IEEE Int. Conf. on Robotics and Automation, 1996.

[7] L. Kavraki, P.

�

Svestka, J.-C. Latombe, and M. Over-

mars. Probabilistic roadmaps for path planning in

high-dimensional con�guration spaces. IEEE Trans-

actions on Robotics and Automation, 12(4), 1996.

[8] A. McLean and I. Mazon. Incremental roadmaps and

global path planning in evolving industrial environ-

ments. In IEEE Int. Conf. on Robotics and Automa-

tion, 1996.

[9] J. A. Reeds and R. A. Shepp. Optimal paths for a car

that goes both forward and backwards. Paci�c Journal

of Mathematics, 145(2), 1990.

