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Abstract

This paper presents a geometric based ap-

proach for multiple mobile robot motion coor-

dination. All the robot paths being computed

independently, we address the problem of coor-

dinating the motion of the robots along their

own path in such a way they do not collide

each other. The proposed algorithm is based

on a bounding box representation of the obsta-

cles in the so-called coordination diagram. The

algorithm is resolution-complete. Its e�ciency

is illustrated by examples involving more than

100 robots.

1 Introduction: Path coordination

This paper addresses the following problem: consider

n mobile robots sharing the same workspace and plan-

ning their paths independently; n such paths being given

we want to devise an algorithm deciding whether coordi-

nated motions exist for the mobile robots along their own

paths, so that each robot can reach its own goal with-

out colliding the other ones. The problem is known as

the multiple robot path coordination problem

[

Latombe,

1991b

]

.

Path coordination versus Path planning Multiple

robot path coordination and path planning are two re-

lated issues in robot motion planning. In multiple robot

path planning the robot paths are not a priori com-

puted. A solution to the multiple robot path planning

problem is a collision-free path in the cartesian product

of the con�guration spaces of all the robots. A solu-

tion to the problem exists i� the start and goal con�g-

urations belong to a same connected component of the

global collision-free con�guration space. Searching such

a space is a highly combinatorial problem

[

Hopcroft et

al., 1984

]

.

To face this complexity several authors have investi-

gated decoupled schemes

1

. The decoupled approach has

1

Other schemes for multiple robot path planning have

been proposed. For instance some centralized approaches

aim at facing the problem complexity with probabilistic al-

been introduced in

[

Kant and Zucker, 1986

]

: the method

�rst plans the paths of the robots independently and

then computes the velocity pro�les so that the robots

do not collide. The approach has been further revisited

in

[

Erdmann and Lozano-P�erez, 1986; Buckley, 1989;

Warren, 1990; Alami et al., 1995

]

.

The path coordination problem as such has been ad-

dressed in

[

O'Donnell and Lozano-P�erez, 1989

]

where the

notion of coordination diagram has been �rst introduced.

It dealt with two robots, a case which has been also ad-

dressed in

[

Bien and Lee, 1992; Chang et al., 1994

]

. A

strategy based on dynamic programming was proposed

more recently in

[

La Valle and Hutchinson, 1996

]

to ad-

dress problems involving more than two robots.

Objective, approach and contribution We want

to solve problems involving more than 100 robots in re-

alistic situations. The algorithm consists in searching a

n-dimensional coordination diagram. The main contri-

bution is to propose a bounding box representation of the

diagram obstacles. With respect to the previous works

above we do not use any regular grid representation. The

algorithm is resolution complete and it is complete for

a large class of inputs. Its e�ciency inherits from the

e�ciency of simple geometric operations giving rise to a

collision-checker dedicated to mobile robot coordination

and summarized in Section 2. After having introduced

a cell decomposition of the coordination diagram for the

case of two robots (Section 3), we extend the algorithm

to the general case (Section 4).

2 Paths SA and geometric tools

Paths SA The geometric tools we use are based on

the following assumption: the robot paths are sequences

of straight line segments (S) and arcs of a circle (A). Such

sequences are denoted by SA . This assumption is sup-

ported by both theoretical and practical considerations.

gorithms (see

[

Svestka and Overmars, 1995

]

and references

therein). From another point of view, cooperation-oriented

approaches are based on local informations (potential meth-

ods): see for instance

[

Reif and Wang, 1995

]

and

[

Cao et al.,

1997

]

for a recent overview. Techniques for path coordination

are out of the scope of all these methods.



First of all, it has been proved that a collision-free admis-

sible path exists i� there exists a collision-free admissible

path of type SA

[

Laumond, 1986

]

. Moreover, most of

the existing complete motion planners for mobile robots

provide solution paths of the type SA (e.g.,

[

Laumond et

al., 1994; Latombe, 1991a; Svestka and Overmars, 1995;

Mirtich and Canny, 1992

]

). Finally geometric algorithms

like boolean operations or swept volume computations

are simple and computationally e�cient when dealing

with arcs of circle and straight line segments.
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Figure 1: Two intersecting robot traces

Traces A mobile robot path being given, a trace is the

volume swept by the robot when moving along the path.

Assuming that the robot is a polygon, the trace of a path

of type SA is a generalized polygon whose boundary is

a sequence of straight line segments and arcs of a circle.

[

Sim�eon et al., 1998

]

have shown how to compute such

traces e�ciently (Figure 1(a)).

Coordination con�gurations To coordinate the mo-

tions of two robots along their own path, it is neces-

sary to compute the intersection of their trace. Fig-

ure 1 shows two traces. The bold sub-path [a

1

; b

1

] (resp.

[a

2

; b

2

]) gathers the con�gurations at which the �rst

(resp. second) robot intersects the trace of the second

(resp. �rst) one. The endpoints of such sub-paths are

called coordination con�gurations.

[

Sim�eon et al., 1998

]

have proposed a geometric algorithm to compute them

when the robots are convex polygons and move along

SA paths. In this paper we keep the same assumptions.

3 Coordination for two robots

Coordination diagram Coordinating the motion of

two robots along two given paths is a classical prob-

lem. Its solution consists in exploring the so-called co-

ordination diagram

[

O'Donnell and Lozano-P�erez, 1989

]

.

Let us consider the two paths 

1

(s

1

) and 

2

(s

2

) in Fig-

ure 2(a). Both coordinates s

1

and s

2

are assumed to

R1

2R s

s

2

1

(a) (b)

(c) (d)

Figure 2: Two SA paths (a), the coordination diagram

(b), the partition of the diagram induced by the path

decomposition (c), the bounding box representation of

the obstacles and a solution path (d).

vary from 0 to 1. Figure 2(b) shows the corresponding

coordination diagram (s

1

; s

2

): the black domains rep-

resent the set of con�guration pairs (s

1

; s

2

) such that

the robots collide when they are respectively at con�g-

urations 

1

(s

1

) and 

2

(s

2

). Black domains are obsta-

cles to avoid. A coordinated motion exists i� there is a

collision-free path in the diagram linking the point (0,0)

(the robots are both at the beginning of their own path)

to the point (1,1) (the robots are both at the end of their

path).

A bounding box representation Our contribution

is to propose an algorithm to explore the diagram with-

out computing the exact shape of the obstacles

2

. We

use a bounding box representation based on the follow-

ing property: the (minimal) box bounding an obstacle

in a coordination diagram is a rectangle whose endpoint

coordinates are the coordination con�gurations

3

. Let

us consider the case in Figure 1. The coordinates of

four points de�ning the rectangle in the coordination

diagram are respectively (a

1

; b

1

), (a

1

; b

2

), (a

2

; b

1

) and

2

The obstacles in Figure 2(b) have been computed with

a brute force discretization approach used only for display

purpose.

3

In our context the coordinate of a con�guration on a path

 is its curvilinear abscissa s on .



(a

2

; b

2

). The computation of the boxes is then done by

computing the coordination con�gurations (see above).

Path decomposition Let us now consider two

SA paths 

1

and 

2

. Instead of applying the bounding

box representation directly in the coordination diagram

of 

1

and 

2

, we �rst apply a path decomposition. Each

path is decomposed into its elementary pieces consisting

of either straight line segments, or arcs of a circle. Let

(

1;i

) and (

2;j

) the pieces sequences of 

1

and 

2

re-

spectively. The coordination diagram for 

1

and 

2

then

appear as the union of the coordination diagrams of the

various pairs (

1;i

; 

2;j

). For instance, the two paths in

Figure 2(a) both consist of 4 arcs of a circle. Therefore

the coordination diagram appears as the union of 16 el-

ementary coordination diagrams (Figure 2(c)). Then,

for each elementary coordination diagram, we compute

a bounding box representation of the obstacles. Fig-

ure 2(d) shows the bounding box representation of the

diagram in Figure 2(b).

Search Such a representation induces a cell decompo-

sition of the coordination diagram into rectangles. Any

classical search algorithm may be used to compute a

collision-free path from the origin (0,0) to the goal (1,1).

Figure 2(d) shows a solution path. For this example,

note that the widthest robot R

2

(corresponding to the

vertical coordinate in the diagram) should necessarily

move forward, backward and then forward along the �rst

two pieces of its path.

Figure 3: This case cannot appear when at least one

robot moves along a straight line segment.

Completeness The algorithm is complete i� it is com-

plete when applied to the elementary diagrams corre-

sponding respectively to three cases: SjjS, SjjA, AjjA.

For the �rst two cases the algorithm is complete. The

only way for the bounding box approach to loose a so-

lution is that there exist two vertical and horizontal

lines intersecting two obstacles (Figure 3). This is how-

ever not possible since at least one robot moves along

a straight line segment: indeed, the robot moving along

the straight line cannot intersect twice the other (convex)

robot remaining at a �xed position. Then the bounding

box approximation does not a�ect the completeness of

the algorithm for these �rst two cases.

Figure 4: AjjA special case: bounding boxes would �ll

the space.

Completeness is not necessarily guaranteed in the

third case AjjA: we may �nd counterexamples where the

bounding box approximation of the obstacles may split

the free space into two connected components. Figure 4

shows an example where the bounding box transforms

the full space into an obstacle. However such cases can

be solved by the following resolution complete procedure:

both arcs of a circle are recursively split into smaller

arcs and each pair of the new elementary pieces is pro-

cessed with the bounding box approach. Moreover such

cases are easily identi�ed in the path decomposition step

above. This means that, according to the inputs, the al-

gorithm may or not activate the recursive subdivision.

The activation condition is a function dedicated to the

case AjjA and checking the existence of a collision-free

vertical or horizontal line in the diagram. The activa-

tion cases are seldom seen. For instance they do not

appear in the examples displayed in Figures 5, 7 and 8.

4 Coordination for n robots

Generalized coordination diagram Let us now

consider n robot paths 

i

. The cartesian product of all

the

n(n�1)

2

elementary (

i

; 

j

) coordination diagrams is

a n-dimensional cube called generalized coordination di-

agram. A point in the n-cube belongs to an obstacle i�

at least two robots collide. Therefore, the obstacles in

the generalized coordination diagram have a cylindrical

shape

4

. As a consequence the topology of the general-

ized coordination diagram is fully characterized by the

topology of the elementary 2-dimensional diagrams. Fig-

ure 5(b) shows the 10 elementary diagrams for the path

coordination problem of Figure 5(a).

A solution to the coordination problem is a collision-

free path between (0; : : :0) to (1; : : :1).

4

This property has been already noticed in

[

La Valle and

Hutchinson, 1996

]



(a) (b)

Figure 5: The 10 elementary diagrams (b) of the gener-

alized coordination diagram of 5 paths (a).
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Figure 6: The cell decomposition of a diagram re�nes

the cell decomposition of other diagrams.

Generalized coordination diagram modeling and

searching We have seen that the bounding box rep-

resentation of the coordination diagram for two robots

induces a decomposition of the diagram into rectangles.

Let us consider three paths 

1

, 

2

and 

3

. The cell de-

composition of (

1

; 

2

) coordination diagram induces a

partition of the axis s

2

. Then the cell decomposition of

the (

2

; 

3

) diagram is re�ned according to this partition.

More generally, the cell decomposition of a (

i

; 

j

) dia-

gram induces a re�nement of the cell decompositions of

the 2(n�1) diagrams (

i

; 

k

) and (

k

; 

j

) (see Figure 6).

We denote by (i; j)-cell a cell of the (

i

; 

j

) diagram af-

ter re�nement. The 2-dimensional (i; j)-cells of all the

(

i

; 

j

) diagrams induce a cell decomposition of the n-

cube. The cells of the n-cube are denoted by n-cells. The

main advantage of the following search is that it does not

require an explicit representation of the n-cube.

Let us consider a (collision-free) n-cell reached at a

current step of the search. The strategy consists in mov-

ing only one robot at once at each step. To do that

the algorithm generates the 2n cells adjacent to the n-

cell through a (n � 1)-dimensional hyper-plane. Let us

consider a n-cell cell, adjacent to the current collision-

free n-cell and corresponding to an elementary motion

of robot i. Due to the cylindrical shape of the obstacles,

testing if cell is collision-free is easily performed: each of

the (n�1) projections of cell onto the elementary (

i

; 

:

)

diagrams should be a collision-free (i; :)-cell.

The search is performed by an A

�

algorithm whose

heuristic function is the shortest Euclidean path to the

goal point (1; : : :1) of the n-cube. Our algorithm com-

putes coordination paths which are Manhattan paths:

only one robot moves at once. If needed, we may over-

come this fact by \smoothing" the computed path with

the help of optimization techniques as in

[

Svestka and

Overmars, 1995

]

.

(a)

(b)

Figure 7: A case with 32 robots: the robots traces (a)

and the 496 elementary diagrams. The partition into the

8 robot subgroups is illustrated by the 8 bold triangles.

Completeness Due to the cylindrical shape of the ob-

stacles in the generalized coordination diagram, the al-

gorithm above inherits from the completeness property

of the coordination procedure for two robots presented

in Section 3.

Interaction graph The �nal extension we propose is

supported by a practical assumption. When a high num-



ber of robots plan their paths independently the path

coordination problems are in general localized in di�er-

ent domains of the environment and only concern robot

subsets. To reduce the combinatorial complexity of the

global problem in practice we �rst identify which robot

traces intersect another trace. We then build an interac-

tion graph whose nodes are the robots; two robot-nodes

are adjacent i� both corresponding traces intersect. A

simple decomposition of the graph into connected com-

ponents identi�es automatically the various subgroups

of robots requiring motion coordination. Then the algo-

rithm above is applied to each subgroup.

Results Figure 7(a) shows an example of 32 mobile

robots paths (including the traces). The 8 connected

components of the interaction graph have been com-

puted automatically. The global coordination diagram

appears in Figure 7(b) showing clearly the structure in-

duced by the 8 connected components. A detailed view

of the coordination diagram involving a subgroup of 5

robots appears; it includes a display of the computed

solution path for this group.

All the steps of the algorithm have been implemented

in C++ and run on Sparc Ultra-1. The following table

presents the computation times of each step of the algo-

rithm for the examples in the �gure 7 and the �gure 8

that involves 150 robots

5

. A more complete analysis ap-

pears in

[

Leroy, 1998

]

.

32 rob. 150 rob.

Interaction graph computation

and bounding box representation 30s 240s

of the diagrams

Diagram re�nement 6s 13s

Search 3:7s 1:5s

5 Conclusion

The proposed approach permits to solve problems for

more than 100 robots in a reasonable time. The key

points of the method are the e�ciency of computation

of the coordination con�gurations and the bounding box

representation of the obstacles in the elementary coordi-

nation diagrams.

Nevertheless we should notice that the performance

depends on the decomposition of the interaction graph

into connected components. The worst case appears

when the interaction graph has only one component

(e.g., when the trace of some robot intersects all the

other traces). In fact, the complexity of the approach is

dominated by the highest dimension of the considered n-

cubes. In practice the algorithm may explore e�ciently

n-cubes of dimension up to ten (i.e., involving 10 robots).

5

The motion planner computing an admissible collision-

free path for each robot is based on the algorithm presented

in

[

Laumond et al., 1994

]

. It is not possible to display the

\e�ective" motions on pictures; animations related to this

work may be seen at http://www.laas.fr/�sleroy.

We just argue that this limitation is not critical in prac-

tice. Moreover we do not know any alternative approach

allowing to solve the case of Figure 8.
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