Uncertainty Quantification of Set-Membership Estimation in Control and Perception: Revisiting the Minimum Enclosing Ellipsoid - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Proceedings/Recueil Des Communications Proceedings of Machine Learning Research Année : 2024

Uncertainty Quantification of Set-Membership Estimation in Control and Perception: Revisiting the Minimum Enclosing Ellipsoid

Résumé

Set-membership estimation (SME) outputs a set estimator that guarantees to cover the groundtruth. Such sets are, however, defined by (many) abstract (and potentially nonconvex) constraints and therefore difficult to manipulate. We present tractable algorithms to compute simple and tight overapproximations of SME in the form of minimum enclosing ellipsoids (MEE). We first introduce the hierarchy of enclosing ellipsoids proposed by Nie and Demmel (2005), based on sums-ofsquares relaxations, that asymptotically converge to the MEE of a basic semialgebraic set. This framework, however, struggles in modern control and perception problems due to computational challenges. We contribute three computational enhancements to make this framework practical, namely constraints pruning, generalized relaxed Chebyshev center, and handling non-Euclidean geometry. We showcase numerical examples on system identification and object pose estimation.
Fichier principal
Vignette du fichier
uncertainty-quantif.pdf (3.44 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04311534 , version 1 (28-11-2023)

Identifiants

Citer

Yukai Tang, Jean-Bernard Lasserre, Heng Yang. Uncertainty Quantification of Set-Membership Estimation in Control and Perception: Revisiting the Minimum Enclosing Ellipsoid. L4DC 2024, Proceedings of Machine Learning Research, 242, PMLR, pp.286--298, 2024. ⟨hal-04311534⟩
190 Consultations
47 Téléchargements

Altmetric

Partager

More