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, based on sums-ofsquares relaxations, that asymptotically converge to the MEE of a basic semialgebraic set. This framework, however, struggles in modern control and perception problems due to computational challenges. We contribute three computational enhancements to make this framework practical, namely constraints pruning, generalized relaxed Chebyshev center, and handling non-Euclidean geometry. We showcase numerical examples on system identification and object pose estimation.

Introduction

Model estimation and learning from measurements is a central task in numerous disciplines [START_REF] Robert | Optimal control and estimation[END_REF][START_REF] Barfoot | State estimation for robotics[END_REF]. Let θ ∈ Θ ⊆ R n be an unknown model, and Z = {z i } N i=1 ∈ Z N be a set of N measurements such that, if z i is a perfect (noise-free) measurement, it holds r(θ, z i ) = 0, i = 1, . . . , N, with r : Θ × Z → R m a given residual function that is typically designed from first principles describing how z i is generated from θ (see Examples 1-2 below).

Maximum Likelihood Estimation. The most popular approach to estimate θ from Z is maximum likelihood estimation (MLE). When the measurements are noisy, the residual is adjusted to

r(θ, z i ) = ϵ i , i = 1, . . . , N, (1) 
with ϵ i ∈ R m some small noise. The most common distributional assumption is that ϵ i ∼ N (0, Σ) follows a Gaussian distribution, leading to the MLE estimator that is the solution of a nonlinear least squares problem [START_REF] Nocedal | Numerical optimization[END_REF][START_REF] Pineda | Theseus: A library for differentiable nonlinear optimization[END_REF] 1

θ ⋆ MLE ∈ arg min θ∈Θ N i=1 ∥r(θ, z i )∥ 2 Σ -1 . (2) 
When the measurement set Z contains outliers, the least squares objective in (2) can be replaced by a robust loss (Huber, 2004;[START_REF] Antonante | Outlier-robust estimation: Hardness, minimally tuned algorithms, and applications[END_REF]. Despite significant interests and progress in the literature, two shortcomings of the MLE framework exist. On one hand, the Gaussian assumption is questionable. In fact, in Appendix A we show noises generated by modern neural networks on a computer vision example deviate far from a Gaussian distribution. 2 On the other hand, in safetycritical applications, provably correct uncertainty quantification of a given estimator is desired (e.g., how close is θ ⋆ MLE to the groundtruth). The uncertainty of the MLE estimator (2), however, is nontrivial to quantify due to the potential nonlinearity in the residual function r.

Set-Membership Estimation. An alternative framework, known as set-membership estimation (SME, or unknown-but-bounded estimation) [START_REF] Milanese | Optimal estimation theory for dynamic systems with set membership uncertainty: An overview[END_REF], seeks to resolve the two shortcomings of MLE. Instead of making a distributional assumption on the measurement noise (1), SME only requires the noise to be bounded

∥ϵ i ∥= ∥r(θ, z i )∥≤ β i , i = 1, . . . , N, (3) 
where ∥•∥ indicates the ℓ 2 vector norm (one can choose ℓ 1 or ℓ ∞ norm and our algorithm would still apply). Characterizing the bound of the noise is easier than characterizing the distribution of the noise and can be conveniently done using, e.g., conformal prediction with a calibration dataset [START_REF] Anastasios | A gentle introduction to conformal prediction and distribution-free uncertainty quantification[END_REF]. Given (3), SME returns a set estimation of the model

S = {θ ∈ Θ | ∥r(θ, z i )∥≤ β i , i = 1, . . . , N } , (SME) 
i.e., S contains all models compatible with the measurements Z under assumption (3). Clearly, the groundtruth must belong to S, and the "size" of S informs the uncertainty of the estimated model. Challenges. It is almost trivial to write down the set S as in (SME), which, however, turns into a highly nontrivial object to manipulate. The reasons are (a) each of the constraints "∥r(θ, z i )∥≤ β i " may be a nonconvex constraint, and/or (b) the number of constraints N may be very large. We use two examples in control and perception, respectively, to illustrate the challenges.

Example 1 (System Identification (Kosut et al., 1992;[START_REF] Li | Learning the uncertainty sets for control dynamics via set membership: A non-asymptotic analysis[END_REF])) Consider a discrete-time dynamical system with state x ∈ R nx , control u ∈ R nu , and unknown system parameters θ ∈ R n

x k+1 = ϕ 0 (x k , u k ) + n i=1 θ i ϕ i (x k , u k ) + ϵ k = Φ(x k , u k ) θ + ϵ k , k = 0, . . . , N -1, (4) 
where Φ(x k , u k ) = [ϕ 0 (x k , u k ), . . . , ϕ n (x k , u k )] ∈ R nx×(n+1) is a (nonlinear) activation function, ϵ k ∈ R nx , k = 0, . . . , N -1 are unknown noise vectors assumed to satisfy (3),3 and θ = [1, θ T ] T . Given a system trajectory {x 0 , u 0 , . . . , x N -1 , u N -1 , x N }, the SME of the parameters θ is

S = θ ∈ R n | ∥x k+1 -Φ(x k , u k ) θ∥≤ β k , k = 0, . . . , N -1 . ( 5 
)
Example 2 (Object Pose Estimation [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]Yang and Pavone, 2023)) Consider a 3D point cloud {Y i } N i=1 and a camera, at an unknown rotation and translation θ = (R, t) ∈ SE(3),4 observing the point cloud as a set of 2D image keypoints

y i = Π(RY i + t) + ϵ i , i = 1, . . . , N, (6) 
where Π : R 3 → R 2 , Π(v) = [v 1 /v 3 , v 2 /v 3 ] T denotes the projection of a 3D point onto the 2D image plane and ϵ i ∈ R 2 denotes measurement noise satisfying (3). Given pairs of 3D-2D correspondences {y 1 , Y 1 , . . . , y N , Y N }, the SME of the camera pose θ is

S = {θ ∈ SE(3) | ∥y i -Π(RY i + t)∥≤ β i , i = 1, . . . , N } . (7) 
The SME ( 5) is convex -defined by quadratic inequality constraints-but N can be large given a long trajectory. The SME (7), shown by (Yang and Pavone, 2023, Proposition 3) to be defined by N quadratic inequalities and N linear inequalities, is unfortunately nonconvex despite that N < 10.

Contributions. We propose tractable algorithms based on semidefinite programming (SDP) to simplify the set-membership estimator (SME) while maintaining tight uncertainty quantification. Specifically, we seek to find the minimum enclosing ellipsoid (MEE) of (SME), i.e., the ellipsoid that contains S with minimum volume. Such an ellipsoid allows us to (i) use the center of the ellipsoid as a point estimator, (ii) provide a (minimum) worst-case error bound for the point estimator, and (iii) generate samples in S via straightforward rejection sampling (i.e., sample inside the ellipsoid and accept the sample if inside S). 5 Our algorithms are based on the sums-of-squares (SOS) relaxation framework proposed in [START_REF] Nie | Minimum ellipsoid bounds for solutions of polynomial systems via sum of squares[END_REF], revisited in [START_REF] Kojima | Enclosing ellipsoids and elliptic cylinders of semialgebraic sets and their application to error bounds in polynomial optimization[END_REF], for computing a hierarchy of enclosing ellipsoids that asymptotically converge to the MEE of a basic semialgebraic set, i.e., a set defined by finitely many polynomial (in-)equalities, to which both ( 5) and ( 7) belong. 6 When the SME is convex, together with the celebrated Löwner-John's ellipsoid theorem [START_REF] Henk | löwner-john ellipsoids[END_REF], we give an algorithm that can provide a certificate of convergence when the MEE has been attained by the SOS hierarchy. We show this vanilla algorithm already outperforms the confidence set of least-squares estimation [START_REF] Abbasi | Regret bounds for the adaptive control of linear quadratic systems[END_REF] in a simple instance of Example 1. Unfortunately, applying this algorithm to Example 1 with large N and Example 2 encounters three challenges. (C1) A long system trajectory (e.g., N = 1000) in Example 1 renders high-order SOS relaxations overly expensive. We therefore introduce a preprocessing algorithm to prune redundant constraints in the set (5) (e.g., over 900 constraints are deemed redundant). (C2) We empirically found for (SME) sets that are nonconvex or defined by many constraints, the SDP solver would encounter serious numerical issues and simply fail. To circumvent this, we propose a two-step approach, where step one draws random samples from (SME) to approximate the shape matrix of the enclosing ellipsoid, and step two minimizes the size of the ellipsoid with a fixed shape. The second step, coincidentally, becomes a strict generalization of the relaxed Chebyshev center method proposed in [START_REF] Yonina C Eldar | A minimax chebyshev estimator for bounded error estimation[END_REF]. (C3) The last challenge is to handle the non-Euclidean geometry when enclosing an (SME) of SO(3). By leveraging the special geometry of unit quaternions, we show a reduction of computing the MEE on a Riemannian manifold to computing the MEE in Euclidean space. With these computational enhancements, we conduct experiments on system identification (including those that are hard to learn [START_REF] Tsiamis | Linear systems can be hard to learn[END_REF]) and object pose estimation that were not possible to perform in existing literatures.

Paper Organization. We defer a review of related works to Appendix H and first present the SOS-based MEE framework in Section 2. We describe in Section 3 our computational enhancements. We present numerical experiments in Section 4 and conclude in Section 5. Preliminaries on the moment-SOS hierarchy [START_REF] Jean B Lasserre | Global optimization with polynomials and the problem of moments[END_REF][START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF] are presented in Appendix B.

5. Clearly, this would also allow us to obtain an estimate of the volume of S by counting the acceptance rate. 6. Surprisingly, the SOS-based MEE framework seems unexploited in the context of Examples 1-2.

Minimum Enclosing Ellipsoid by SOS Relaxations

Consider a basic semialgebraic set defined by a finite number of polynomial constraints

S = {θ ∈ R n | g i (θ) ≥ 0, i = 1, . . . , l g , h j (θ) = 0, j = 1, . . . , l h } (8)
with g i , h j ∈ R[θ] real polynomials in θ. We use the same notation S here as in (SME), ( 5), ( 7) because the membership sets we consider are all basic semialgebraic sets. Let ξ = (θ i 1 , . . . , θ i d ) = P θ be a d-dimensional subvector of θ (with P a selection matrix), S ξ := {P θ | θ ∈ S} be the restriction of S on ξ, and consider a d-dimensional ellipsoid

E = {ξ ∈ R d | 1 -(ξ -µ) T E(ξ -µ) ≥ 0}, (9) 
with µ ∈ R d the center and E ∈ S d ++ the shape matrix (E is positive definite). We want to find the ellipsoid E with minimum volume that encloses S ξ max

µ∈R d ,E∈S d ++ {log det E | ξ ∈ E, ∀ξ ∈ S ξ } , (MEE)
where det E is inversely proportional to the volume of E (i.e., (MEE) minimizes the volume of E).

We remark that considering an ellipsoid in the subvector ξ is general and convenient as (i) P = I recovers the n-dimensional ellipsoid, (ii) in Example 2 it is desired to enclose the rotation R and translation t separately, and (iii) having ξ = θ i ∈ R for some dimension i allows the ellipsoid E i to be a line segment that encloses θ i and hence E 1 × . . . × E n forms an enclosing box of S. Problem (MEE) is generally intractable even when S is convex. 7 However, denoting e(ξ) := 1 -(ξ -µ) T E(ξ -µ) in (9) as the polynomial in ξ, we observe the constraint in (MEE) simply asks e(ξ) to be nonnegative on the set S. This observation allows a hierarchy of convex relaxations of (MEE) based on sums-of-squares (SOS) programming [START_REF] Jean B Lasserre | Global optimization with polynomials and the problem of moments[END_REF][START_REF] Blekherman | Semidefinite optimization and convex algebraic geometry[END_REF].

Theorem 1 (MEE Approximation by SOS Programming) Assume S is Archimedean, 8 consider the SOS program with an integer κ such that 2κ ≥ max{2, {deg(g

i )} lg i=1 , {deg(h j )} l h j=1 } max E,b,c log det E (10a) subject to 1 -(ξ T Eξ + 2b T ξ + c) = lg i=0 σ i (θ)g i (θ) + l h j=1 λ j (θ)h j (θ) (10b) σ i (θ) ∈ SOS[θ], deg(σ i g i ) ≤ 2κ, i = 0, . . . , l g (10c) λ j (θ) ∈ R[θ], deg(λ j h j ) ≤ 2κ, j = 1, . . . , l h (10d) E b b T c ⪰ 0 (10e)
where g 0 (θ) := 1, SOS[θ] is the set of SOS polynomials in θ, and deg(•) denotes the degree of a polynomial. Let (E ⋆ , b ⋆ , c ⋆ ) be an optimal solution of (10), then, (i) for any κ, we have

ξ T E ⋆ ξ + 2b T ⋆ ξ + c ⋆ = (ξ -µ ⋆ ) T E ⋆ (ξ -µ ⋆ ) with µ ⋆ = -E -1 ⋆ b ⋆ , and the ellipsoid E κ = {ξ ∈ R d | (ξ -µ ⋆ ) T E ⋆ (ξ -µ ⋆ ) ≤ 1} encloses S ξ ;
7. When S is a set of points, then (MEE) is easy to solve [START_REF] Gärtner | Fast and robust smallest enclosing balls[END_REF][START_REF] Magnani | Tractable fitting with convex polynomials via sum-of-squares[END_REF][START_REF] Moshtagh | Minimum volume enclosing ellipsoid[END_REF]. 8. The definition of Archimedeanness is given in (Blekherman et al., 2012, Def. 3.137). One can make the Archimedean condition trivially hold by adding a constraint M θ -θ T θ ≥ 0 to (8), which is easy for Examples 1-2.

(ii) Vol(E κ ) decreases as κ increases, and E κ tends to the solution of (MEE) as κ → ∞.

The proof of Theorem 1 is given in Appendix C and is inspired by [START_REF] Nie | Minimum ellipsoid bounds for solutions of polynomial systems via sum of squares[END_REF]; [START_REF] Magnani | Tractable fitting with convex polynomials via sum-of-squares[END_REF]. Problem (10) is convex and can be readily implemented by YALMIP [START_REF] Lofberg | Yalmip: A toolbox for modeling and optimization in matlab[END_REF]) and solved by [START_REF] Aps | Mosek optimization toolbox for matlab. User's Guide and Reference Manual[END_REF]. Its intuition is simple: (10b)-(10d) ensures 1 -(ξ T Eξ + 2b T ξ + c) is nonnegative on S and hence every feasible solution is an enclosing ellipsoid, (10e) uses a lifting technique to convexify the bilinearity of µ and E in the original ellipsoid parametrization (9), and the objective (10a) seeks to minimize the volume. The convergence of the hierarchy follows from Putinar's Positivstellensatz [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF].

Certifying Convergence. Unlike applying SOS relaxations to polynomial optimization, where a certificate of convergence is known [START_REF] Henrion | Detecting global optimality and extracting solutions in gloptipoly[END_REF], detecting the convergence of ( 10) is in general difficult [START_REF] Jean B Lasserre | A generalization of löwner-john's ellipsoid theorem[END_REF]. However, when the set S is convex, it is possible to leverage Löwner-John's ellipsoid theorem [START_REF] Xie | Inner approximation of convex cones via primal-dual ellipsoidal norms[END_REF] to derive a simple convergence certificate. We present such a result in Appendix D and a numerical example in Appendix G.

Computational Enhancement

The SOS-based algorithm (10) works very well on simple examples. In this section, we describe three challenges of applying (10) and present three techniques to enhance its performance.

Pruning Redundant Constraints

The first challenge arises when the number of inequalities l g is very large, in which case the convex optimization (10) has l g +1 positive semidefinite (PSD) variables (whose sizes grow quickly with the relaxation order κ). In system identification (Example 1), a large l g = N is common as practitioners often collect a long system trajectory to accurately identify the system.

Nevertheless, since the dimension n of the parameter θ is usually much smaller than the trajectory length N , one would expect many constraints in (5) to be redundant. The difficultly lies in how to identify and prune the redundant constraints. When all the constraints are linear, algorithms from linear programming can identify redundancy [START_REF] Rj Caron | A degenerate extreme point strategy for the classification of linear constraints as redundant or necessary[END_REF][START_REF] Telgen | Identifying redundant constraints and implicit equalities in systems of linear constraints[END_REF][START_REF] Paulraj | A comparative study of redundant constraints identification methods in linear programming problems[END_REF][START_REF] Cotorruelo | Elimination of redundant polynomial constraints and its use in constrained control[END_REF]. To handle the quadratic constraints in (5), we propose Algorithm 1.

Algorithm 1: Prune Redundant Constraints in (5)

1 Input: Constraint set {g k (θ)} k∈[N -1] with g k (θ) := β 2 k -∥x k+1 -Φ(x k , u k ) θ∥ 2 (cf. (5)) 2 Output: Pruned set of constraints {g k (θ)} k∈I 3 Initialize I = [N -1] 4 for k ← 0 to N -1 do 5 Solve g k ≤ g ⋆ k = min θ {g k (θ) | g i (θ) ≥ 0, i ∈ I\{k}} ◁ First-order moment-SOS hierarchy 6 if g ⋆ k ≥ 0 then I ← I\{k} ; 7 end 8 Return: I
Intuitively, line 5 of Algorithm 1 seeks to minimize g k (θ) when the rest of the constraints hold. If g ⋆ k ≥ 0, then g k (θ) is redundant as it is implied by the rest of the constraints. The optimization in line 5, however, is nonconvex because g k (θ) is a concave polynomial. Therefore, we use the first-order moment-SOS hierarchy to obtain a lower bound g k ≤ g ⋆ k : if g k ≥ 0, then g ⋆ k ≥ 0 must hold and g k (θ) is deemed redundant. In practice, the first-order moment-SOS hierarchy is very efficient and easily scales to N = 1000. In a pendulum system identification experiment presented in Section 4.1.4, we show Algorithm 1 effectly prunes over 90% constraints.

Generalized Relaxed Chebyshev Center

The second challenge comes from the "log det E" objective in (10). Maximizing the "log det" of E is convex [START_REF] Vandenberghe | Determinant maximization with linear matrix inequality constraints[END_REF], yet it cannot be written as a standard linear SDP. 9 Consequently, it is often replaced by the geometric mean [START_REF] Lofberg | Yalmip: A toolbox for modeling and optimization in matlab[END_REF] and modelled with an exponential cone constraint (ApS, 2019), causing serious numerical issues in our experiments. 10 Even after pruning redundant constraints using Algorithm 1, we found problem (10) still difficult to solve. Similar observations have been reported in (Lasserre, 2023, page 950). This motivates solving the following generalized Chebyshev center (GCC) problem

η ⋆ = min µ∈R d max ξ∈S ξ ∥µ -ξ∥ 2 Q (GCC)
with a given Q ≻ 0 (recall ξ = P θ is a subvector of θ). When Q = I, (GCC) reduces to the usual Chebyshev center problem [START_REF] Milanese | Optimal estimation theory for dynamic systems with set membership uncertainty: An overview[END_REF][START_REF] Yonina C Eldar | A minimax chebyshev estimator for bounded error estimation[END_REF]. In (GCC), given any µ, the inner "max ξ " computes the maximum Q-weighted distance from µ to the set S ξ , denoted as η ⋆ µ . Therefore, the ellipsoid

E Q,µ = {ξ | ∥ξ -µ∥ 2 Q ≤ η ⋆ µ } must enclose the set S ξ .
Via the outer "min µ ", (GCC) seeks the µ such that E Q,µ is the smallest enclosing ellipsoid with a given shape matrix Q. We found (GCC) to be much easier to solve than (10) due to removing the "log det E" objective.

Estimating Q from Samples. Intuitively, (GCC) may be more conservative than (MEE) because (GCC) assumes Q is given while (MEE) optimizes the shape matrix. However, if we can uniformly draw samples (ξ 1 , . . . , ξ Ns ) from S ξ , then a good estimate of Q can be obtained as

Q = 1 N s Ns i=1 (ξ i -ξ)(ξ i -ξ) T , ξ = 1 N s Ns i=1 ξ i . ( 11 
)
We can use three different algorithms to uniformly sample S ξ . (i) When S is convex, we can use the hit-and-run algorithm [START_REF] Bélisle | Hit-and-run algorithms for generating multivariate distributions[END_REF], where each iteration involves solving a convex optimization. (ii) For Example 2, Yang and Pavone (2023) proposed a RANSAG algorithm, where each iteration involves solving a geometry problem. (iii) We can first solve (GCC) with Q = I to obtain an enclosing ball, then perform rejection sampling inside the enclosing ball. We use (iii) in our experiments as it is general and does not require convexity.

Convex Relaxations for (GCC). Problem (GCC) is still nonconvex, but we can design a hierarchy of SDP relaxations that asymptotically converges to η ⋆ .

Theorem 2 (Generalized Relaxed Chebyshev Center) Let S in (8) be Archimedean, κ be an in-

teger such that 2κ ≥ max{2, {deg(g i )} lg i=1 , {deg(h j )} l h j=1 }, and s n (d) := n+d d , consider the following convex quadratic SDP -η ⋆ κ = min z∈R sn(2κ) L z (θ) T P T QP L z (θ) -⟨C, M κ (z)⟩ (12a) subject to M κ (z) ⪰ 0, M 0 (z) = 1 (12b) M κ-⌈deg(g i )/2⌉ (g i z) ⪰ 0, i = 1, . . . , l g (12c) L z (h j [θ] 2κ-deg(h j ) ) = 0, j = 1, . . . , l h (12d) 
9. SDPT3 [START_REF] Toh | Sdpt3-a matlab software package for semidefinite programming, version 1.3[END_REF] natively supports log det but empirically we found it performs worse than MOSEK. 10. Particularly, MOSEK returns a solution with large duality gap.

where z ∈ R sn(2κ) is the pseudomoment vector in θ of degree up to 2κ, L z (u) and M κ (uz) are both linear functions of z given coefficients of a certain polynomial u(θ) (cf. Appendix B), and C is a constant matrix whose expression is given in Appendix E. Let z ⋆,κ be an optimal solution to (12) and µ ⋆,κ = L z⋆,κ (θ), then, (i) for any κ, the ellipsoid

E Q,κ := {∥ξ -µ ⋆,κ ∥ 2 Q ≤ η ⋆ κ } encloses S ξ ; (ii) η ⋆ κ ≥ η ⋆ for any κ and η ⋆ κ converges to η ⋆ as κ → ∞.
The proof of Theorem ( 2), together with a lifting technique to write (12) as a standard linear SDP, is given in Appendix E. The basic strategy is to first apply the moment-SOS hierarchy, with order κ, to relax the inner "max ξ∈S ξ " (a polynomial optimization) as a convex SDP whose decison variable is z ∈ R sn(2κ) , the pseudomoment vector constrained by ( 12b)-(12d). Then, by innvoking Sion's minimax theorem [START_REF] Sion | On general minimax theorems[END_REF], one can switch "min µ " and "max z ", after which the "min µ " admits a closed-form solution µ = L z (θ) and leads to a single-level optimization with cost (12a). It is worth noting that letting κ = 1 (and Q = I) in ( 12) recovers the relaxed Chebyshev center in [START_REF] Yonina C Eldar | A minimax chebyshev estimator for bounded error estimation[END_REF] for bounded error estimation. For this reason, we call µ ⋆,κ the generalized relaxed Chebyshev center of order κ (GRCC-κ). As we will see in Section 4.1.2, the enclosing balls at GRCC-κ with κ ≥ 2 is significantly smaller than those of the RCC.

Handling the non-Euclidean Geometry of SO(3)

With the (GCC) formulation, we can approximate the minimum ellipsoid that encloses S t , the translation part of the SME in Example 2. The last challenge lies in enclosing S R , the rotation part of ( 7). Since the concept of an ellipsoid is not well defined on a Riemannian manifold such as SO(3), it is natural to seek an enclosing geodesic ball. This is closely related to the problem of finding the Riemannian minimax center of S R , defined as [START_REF] Arnaudon | On approximating the riemannian 1-center[END_REF] µ R,⋆ = arg min

µ∈SO(3) max R∈S R d SO(3) (µ, R), (13) 
where, given two rotations µ, R ∈ SO(3), d SO(3) (µ, R) denotes the geodesic distance on SO(3) defined by d SO(3) (µ, R) = arccos((tr µ T R -1)/2). Clearly, if we can find µ R,⋆ , then we have found the best point estimate from which the worst-case error bound is the smallest. Unfortunately, problem (13) cannot be directly solved using Theorem 2 because (i

) µ ∈ SO(3) is constrained (instead of in (GCC) µ ∈ R d is unconstrained), and (ii) the objective "d SO(3) (µ, R)"
is not a polynomial. The next result resolves these issues by leveraging unit quaternions.

Theorem 3 (Minimum Enclosing Ball for Rotations) Suppose there exists a 3D rotation R such that d SO(3) ( R, R) ≤ π 2 , ∀R ∈ S R , and let q ∈ S 3 := {q ∈ R 4 | ∥q∥ = 1} (or -q) be any one of the two unit quaternions associated with R. Consider the following Chebyshev center problem in R 4

µ ⋆ = arg min µ∈R 4 max q∈R 4 ∥µ -q∥ 2 | q ∈ S 3 , R(q) ∈ S R , qT q ≥ 0 , ( 14 
)
where R : S 3 → SO(3) maps a unit quaternion to a 3D rotation matrix (whose expression is given in Appendix F). Then the projection of µ ⋆ onto S 3 is the solution to (13), i.e., µ R,⋆ = µ ⋆ /∥µ ⋆ ∥.

The proof of Theorem 3 is given in Appendix F. Theorem 3 states that we can solve the original Riemannian minimax problem (13) by solving ( 14), which is easily verified to be an instance of (GCC) and hence can be approximated by the SDP relaxations in Theorem 2. Theorem 3 requires the existence of R such that all rotations in S R are reasonably closed to R and similar assumptions are needed in [START_REF] Arnaudon | On approximating the riemannian 1-center[END_REF]. In other words, S R needs to have relatively small uncertainty. This assumption can be numerically verified by first using the RANSAG algorithm in Yang and Pavone (2023) to compute R and then compute the maximum distance between R and S R , which we found empirically to be below π 2 for a majority of the test problems. 

Experiments

x k+1 = A ⋆ x k + B ⋆ u k + w k with A ⋆ = 0.8, B ⋆ = 1.0, and w k ∼ N (0, σ 2 w )
.11 Suppose we collected a system trajectory x 0 , u 0 , . . . , x N , we wish to find a set S such that we can guarantee P[(A ⋆ , B ⋆ ) ∈ S] ≥ 80%. (Abbasi-Yadkori and Szepesvári, 2011, Theorem 1) provides an ellipse centered at the least-squares estimator (LSE) that satisfies the probabilistic coverage guarantee, which requires knowing a bound such that

A 2 ⋆ + B 2 ⋆ ≤ K 2 . Let K ⋆ = A 2 ⋆ + B 2
⋆ be the best bound. We can get much smaller coverage sets via the SME (5) and its enclosing ellipsoids without knowledge on K ⋆ . Let β > 0 be the smallest number such that P

[w 2 k ≤ β] ≥ (80%) 1/N , implying P[w 2 0 ≤ β, . . . , w 2 N -1 ≤ β] ≥ 80% (assume w k 's are independent)
. Consequently, the SME (5) covers (A ⋆ , B ⋆ ) with probability at least 80%. Let E 4 be the enclosing ellipse of (5) computed via Theorem 1 using κ = 4 and E LSE be the confidence ellipse from [START_REF] Abbasi | Regret bounds for the adaptive control of linear quadratic systems[END_REF]. We compute Vol(E 2 )/Vol(E LSE ) as the volume ratio, which indicates SME finds a smaller enclosing ellipse when it is below 1.

Fig. 1(a) boxplots the volume ratio (in log scale) under different choices of σ w and K with fixed N = 50 (we perform 20 random experiments in each setup). We observe that LSE outperforms SME only when (i) LSE has access to a precise upper bound K ⋆ (which we think is often unrealistic) and (ii) the noise w k is large. In all other cases, the enclosing ellipse of SME is orders of magnitude smaller than that of LSE. A sample visualization is provided in Fig. 1(a).

IDENTIFICATION OF RANDOM LINEAR SYSTEMS Consider a linear system x

k+1 = A ⋆ x k + Bu k + w k , k = 0, . . . , N -1. We generate random A ⋆ ∈ R nx×nx , B ∈ R nx×nu
with each entry following a standard Gaussian distribution N (0, 1), then truncate the singular values of A ⋆ that are larger than 1 to 1. u k follows N (0, 1), and w k is random inside a ball with radius β. We treat B as known. We compute enclosing balls of the SME (5) using two algorithms: the RCC algorithm in [START_REF] Yonina C Eldar | A minimax chebyshev estimator for bounded error estimation[END_REF], and our GRCC algorithm presented in Theorem 2. Fig. 1(b) plots the radii of the enclosing balls with N ∈ {20, 40, 60, 80, 100}, n x = 2, and β ∈ {0.01, 0.1, 1.0} (each boxplot summarizes 20 random experiments). We observe that (i) GRCC (κ = 1) leads to exactly the same result as RCC, verifying that our GRCC algorithm recovers the RCC algorithm with κ = 1. (ii) The enclosing balls get much smaller with high-order relaxations (i.e., larger κ). More results with n x = 3 and n x = 4 are presented in Appendix G. LEARN Tsiamis and Pappas (2021) presented examples of linear systems that are hard to learn. We show that SME and its enclosing balls are adaptive to the hardness of identification, i.e., one gets large enclosing balls when the system is hard to learn. Consider the system x k+1 = Ax k + Hw k with

LINEAR SYSTEMS THAT ARE HARD TO

A =   0 θ 1 0 0 0 θ 2 0 0 0   , H =   1 0 0 0 0 1  
where w k is a random disturbance with noise bound 0.1. Consider (i) an easy-to-learn system with θ 2 = 1, and (ii) a hard-to-learn system with θ 2 = 10 -5 . Let θ 1 = 1. Fig. 1(c) boxplots the radii of the enclosing balls for the SME of (θ 1 , θ 2 ) with κ = 2 and increasing N . Clearly, we observe that the radii for hard-to-learn systems are much larger than that for easy systems.

CONSTRAINTS PRUNING IN A LONG TRAJECTORY

Consider the continuous-time dynamics of a simple pendulum

x 1 x 2 = x 2 -b ml 2 x 2 + 1 ml 2 u -g l sin x 1 = 0 1 0 0 0 -b ml 2 1 ml 2 -g l     x 1 x 2 u sin x 1    
where x = (x 1 , x 2 ) is the state (angle and angular velocity), b is the damping ratio, m is the mass, l is the length of the pole, and g is the gravity constant. We wish to identify θ 1 = b ml 2 , θ 2 = 1 ml 2

and θ 3 = g l . To do so, we discretize the dynamics using Euler method with dt = 0.01, add random disturbance w k that has bounded norm 0.1, and collect a single trajectory of length N = 1000.

Without constraint pruning, we can only run the GRCC algorithm with κ = 2 and the resulting enclosing ellipsoid and ball are visualized in Fig. 1(d). We then prune the constraint set using Algorithm 1, which leads to a much smaller set of 19 constraints (only 1.9% of the original number of constraints). We can then increase the relaxation order of GRCC and the resulting enclosing ellipsoid and ball become much smaller as visualized in Fig. 1(d). The volume of the enclosing ball with κ = 7 is only 1.08 × 10 -6 , indicating the SME has almost converged to a single point. 

Conclusions

We introduced a suite of computational algorithms based on semidefinite programming relaxations to compute minimum enclosing ellipsoids of set-membership estimation in system identification and object pose estimation. Three computational enhancements are highlighted, namely constraints pruning, generalized relaxed Chebyshev center, and handling non-Euclidean geometry. These algorithms are still limited to small-and medium-sized problems (though these problems are already interesting) due to computational challenges in semidefinite programming. Multiple future research directions are possible, e.g., applying SME to system identification with partial observations, extending SME on object pose estimation to more perception problems, and integrating SME with adaptive control and reinforcement learning.

12. RANSAG first estimates an average rotation and translation, then uses SDP relaxations to compute the inner "max" problem in (GCC). In other words, RANSAG does not seek to find a better estimate with smaller error bounds.

Appendix A. Non-Gaussian Measurement Noise from Neural Networks

In this section, we provide, to the best of our knowledge, the first numerical evidence that the noise in measurements generated by neural networks in object pose estimation (Example 2) does not follow a Gaussian distribution.

Our strategy is to compute the noise vector ϵ i from (6) as

ϵ i = y i -Π(R gt Y i + t gt ), i = 1, . . . , N,
where (R gt , t gt ) is the groundtruth camera pose, and y i 's are neural network detections of the object keypoints. We use the LineMOD Occlusion (LM-O) dataset [START_REF] Brachmann | Learning 6d object pose estimation using 3d object coordinates[END_REF] [START_REF] Pavlakos | 6-dof object pose from semantic keypoints[END_REF].

Table A1 shows the test results. We can see that among the 36 tests performed, the data passed the test only once. This gives strong evidence that the noise vectors do not follow a Gaussian distribution, even after filtering potential outliers. Fig. A1 shows the perspective plots (top) and the Chi-square quantile-quantile (Q-Q) plots of the empirical density functions under different inlier ratios, in comparison to that of a Gaussian distribution. We can see that the empirical density functions deviate far away from a Gaussian distribution, and are difficult to characterize. This motivates the set membership estimation framework in Section 1. 

x = [x 1 , x 2 , • • • , x n ] ∈ R n , denote the monomial Π i x α i i as x α where α = [α 1 , • • • , α n ] ∈ N n .
The degree of a monomial is defined as n i=1 α i , and the degree of a polynomial, α c α x α , is the maximum degree of all monomials. We use the notation R[x] d to denote all the polynomials with degree less than or equal to d.

Monomial Basis and Sum-of-Squares Polynomials. Denote the monomial basis [x] κ as the column vector of all monomials of degree up to κ. For example, if n = 2 and κ = 2, the corresponding monomila basis is [x] 2 = [1; x 1 ; x 2 ; x 2 1 ; x 1 x 2 ; x 2 2 ]. If we define s n (d) := n+d d , the length of the monomial basis [x] κ is s n (κ).

A polynomial g(x) is called a sum-of-squares (SOS) polynomial if it can be written as a sum of squares of polynomials, i.e., g(x) = m i=1 q i (x) 2 for some q i (x) ∈ R[x]. Next proposition gives a necessary and sufficient condition for a polynomial to be SOS, which is more convenient for us to check whether a polynomial is a SOS polynomial.

Proposition A1 (Condition for SOS Polynomials Lasserre ( 2009)) A polynomial g ∈ R 2d [x] is a SOS polynomial if and only if there exists a symmetric and positive semidefinite matrix

Q ∈ R sn(d)×sn(d) such that g(x) = [x] T d Q[x] d where [x] d is the monomial basis.

B.2. Nonnegativity Certificate

We consider a basic semialgebraic set S := {x ∈ R n | g i (x) ≥ 0, i = 1, . . . , l g , h j (x) = 0, j = 1, . . . , l h }, where g i (x), h j (x) are polynomials. How to describe the nonnegativity of a polynomial on S is a crucial technique in the following proofs. We first introduce a property called Archimedean.

Assumption A1 (Archimedean Property) For the basic semialgebraic set S, there exists u ∈ R[x] of the form:

u = σ 0 + lg j=1 σ j g j + l h k=1 λ k h k where σ j ∈ R[x] are sum of squares and λ k ∈ R[x] are arbitrary polynomials, such that the level set {x ∈ R n | u(x) ≥ 0} is compact.
It's notable that, if the set is compact, then by adding an enclosing ball constraint, the Archimedean property can be satisfied trivially. If S is Archimedean, then for strictly nonnegative polynomials on S, we have the following theorem.

Theorem A2 (Putinar's Positivstellensatz (Putinar, 1993)) Let S be a basic semialgebraic set defined by {x | g i (x) ≥ 0, i = 1, ..., l g , h j (x) = 0, j = 1, ..., l h }, and f be a polynomial in R[x].

If assumption A1 holds, then f is strictly nonnegative on S if and only if there exists a sequence of sum-of-squares polynomials {σ i } lg i=0 and polynomials

{λ j } l h j=1 , such that f = σ 0 + lg i=1 σ i g i + l h j=1 λ j h j .
There exist other types of nonnegativity certificates, for which we refer the interested reader to [START_REF] Blekherman | Semidefinite optimization and convex algebraic geometry[END_REF].

B.3. Polynomial Optimization and the Moment-SOS Hierarchy

We introduce basic concepts of the moment-SOS hierarchy which are used in the derivation in the main text, specifically Theorem 2. For further information, we refer to Lasserre (2009); [START_REF] Blekherman | Semidefinite optimization and convex algebraic geometry[END_REF].

Polynomial optimization. Consider the following polynomial optimization problem (POP):

min x f (x) (A1a) subject to g i (x) ≥ 0 i = 1 • • • l g (A1b) h j (x) = 0 j = 1 • • • l h (A1c)
where g i (x), h j (x) are polynomials. Denote the basic semialgebraic set (feasible set of (A1)) S := {x ∈ R n | g i (x) ≥ 0, i = 1, . . . , l g , h j (x) = 0, j = 1, . . . , l h }. Generally speaking, (A1) is a nonconvex problem, and it is NP-hard to solve. However, we can relax problem (A1) into a sequence of convex semidefinite programming (SDP) problems, which guarantees to monotonely converge to the optimal value of (A1). The relaxation is called Lasserre's moment-SOS hierarchy [START_REF] Jean B Lasserre | Global optimization with polynomials and the problem of moments[END_REF]. Next we will introduce this technique briefly. First, we can recast the polynomial optimization problem as a infinite dimensional linear programming problem.

min µ∈M(S) + f (x)dµ (A2a) subject to S dµ = 1 (A2b)
where M(S) + is the space of all finite Borel measures supported on S. Then we introduce a linear functional L z (f )

f (x) = α∈N n f α x α → L z (f ) = α∈N n f α z α ,
where {z α , α ∈ N n } is sequence of real numbers (often known as the pseudomoment vector). For a sequence {z α , α ∈ N n }, we say it has a representing measure on S if there exists a measure µ Before presenting the proof of Proposition A4, we briefly describe the intuition. By (Xie, Miaolan, 2016, Theorem 3.2.5), E is the minimum enclosing ellipsoid of S ξ if and only if there exists a finite number of contact points at the intersection of E and S ξ that satisfy (A8). Since the contact points lie on the boundary of E, they must attain zero value in (A7), and hence must be its global minimizers. Therefore, we can use the moment-SOS hierarchy to find the contact points. Section G.1 gives a concrete numerical example of computing the certificate of convergence. Proof We first present John's theorem of minimum enclosing ellipsoid.

Lemma A5 (John's Theorem) Let C ⊆ R n be a convex body and C ⊆ B H (x, 1), where

B H (x, 1) := {x ∈ R n |(x -x) T H(x -x) ≤ 1}, H ≻ 0.
Then the following statements are equivalent:

• B H (x, 1) is the minimum volume ellipsoid enclosing C. • There exists some r ∈ n, n + 1, • • • , n(n+3) 2 contact points p 1 , • • • , p r ∈ ∂(C)∩∂(B H (x, 1)) and α ∈ R r ++ such that H -1 = r i=1 α i (p i -x)(p i -x) T and r i=1 α i (p i -x) = 0. (A9)
Then we leverage this Lemma to prove Proposition A4.

From Theorem 1, the bounding ellipsoid of

S ξ is E = (ξ + E -1 ⋆ b ⋆ ) T E ⋆ (ξ + E -1 ⋆ b ⋆ ) ≤ 1.
Based on Lemma A5, if the ellipsoid is the minimum volume enclosing ellipsoid, there must exists contact points satisfying (A9). Then the optimal value of the optimization problem (A7) is 0 and the solutions are the contact points.

Suppose by solving the optimization problem (A7) at certain relaxation order ν, we get the optimal value ρ ⋆ ν = 0, then the solutions are the contact points. Suppose we can extract the optimal solutions ξ 1 ⋆ , . . . , ξ K ⋆ ∈ ∂(S ξ ) ∩ ∂(E) using the result in [START_REF] Henrion | Detecting global optimality and extracting solutions in gloptipoly[END_REF], Then from John's theorem, if there exist α ∈ R K ++ such that,

K k=1 α k (ξ k ⋆ + E -1 ⋆ b ⋆ ) = 0,
Theorem A6 (Equivalence of the problem) There exists R > 0 such that the original problem [START_REF] Sain | Chebyshev centers that are not farthest points[END_REF], the Chebyshev center of the bounded set in R n exists and is unique.

η ⋆ = min µ∈R d max ξ∈S ξ ∥µ -ξ∥ 2 Q is equivalent to the problem: η ⋆ = min µ∈B R (O) max ξ∈S ξ ∥µ -ξ∥ 2 Q Proof By
We only need to show that the solution lies inside some ball B R (O).

Denote the Chebyshev center as µ ⋆ and the corresponding radius as η ⋆ . Due to the assumption of boundedness, there exists R ′ such that for all ξ ∈ S ξ ,

∥µ * -O∥≤ ∥µ * -s∥+∥s -O∥≤ η ⋆ + R ′ ,
where s is the point in S ξ that attains the maximum distance to µ ⋆ , and R ′ is the distance from s to O. Thus we can choose R = R ′ + η ⋆ to complete the proof.

Then using Lasserre's hierarchy, for relaxtation order κ satisfying 2κ ≥ max{deg(g 1 ), . . . , deg(g l ), 2}, we can relax the inner maximization problem

η(µ) = max θ∈S µ T Qµ -2µ T QP θ + θ T P T QP θ (A12)
Denote the pseudomoment vector of degree up to 2κ as [z] 2κ and shorthand it as z, and we denote the moment matrix with respect to z of order κ as M κ (z), then the moment relaxation of (A12) at order κ reads:

η κ (µ) = max z µ T Qµ -2µ T QP L z (θ) + ⟨C, M κ (z)⟩ (A13) subject to M κ (z) ⪰ 0, M 0 (z) = 1 (A14) M κ-⌈deg(g i )/2⌉ (g i z) ⪰ 0, i = 1, . . . , l g (A15) L z (h j [θ] 2κ-deg(h j ) ) = 0, j = 1, . . . , l h (A16)
where L z (θ) denotes the order-one moment vector in z (i.e., the sub-vector of z corresponding to the order-one monomials θ), M κ-⌈deg(g i )/2⌉ (g i z) are the localizing matrices corresponding to inequalities {g i } l i=1 , M 0 (z) = 1 enforces the zero-order pseudomoment to be 1, and the matrix C is

C =   0 0 0 0 A 0 0 0 0   where A satisfies A ij = (P T QP ) ij if i = j (P T QP ) ij /2 else
Thus, ⟨C, M κ (z)⟩ corresponds to the moment relaxation of θ T P T QP θ.

Denote Ω κ as the feasible set of the relaxation (A13). Note that Ω κ does not depend on µ.

Now that we have relaxed the inner "max" as a convex problem, we bring back the outer "min"

η ⋆ κ = min µ∈B R (O) η κ (µ) = max z∈Ωκ µ T Qµ -2µ T QP L z (θ) + ⟨C, M κ (z)⟩ (A17)
from Lasserre's hierarchy, we have η κ (µ) ≥ η(µ) for any µ and any relaxation order κ, thus we have

η ⋆ κ = min µ∈B R (O) η κ (µ) ≥ min µ∈B R (O) η(µ) = η ⋆
i.e., the optimum of (A17) always provides an upper bound for η ⋆ .

Notice that now the objective function of the relaxed problem (A17) is affine in z and convex in µ. And note the B R (O) is a compact set. So that we can apply Sion's minimax theorem to switch the order of "min" and "max".

Theorem A7 (Sion's minimax theorem (Sion, 1958, Corollary 3.3)) Let M, N be convex spaces one of which is compact, and f a function on M × N , quasi-concave-convex and upper semicontinuous -lower semicontinuous. Then inf x∈N sup y∈M f (x, y) = sup y∈M inf x∈N f (x, y).

Then we get the equivalent problem:

η ⋆ κ = max z∈Ωκ min µ∈B R (O) µ T Qµ -2µ T QP L z (θ) + ⟨C, M κ (z)⟩ (A18)
Note that by taking the derivative of the objective function with respect to µ, now the inner minimization problem has an explicit solution:

µ ⋆ κ = P L z (θ)
Next we will show that: we can choose the R 1 big enough such that for all κ, µ ⋆ κ ∈ B R 1 (O).

Theorem A8 (Attainability of the minimum) There exists R 1 > 0 which doesn't rely on the relaxation order κ, such that µ ⋆ κ ∈ B R 1 (O). Proof P does not rely on κ, thus it suffices to show that L z (θ) is bounded independent of κ.

Due to the assumption of compactness of S, there exists R 1 such that S ⊂ B R 1 (O), which is independent from the optimization procedure. Thus, we can add an extra inequality constraint g l+1 (θ) = -θ T θ + R 1 2 ≥ 0 without affecting the original problem. So without loss of generality, we can assume that we include the constraint g l+1 (θ) = -θ T θ + R 1 2 ≥ 0 in the original problem. Then we examine the constraint of the localizing matrix. The corresponding constraint for the inequality

g l+1 (θ) = -θ T θ + R 1 2 ≥ 0 is M κ-1 (g l+1 y) ⪰ 0.
The principal minors of a positive semidefinite matrix is nonnegative, so the first principal minor of M κ-1 (g l+1 y) is nonnegative, which implies L z (g l+1 ) ≥ 0. And this is equivalent to the constraint that ⟨T, M κ (z)⟩ ≤ R 1 2 where T =   0 0 0 0 I n 0 0 0 0   Then let's pass this constraint to L z (θ) via the moment matrix. Denote the (n + 1) × (n + 1) principal submatrix as:

1 L z (θ) T L z (θ) A
where tr (A) = ⟨T, M κ (z)⟩ ≤ R 1 2 . The moment matrix M κ (z) ⪰ 0, so that the (n+1)×(n+1) principal submatrix is also positive semidefinite. By Schur complement, we know that A -L z (θ)L z (θ) T ⪰ 0. Thus R 1 2 ≥ tr (A) ≥ tr L z (θ)L z (θ) T = L z (θ) T L z (θ). This implies L z (θ) lies inside B R 1 (O), which is independent of the choice of κ.

Thus we can know that we can solve the inner minimization exactly. Plugging the µ ⋆ κ back into the objective function, we can get another equivalent problem:

η ⋆ κ = max z∈Ωκ -L z (θ) T P T QP L z (θ) + ⟨C, M κ (z)⟩ (A19)
or equivalently in minimization form

-η ⋆ κ = min z∈Ωκ L z (θ) T P T QP L z (θ) -⟨C, M κ (z)⟩ (A20)
This is already a convex problem. But it is a convex quadratic SDP problem. By leveraging lifting technique, we can also convert it into a standard form SDP as follows:

-η ⋆ κ = min z∈Ωκ t -⟨C, M κ (z)⟩ (A21) subject to Q -1 P L z (θ) L z (θ) T P T t ⪰ 0 (A22)
Proof of convergence. Because the basic semialgebraic set S is compact, we can always assume that the Assumption A1 holds. Then we will introduce two theorems which are the main ingredients in our proof of the convergence result.

Theorem A9 (Degree bound of Putinar's Positivstellensatz [START_REF] Nie | On the complexity of putinar's positivstellensatz[END_REF]) Let K be a compact basic semialgebraic set defined by:{x : g i (x) ≥ 0 i = 1...m} satisfying the Archimedean property. Assume ∅ ̸ = K ⊂ (-1, 1) n . Then there is some c > 0 such that for all f ∈ R[x] of degree d, and positive on K (i.e. such that f * := min f (x) : x ∈ K)), the representation in Putinar's Positivstellensatz A2 holds with

deg(f j g j ) ≤ cexp((d 2 n d ∥f ∥ 0 f * ) c ) where ∥f ∥ 0 := max α fα C α |α| and C α |α| = |α|! α 1 !...αn! .
We have the following theorem to guarantee the convergence of the Lasserre's hierarchy in this problem, which is the extension of the proof in Lasserre (2009). Before the proof of our main theorem, we shall first show the following lemma which summarizes the relationship between optimization problems which we will leverage in the proof of the main theorem.

Lemma A10 (Relationship between optimization problems Lasserre ( 2009)) Given a basic semialgebraic set S := {x ∈ R n | g i (x) ≥ 0 i = 1 • • • l g }, and a polynomial f (x), there are four related optimization problems:

Using the definition of the dual problem (A25), if we fix an arbitrary ε > 0, we can know that there exists a feasible point for problem (A25) namely λ which satisfies:

η mom = η pop ≤ λ ≤ η mom + ε = η pop + ε
Next, consider λ = λ + ε. Thus we can know that λ -f ≥ ε > 0 ∀x ∈ S, then we can use Putinar's Positivstellensatz A2:

λ -f = σ 0 + lg i=1 σ i g i + l h j=1
λ j h j σ j is sum of squares polynomial which shows that once 2κ ≥ max{deg(σ j g j ), deg(λ j h j )}, we can have

η pop = η mom ≤ η κ ≤ η * κ ≤ λ = λ + ε ≤ η mom + 2ε
and as ε is arbitrary, we can let ε → 0.

In the following discussion we will only focus on the inequality constraints, for all the equality constraints can be interpreted as two inequality constraints.

The only barrier we will encounter when we want to prove the minimax version is that, the bound of degree of σ i g i may not be the same for different µ. So we need a uniform convergence result with respect to µ (the outer min). Thus we want to apply the degree bound of Putinar's Positivstellensatz. Remind that we have shown the equivalence of problem by restricting the feasible set of µ to a ball B R 1 (O) for all κ. Also consider the ball of radius R contains S. Then S is also contained in a box

[-R, R] n .
Consider the polynomial f ( θ) = λ -f ( θ • R), where θ ∈ S/R ⊆ [-1, 1] n . Suppose λ max is the maximum eigenvalue of Q, then we apply Theorem A9. The parameters are as follows: d = 2, n is the dimension of vector θ. Note that: ∥f ∥ 0 = max{2λ max R 1 θ(i), λ max R 2 }, which can be bounded by a constant independent of µ. Also note that: f * = min{f (θ) : θ ∈ S} > ϵ, thus we can choose ϵ to bound f * . Now we as long as 2κ ≥ cexp((d 2 n d ∥f ∥ 0 f * ) c ), we can guarantee all the σ i g i will have degree less than 2κ. Thus we can guarantee the inner maximization is exact, and the convergence of the minimax problem follows.

Clearly, q and -q corresponds to the same rotation matrix. The inverse of a rotation matrix R is R -1 = R T , and the inverse of a unit quaternion q is q -1 , which simply flips the sign of q 1 , q 2 , q 3 q -1 = [q 0 , -q 1 , -q 2 , -q 3 ] T .

(A37)

The product of two quaternions q c = q a q b is defined as

q c = q a q b =    
q a,0 -q a,1 -q a,2 -q a,3 q a,1 q a,0 -q a,3 q a,2 q a,2 q a,3 q a,0 -q a,1 q a,3 -q a,2 q a,1 q a,0

    q b . (A38)
The next proposition characterizes the equivalence of distance metrics on SO(3) and S 3 .

Proposition A12 (Equivalent expression of distance on SO(3) and S 3 ) Given two rotations R, Q, the geodesic distance is defiend as:

θ 1 = arccos tr R T Q -1 2 .
Let q R and q Q be the unit quaternions corresponding to R and Q, the geodesic distance on S 3 is defined as

θ 2 = 2 arccos(|⟨q R , q Q ⟩|),
where ⟨•, •⟩ denotes the inner product viewing q R , q Q as vectors in R 4 . It holds that θ 1 = θ 2 .

Proof Consider the rotation

A = R T Q = R -1 Q. The rotation angle of A is θ 1 = arccos tr (A) -1 2 .
Let q A = q -1 R q Q (q -1 R is the inverse quaternion), by direct computation using (A37) and (A38), we know q A,0 = ⟨q R , q Q ⟩.

where ⟨•, •⟩ denotes the inner product viewing q R , q Q as vectors in R 4 . For A, cos θ 2 2 = q A,0 . By convention, we want θ 2 ∈ [0, π), so we need to carefully select the quaternions to guarantee the inner product is positive. For simplicity, we can just take the absolute value for q A,0 . Thus, the rotation angle of q A is:

θ 2 = 2 arccos(|⟨q R , q Q ⟩|).
These two angle refers to the same rotation, thus θ 1 = θ 2 , which completes the proof.

The fact that for quaternions, q and -q represent the same rotation is the reason why we need to take the absolute value of the inner product. Geometrically, this is saying the same rotation R corresponds to two quaternions on S 3 and these two quaternions are actually antipodal. When considering the distance of two rotations on S 3 , we shall always pick the nearest pair of points. Now think of the set S R , it will get mapped to two antipodal sets on S 3 . When the set S R is reasonablly small, we can get rid of the absolute value when calculating the minimum enclosing ball. Precisely speaking, if there exists a rotation R such that d SO(3) ( R, R) ≤ π 2 , ∀R ∈ S R , we can know that on S 3 , there exists a quaternion q such that the maximum angle difference from q to the set is smaller than π 4 . Thus by triangle inequality, in each branch on the S 3 , the angle between any two points in the set will be less than π 2 . Under this assumption, we can completely get rid of the absolute value when we are calculating the distance of any two quaternions.

Thus the problem of finding the minimum enclosing ball of S R on SO(3) can be conveniently translated into finding a minimum enclosing ball for one branch of the counterpart of S R on S 3 . We claim finding the minimum enclosing ball on S 3 is equivalent to finding the minimum enclosing ball in R 4 .

Proposition A13 (Finding miniball on S 3 is equivalent to finding miniball in R 4 ) Given a set of rotations S R with angle span less than π 2 defined on S 3 , the miniball of the set on S 3 is just the restriction of the miniball of the set in R 4 onto S 3 .

An analogy of Proposition A13 is shown in Fig. A2. The underlying geometric intuition is that: the center of the minimum enclosing ball in R 4 must line in the affine space defined by the contact points. And the minimum enclosing ball on S 3 is just the equator of the minimum enclosing ball in R 4 . Thus by projecting the corresponding center of the minimum enclosing ball in R 4 onto S 3 , we can get the center of the minimum enclosing ball on S 3 . Proof We'll show that the restriction of the miniball of the set in R 4 is the miniball on S 3 . Suppose B is the miniball of the set in R 4 , then denote C = B ∩ S 3 . Clearly, C is a geodesic ball that encloses the set S R . We claim that C is also the smallest enclosing geodesic ball.

A key observation is that, the center of B must lie in the affine space, else the radius wouldn't be the smallest. The miniball must have contact points, which must lie on the intersection of S 3 and B, i.e., C. 

G.2. Random Linear system

To supplement Section 4.1.2, here we provide more results on random linear system identification where the matrix A ⋆ has size n x = 3 and n x = 4.

Appendix H. Related Work

We provide a brief review of set-membership estimation (SME) in control and perception (mainly related to system identification and object pose estimation), as well as existing algorithms that seek simpler enclosing sets of SME. For related work about system identification, we refer to [START_REF] Oymak | Non-asymptotic identification of lti systems from a single trajectory[END_REF]; [START_REF] Bakshi | A new approach to learning linear dynamical systems[END_REF], for related work about object pose estimation, we refer to Yang and Pavone (2023) and references therein.

As mentioned in Section 1, set-membership estimation (SME) is a framework for model estimation which doesn't place any assumptions on the statistical distribution of the noise. It only assumes the noises are unknown but bounded. SME dates back to at least [START_REF] Milanese | Optimal estimation theory for dynamic systems with set membership uncertainty: An overview[END_REF] and [START_REF] Robert L Kosut | Set-membership identification of systems with parametric and nonparametric uncertainty[END_REF] in control theory where the main interest was to estimate unknown parameters of dynamical systems. [START_REF] Li | Learning the uncertainty sets for control dynamics via set membership: A non-asymptotic analysis[END_REF] proves that the SME converges to a single point estimate (i.e., the groundtruth) as the system trajectory becomes long enough when the noise satisifies bounded Gaussian distributions. Recently, Yang and Pavone (2023) applied SME to a computer vision example known as object pose estimation.

Because an SME is defined by complex constraints and the number of constraints increases as the horizon of the system gets longer, an important task in set-membership estimation is to find simpler and more intuitive sets that enclose the original sets [START_REF] Walter | Characterizing sets defined by inequalities[END_REF]. The main idea of applying SME framework to system identification is to maintain an easily-computed outer approximation of the uncertainty set. There are two main ways to get the outer approximation, namely batch computation or recursive computation.

For batch calculations, we observe a sequence of inputs and outputs of the system, and the uncertainty set is all the possible parameters that can generate the sequence under the assumption of the bounded noise. [START_REF] Cerone | Set-membership error-in-variables identification through convex relaxation techniques[END_REF] propose an algorithm leveraging Lasserre's hierarchy to calculate the bounding interval on every dimension of the parameters. In robotics, similar bounding Position of our algorithms. Our SOS-MEE algorithm (Theorem 1) and GRCC algorithm (Theorem 2) both belong to batch computation algorithms (although it is easy to see that our algorithms can also be used in a recursive fashion). Our GRCC formulation is more general and contains the minimum enclosing interval studied in [START_REF] Cerone | Set-membership error-in-variables identification through convex relaxation techniques[END_REF] by choosing ξ as just one dimension of θ. [START_REF] Durieu | Multi-input multi-output ellipsoidal state bounding[END_REF] calculates the minimum enclosing ellipsoids only in a certain parametric set, so it could be sub-optimal, while our SOS-MEE algorithm has asymptotic convergence to the true MEE and the convergence can be certified. Moreover it can only handle the case of intersections of ellipsoids while we can handle arbitrary basic semialgebraic sets. Our GRCC algorithm strictly generalizes [START_REF] Yonina C Eldar | A minimax chebyshev estimator for bounded error estimation[END_REF], as it's just the simplest case (κ = 1) of our algorithm. Lastly, although computing the enclosing ellipsoids is not as as general as computing polynomial level sets as in [START_REF] Dabbene | Set approximation via minimum-volume polynomial sublevel sets[END_REF], our algorithms are more computational efficient and implementable, as demonstrated by numerial experiments in Section 4. Our contributions lie in the three computational enhancements (Section 3) that make the SOS-based framework tractable and applicable to modern system identification and object pose estimation problems. 
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 1 Figure1: Experimental results on system identification (Example 1).4.1. System Identification (Example 1)4.1.1. COMPARISON WITH LEAST SQUARES ESTIMATION Consider a one-dimensional linear system x k+1 = A ⋆ x k + B ⋆ u k + w k with A ⋆ = 0.8, B ⋆ = 1.0, and w k ∼ N (0, σ 2 w ). 11 Suppose we collected a system trajectory x 0 , u 0 , . . . , x N , we wish to find a set S such that we can guarantee P[(A ⋆ , B ⋆ ) ∈ S] ≥ 80%. (Abbasi-Yadkori and Szepesvári, 2011, Theorem 1) provides an ellipse centered at the least-squares estimator (LSE) that satisfies the probabilistic coverage guarantee, which requires knowing a bound such thatA 2 ⋆ + B 2 ⋆ ≤ K 2 . Let K ⋆ = A 2 ⋆ + B 2⋆ be the best bound. We can get much smaller coverage sets via the SME (5) and its enclosing ellipsoids without knowledge on K ⋆ . Let β > 0 be the smallest number such that P[w 2 k ≤ β] ≥ (80%) 1/N , implying P[w 2 0 ≤ β, . . . , w 2 N -1 ≤ β] ≥ 80% (assume w k 's are independent). Consequently, the SME (5) covers (A ⋆ , B ⋆ ) with probability at least 80%. Let E 4 be the enclosing ellipse of (5) computed via Theorem 1 using κ = 4 and E LSE be the confidence ellipse fromAbbasi-Yadkori and Szepesvári 
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 2 Object Pose Estimation (Example 2)We follow the same procedure asYang and Pavone (2023), i.e., we use conformal prediction to calibrate the norm bounds β i for the noise vectors ϵ i (cf. (6)) generated by the pretrained neural network in[START_REF] Pavlakos | 6-dof object pose from semantic keypoints[END_REF] and form the SME (7). We then use the GRCC algorithm in Theorem 2 with κ = 2 to compute enclosing balls (for the rotation we apply GRCC in Theorem 3 to compute enclosing geodesic balls). We compare the radii of the enclosing balls obtained by GRCC with the radii of the enclosing balls obtained by RANSAG of Yang and Pavone (2023). 12 Fig.2(a)shows the empirical cumulative distribution function (CDF) of the translation bounds and rotation bounds, respectively (there are 7035 translation problems and 6667 rotation problems). We observe that the error bounds obtained by GRCC are smaller than those obtained by RANSAG. Examples of enclosing balls and ellipsoids for the translation SME are shown in Fig.2(b), where we observe that the enclosing ellipsoid precisely captures the shape of the SME. Fig.2(b) also plots the enclosing balls of the rotation SME using stereographic projection.

  CDF plots. Left: translation, right: rotation (b) Enclosing balls/ellipsoids. Left: translation, right: rotation.
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 2 Figure 2: Experimental results on object pose estimation (Example 2).

Figure A1 :

 A1 Figure A1: Perspective plots (top) and Chi-square Q-Q plots (bottom) of the noise vectors generated by neural network measurements in the LM-O dataset. From left to right, they are respectively for 1%, 5%, 10%, 20%, 40%, 100% noise vectors. The right-most graph shows the perspective plot for a Gaussian distribution that can be used as comparison. Appendix B. SOS Relaxations and the Moment-SOS Hierarchy B.1. Monomials, Polynomials, and Sum-of-Squares(SOS) Monomials and Polynomials. Givenx = [x 1 , x 2 , • • • , x n ] ∈ R n , denote the monomial Π i x α i i as x α where α = [α 1 , • • • , α n ] ∈ N n .The degree of a monomial is defined as n i=1 α i , and the degree of a polynomial, α c α x α , is the maximum degree of all monomials. We use the notation R[x] d to denote all the polynomials with degree less than or equal to d.Monomial Basis and Sum-of-Squares Polynomials. Denote the monomial basis [x] κ as the column vector of all monomials of degree up to κ. For example, if n = 2 and κ = 2, the corresponding monomila basis is [x] 2 = [1; x 1 ; x 2 ; x 2 1 ; x 1 x 2 ; x 2 2 ]. If we define s n (d) := n+d d , the length of the monomial basis [x] κ is s n (κ).A polynomial g(x) is called a sum-of-squares (SOS) polynomial if it can be written as a sum of squares of polynomials, i.e., g(x) = m i=1 q i (x) 2 for some q i (x) ∈ R[x]. Next proposition gives a necessary and sufficient condition for a polynomial to be SOS, which is more convenient for us to check whether a polynomial is a SOS polynomial.
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 A2 Figure A2: Analogy of Proposition A13 in R 2 . The black line segment is a subset of S 1 (the dotted circle). The solid blue circle is the minimum enclosing ball of the black line segment in R 2 . The center of the solid blue circle, projected onto S 1 , is the center of the minimum enclosing geodesic ball on S 1 .
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 A3 Figure A3: The certificate of finite convergence for TV Screen Example.
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  Yang and Marco Pavone. Object pose estimation with statistical guarantees: Conformal keypoint detection and geometric uncertainty propagation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8947-8958, 2023.

Table A1 :

 A1 that includes 2D images picturing a set of household objects on a table from different camera perspectives. The groundtruth camera poses are annotated and readily available in the dataset. We use the 2D keypoint detector in[START_REF] Pavlakos | 6-dof object pose from semantic keypoints[END_REF] that was trained on the LM-O dataset. At test time, the trained model outputs a heatmap of the pixel location of each semantic keypoint, and following[START_REF] Pavlakos | 6-dof object pose from semantic keypoints[END_REF] we set y i as the peak (maximum likelihood) location in the heatmap for each keypoint.This procedure produces a set of N = 83, 347 13 2D noise vectors {ϵ i } N i=1 and we want to test if they are drawn from a multivariate Gaussian (normal) distribution. To do so, we use the R package MVN[START_REF] Korkmaz | Mvn: An r package for assessing multivariate normality[END_REF]) that provides a suite of popular multivariate normality tests well established in statistics. To consider potential outliers in the noise vectors {ϵ i } N i=1 (i.e., maybe only the smallest noise vectors satisfy a Gaussian distribution[START_REF] Antonante | Outlier-robust estimation: Hardness, minimally tuned algorithms, and applications[END_REF]), we run MVN on α% of the noise vectors with smallest magnitudes, and we sweep α from 1 (i.e., keep only the 1% smallest noise vectors) up to 100 (i.e., keep all noise vectors). Results of MVN tests on the noise vectors generated by neural network measurements in the LM-O dataset. We use the pretrained network from

	Percentage Mardia Skewness Mardia Kurtosis Henze-Zirkler Royston Doornik-Hansen Energy
	1%	YES	NO	NO	NO	NO	NO
	5%	NO	NO	NO	NO	NO	NO
	10%	NO	NO	NO	NO	NO	NO
	20%	NO	NO	NO	NO	NO	NO
	40%	NO	NO	NO	NO	NO	NO
	100%	NO	NO	NO	NO	NO	NO

Table A2 :

 A2 Computing the Chebyshev center of simple geometric shapes.

	Example Can RCC handle? Center difference Radius difference
	Sphere	NO	4.7924e-17	6.2866e-10
	Ball	YES	9.9467e-18	6.4283e-09
	Cube	YES	1.0080e-17	2.6002e-09
	Ellipsoid	NO	1.1486e-16	9.6512e-10
	TV screen	NO	1.8918e-17	4.1497e-09

One can replace the Gaussian assumption with more sophisticated distributional assumptions, but the resulting optimization often becomes more difficult to solve.

3. Note that our algorithm can allow θ to appear nonlinearly in the dynamics, but it is sufficient to restrict to dynamics linear in θ as in (4) for system identification tasks in many real

applications. 4. SE(3) := SO(3) × R 3 with SO(3) := {R ∈ R 3×3 | R T R = RR T = I, det R = +1}.

This is the same setup as in[START_REF] Li | Learning the uncertainty sets for control dynamics via set membership: A non-asymptotic analysis[END_REF].

There are 8 different objects in the dataset, each with about 8 semantic keypoints. The dataset has 1214 images.

K k=1 α k (ξ k ⋆ + E -1 ⋆ b ⋆ )(ξ k ⋆ + E -1 ⋆ b ⋆ ) T = E -1 ⋆ , (A8)then E = {ξ ∈ R d | ξ T E ⋆ ξ + 2b T ⋆ ξ + c ⋆ ≤ 1}is the unique solution of (MEE).

K k=1 α k (ξ k ⋆ + E -1 ⋆ b ⋆ )(ξ k ⋆ + E -1 ⋆ b ⋆ ) T = E -1 ⋆ (A10)the ellipsoid E is the minimum volume enclosing ellipsoid. Note that (A10) is a system of linear equations in α and can be easily solved.

supported on S satisfying: z α = S x α dµ. Then the optimization problem (A2) is equivalent to:

subject to z 0 = 1 (A3b) z has a representing measure on S (A3c)

If we introduce a new notation of moment matrix and localizing matrix, we can cast a necessary and sufficient condition for the existence of representing measure as infinite semidefinite constraints.

Moment matrix. Given a s n (2r)-sequence z = (z α ), the moment matrix M r (z) is defined as follows:

M r (z)(α,

where N n r is the set of all multi-indices α ∈ N n with |α|= n i=1 α i ≤ r. Localizing matrix. Given a polynomial g(x) ∈ R[x], the localizing matrix with respect to z, g is defined as:

M r (g, z)(α, β) = L z (x α+β g(x)) =

γ∈N n z α+β+γ g γ .

If the set satisfies the Archimedean property, we have the following theorem.

Theorem A3 (Representing measure (Lasserre, 2009, Theorem 3.8) ) Let z = (z α ) α∈N n be a given infinite sequence in R and assume the basic semialgebraic set S is compact. Then z has a representing measure on S if and only if for all r ∈ N M r (z) ⪰ 0

This theorem, however, is not practical since it requires infinite number of constraints. In practice we solve the relaxation of the above theorem by only using constraints with a finite r.

Thus the final problem for Lasserre's hierarchy, with a relaxation order κ is:

Using monomial basis [x] κ , which is the column vector of all monomials of degree up to κ, the last part constraints can also be interpreted as:

Appendix C. Proof of Theorem 1

Proof First let's prove (i). We show that the following problem is equivalent to (MEE)

because with the last equality, we can see that the first inequality constraint is equivalent to:

With µ := -E -1 b, problem (A5) recovers (MEE).

Next, we only need to show the following problem is equivalent to problem (A5).

The first constraint (A6b) indicates enclosure. We can equivalently write it as:

By E is positive definite, we can conclude that c -b T E -1 b < 1. The second constraint (A6c) implies c -b T E -1 b ≥ 0 by the Schur complement theorem. We will show that in fact we always have c -b T E -1 b = 0 at the optimal solution of (A6).

Consider the ellipsoid representation ξ T Eξ + 2b T ξ + c ≤ 1. Note that one ellipsoid can correspond to different pairs of (E, b, c) due to

All the equivalent class can be written as: (mE, mb, mc -m + 1)) for any m > 0.

Suppose now we have a feasible solution

We claim that this solution must not be optimal, because we can construct a better solution by maintaining the same ellipsoid, as follows.

For

) is a feasible solution, then it will always be a better solution than (E 0 , b 0 , c 0 ) due to log det(mE 0 ) > log det(E 0 ) when m > 1.

Now we show that indeed we can make (E 1 , b 1 , c 1 ) feasible for (A6). It suffices to construct (E 1 , b 1 , c 1 ) feasible for (A6c). To do so, we write

Therefore, any optimal solution of problem (A6) must satisfy (A5).

Then we leverage the sum-of-squares technique to relax the problem. By substituting constraints (A6b) with (10b),(10c) and(10d). Because of the certificate of nonnegativity (cf. Section B.2), we can always get an enclosing ellipsoid. Also from the derivation above, we shall always have c -b T E -1 b = 0. Therefore, the ellipsoid we get can be written as:

Then we prove (ii). First, it's easy to see that when κ increases, the feasible region of the problem (10) gets larger, so the optimal value of the optimization problem will get larger, which means that Vol(E) decreases.

Suppose the optimal solution of the minimum enclosing ellipsoid problem (MEE) is:

Then leveraging the Putinar's Positivstellensatz (cf. Section B.2), we know that there exists sum of squares polynomials σ i (θ) satisfies:

which shows that the point (E ⋆ -εI n , µ ⋆ ) is a feasible point of the problem (10) for some κ.

From the continuity property of the determinant function, we can know that det(A -εI n ) = det(A)+O(ε). By letting ε → 0, we can show that the optimal value of the problem (10) converges to the optimal value of the problem (MEE) when κ → ∞.

Appendix D. Certificate of MEE

We present a result to check the convergence of the SOS-based MEE algorithm in Theorem 1 when the set S is convex.

Proposition A4 (Certificate of MEE) Let S ξ be convex, and (E ⋆ , b ⋆ , c ⋆ ) be an optimizer of (10) with certain κ. Consider the following (nonconvex) polynomial optimization problem

Denote the optimal value of the ν-th order moment-SOS relaxation of (A7) as ρ ⋆ ν (cf. Section B.3). Suppose at a certain relaxation order ν, we have (i) ρ ⋆ ν = 0, (ii) a finite number of global minimizers of (A7) can be extracted as {ξ 1 ⋆ , . . . , ξ K ⋆ }, and (iii) there exist positive (α 1 , . . . , α K ) such that

We first show that there exists R > 0 such that the optimization problem (GCC) is equivalent to the following problem

where B R (O) denotes a ball of radius R centered at O.

1. Moment problem:

2. Dual problem to the moment problem:

3. Primal relaxation problem (with relaxation order κ satisfying 2κ ≥ max{deg(g i ), deg(f )}):

Dual relaxation problem:

(with relaxation order κ satisfying 2κ ≥ max{deg(g i ), deg(f )}):

We can conclude that :

We prove the Theorem 2 by proving the following equivalent theorem:

which has non-empty interior, such that the Assumption A1 holds. Then the sequence of optimal values of the Lasserre's hierarchy (A21) converges to the optimal value of the original problem when the relaxation order κ → ∞. Plus, for any relaxation order κ satisfying 2κ ≥ max{deg(g i ), deg

Proof First we fixed µ in the outer minimization and only focus on the inner maximization problem. Here we denote f (θ) = ∥µ -P θ∥ 2 Q as the objective function by holding µ as a constant. From lemma A10, we can know that when the relaxation order κ satisfies 2κ ≥ max{deg(g i ), deg(h i ), 2}, we have:

Proof We first introduce some basics about unit quaternions. Unit quaternion. There are multiple equivalent representations of 3D rotations [START_REF] Barfoot | State estimation for robotics[END_REF]. The most popular choice is a 3D rotation matrix R ∈ SO(3). Another popular choice is a unit quaternion [START_REF] Yang | A quaternion-based certifiably optimal solution to the wahba problem with outliers[END_REF]. A unit quaternion is a 4-D vector with unit norm, i.e., q ∈ S 3 := {q ∈ R 4 | q T q = 1}. Given a unit quaternion q = (q 0 , q 1 , q 2 , q 3 ), its corresponding rotation matrix reads R(q) =   2(q 2 0 + q 2 1 ) -1 2(q 1 q 2 -q 0 q 3 ) 2(q 1 q 3 + q 0 q 2 ) 2(q 1 q 2 + q 0 q 3 ) 2(q 2 0 + q 2 2 ) -1 2(q 2 q 3 -q 0 q 1 ) 2(q 1 q 3 -q 0 q 2 ) 2(q 2 q 3 + q 0 q 1 ) 2(q 2 0 + q 2 3 ) -

Now Suppose C is not the miniball in S 3 and C 1 is. Then the radius of C 1 on its affine space is smaller than the radius of C on T . Then consider the ball B 1 in R 4 whose equator is C 1 .

We only need to show that B 1 contains the set. If we prove this, then B 1 a smaller miniball in R 4 than B, which causes a contradiction.

We only need to show that B 1 contains the ball crown enclosed by C 1 (in R 4 ). Suppose a 1 ∈ R 4 is the center of C 1 , then the radius of C 1 is r 1 = 1 -∥a 1 ∥ 2 . The farthest distance from the ball crown enclosed by C 1 to the a 1 is 1 -∥a 1 ∥. By simple mathematics, we know that 1 -∥a 1 ∥< 1 -∥a 1 ∥ 2 for 0 < ∥a 1 ∥< 1, so B 1 contains the ball crown, which completes the proof.

Since the set S R has two branches on S 3 that are antipodal to each other, we need to get only one branch and compute its minium enclosing ball. This is easily done by adding qT q ≥ 0 to restrict the quaternions to one branch. This leads to the problem in ( 14) and concludes the proof.

Appendix G. Extra Experiments

We provide extra experiments here to supplement the main experiments in Section 4.

G.1. Simple Geometric Sets

In this section, we apply the GRCC algorithm (12) to simple geometric shapes. We choose Q = I so that we are only interested in computing the Chebyshev center.

• Sphere: {x ∈ R 3 |∥x∥= r}. The origin is the Chebyshev center and r is the radius.

• Ball: {x ∈ R 3 |∥x∥ 2 ≤ r}. The origin is the Chebyshev center and r is the radius.

• Cube: {x ∈ R 3 |∥x∥ ∞ ≤ r}. The origin is the Chebyshev center and √ 3r is the radius.

• Boundary of ellipsoid: {x ∈ R 3 |x T P -1 x = 1, P ∈ S ++ }. The origin is the Chebyshev center and the root suare of the largest eigenvalue of P is the radius.

• TV screen: {x ∈ R 3 |x 4 1 + x 4 2 + x 4 3 ≤ 1}. The origin is the Chebyshev center and 3 1/4 is the radius.

It is worth mentioning that, even if the shapes above are simple, the RCC algorithm [START_REF] Yonina C Eldar | A minimax chebyshev estimator for bounded error estimation[END_REF] actually can't handle them. For example, some of the sets are not convex (e.g., sphere and boundary of ellipsoid) or not defined by quadratic constraints (e.g., cube, TV screen).

We choose r = 3 for the experiment, and the relaxation order κ = 1 (κ = 2 for the TV screen problem). And we choose P to be a random positive definite matrix. The results are shown in Table A2. Center difference is the Frobenius norm of the difference between the real Chebyshev center and the result of the SDP relaxation. Radius difference is the difference between the solution of our algorithms and the ground truth radius.

We can see that for simple geometrical shapes, the GRCC relaxation is tight even when κ = 1. Certificate for the finite convergence of the MEE. Here we present the example of TV Screen and leverage the certificate of MEE (A4) proposed in Appendix D to show the finite convergence. For this symmetric shape, the results of GRCC and MEE coincide. intervals have been proposed in the context of simultaneous localization and mapping [START_REF] Ehambram | Interval-based visual-inertial lidar slam with anchoring poses[END_REF][START_REF] Mustafa | Guaranteed slam-an interval approach[END_REF]. [START_REF] Casini | Feasible parameter set approximation for linear models with bounded uncertain regressors[END_REF] propose relaxation algorithms to approximate minimum volume enclosing orthotope. An exstention to bounding polytope is also shown by calculating the interval bounds on different directions. [START_REF] Yonina C Eldar | A minimax chebyshev estimator for bounded error estimation[END_REF] propose a relaxation algorithm based on Shor's semidefinite relaxation to calculate the enclosing ball of the sets defined by quadratic constraints. [START_REF] Durieu | Multi-input multi-output ellipsoidal state bounding[END_REF] consider the ellipsoidal approximation of the intersection of K ellipsoids, and solved the minimum enclosing ellipsoid in a certain parametric class. [START_REF] Dabbene | Set approximation via minimum-volume polynomial sublevel sets[END_REF] proposed an asymptotically convergent algorithm using sublevel sets of polynomials to enclose the uncertainty set.

For recursive calculations, we sequencially observe new observations and update the approximation according to new observations. [START_REF] Fogel | On the value of information in system identification-bounded noise case[END_REF] propose a recursive formula on how to update the bounding ellipsoid minimizing the volume and trace after each observation. [START_REF] Walter | Exact recursive polyhedral description of the feasible parameter set for bounded-error models[END_REF] propose the algorithm to update the polyhedral description of the feasible parameter set. [START_REF] Carlos | Effective recursive set-membership state estimation for robust linear mpc[END_REF] propose how to update the parallelotope by intersecting the current one with the observation strips, and then find the minimum one. In favor of computational efficiency, recursive methods find an outer approximation of the feasible set at every time step, thus are always not as exact as the batch methods.