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Stagewise Implementations of Sequential Quadratic Programming
for Model-Predictive Control

Armand Jordana∗,1, Sébastien Kleff∗,1, Avadesh Meduri∗,1,
Justin Carpentier2, Nicolas Mansard3 and Ludovic Righetti1

Abstract— The promise of model-predictive control in
robotics has led to extensive development of efficient numerical
optimal control solvers in line with differential dynamic pro-
gramming because it exploits the sparsity induced by time.
In this work, we argue that this effervescence has hidden
the fact that sparsity can be equally exploited by standard
nonlinear optimization. In particular, we show how a tailored
implementation of sequential quadratic programming achieves
state-of-the-art model-predictive control. Then, we clarify the
connections between popular algorithms from the robotics com-
munity and well-established optimization techniques. Further,
the sequential quadratic program formulation naturally en-
compasses the constrained case, a notoriously difficult problem
in the robotics community. Specifically, we show that it only
requires a sparsity-exploiting implementation of a state-of-the-
art quadratic programming solver. We illustrate the validity of
this approach in a comparative study and experiments on a
torque-controlled manipulator. To the best of our knowledge,
this is the first demonstration of nonlinear model-predictive
control with arbitrary constraints on real hardware.

I. INTRODUCTION

A. Motivation

Model Predictive Control (MPC) has become popular
for online robot decision-making. It has shown compelling
results with all kinds of robots ranging from industrial
manipulators [1], quadrupeds [2]–[4] to humanoids [5], [6].
The general idea of MPC is to formulate the robot motion
generation problem as a numerical optimization problem,
i.e., a finite horizon Optimal Control Problem (OCP), and
solve it online at every control cycle using the current
state measurement as the initial state. This receding horizon
strategy allows us to adapt the robot behavior as the state of
the system and environment change.

In robotics, Differential Dynamic Programming (DDP) [7]
is a popular choice to solve OCPs because it exploits the
problem’s structure well. This advantage has led to a bustling
algorithmic development over the past two decades [8]–[20].
In light of the increasing number of variations of DDP, one
might naively ask: why not use well-established optimization
algorithms [21]? Is there anything special in MPC that cannot
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be tackled by, for example, an efficient implementation of
Sequential Quadratic Programming (SQP) [22]? In this work,
we show that special implementations of numerical meth-
ods developed by the optimization-based control community
[23]–[26] are, in fact, sufficient to achieve state-of-the-art
MPC on real robots.

B. Related work

Mayne first introduced DDP [7] as an efficient algorithm
to solve nonlinear OCPs by iteratively applying a back-
ward pass over the time horizon and a nonlinear forward
rollout of the dynamics. This algorithm notably exhibits
linear complexity in the time horizon and local quadratic
convergence [27]. More recently, Todorov revived the interest
in DDP by proposing the iterative Linear Quadratic Regulator
(iLQR) [8], a variant discarding the second-order terms of
the dynamics. It has since gained a lot of traction within
the robotics community [3]–[5], [14], [18], and its similarity
to Gauss-Newton optimization has been established [9],
[28]. However, this approach faces two main limitations:
1) as a single shooting method, it requires a dynamically
feasible initial guess, which makes the algorithm difficult
to warm-start, an essential requirement to reduce compu-
tation times [12] and 2) enforcing equality and inequality
constraints is not straightforward. The common practice is
to enforce constraints softly using penalty terms in the cost
function. But this approach is heuristic (i.e., it requires cost
weight tuning) and tends to cause numerical issues [29].

Multiple shooting for optimal control, introduced in [30],
addresses the first limitation: it accepts an infeasible initial
guess. Several multiple shooting variants of DDP/iLQR were
proposed in [12], [14] with significantly improved conver-
gence abilities, which have enabled nonlinear MPC at high
frequency on real robots [1], [3], [6], [14].

The second issue of enforcing constraints inside a DDP-
like algorithm has been addressed in several works. [10] uses
a DDP-based projected Newton method to bound control
inputs. This approach has further been improved and de-
ployed on a real quadruped robot in [17]. More recently,
augmented Lagrangian methods have been used to enforce
constraints in iLQR/DDP algorithms [11], [13], [16], [19].
However, their convergence behavior is less understood than
DDP, whose seminal paper [7] was followed by sophisticated
proofs [27]. To the best of our knowledge, it has not yet
been shown that those recent DDP-based algorithms exhibit
global convergence (i.e., convergence from any initial point
to a stationary point) and quadratic local convergence.



Besides, an open topic of debate is whether to use a non-
linear or a linear rollout to enforce dynamics constraints in
the forward pass. Previous work on single shooting methods
has argued that a nonlinear rollout can reduce the number
of iterations [31], while [28], [32] showed mixed results
both experimentally and theoretically. Recently, a nonlinear
rollout was implemented by a popular multiple-shooting
variant of iLQR [14]. However, we are unaware of any
comparisons between linear and nonlinear rollouts in the
context of multiple shooting methods.

In the face of these challenges, we propose to take a
fresh look at the earlier literature. Indeed, Dunn et al.
showed that Newton’s method could also be implemented
in a DDP-like fashion and equally benefit from linear
complexity in the time horizon and quadratic convergence
[33]. This finding indicates that optimal control does not
fundamentally require new nonlinear optimization tools but
only tailored implementations that exploit the time-induced
sparsity structure. This naturally led to numerous extensions
to the constrained case. For example, Wright proposed to
use an SQP formulation with an active set to address ar-
bitrary nonlinear constraints [22]. However, because of the
limitations of active set methods, Wright focused on the
single shooting case resolution. Then, Pantoja et al. proposed
an efficient implementation of SQP for control inequality
constraints [34]. Di Pillo et al. proposed a tailored imple-
mentation of a Quasi-Newton method with an augmented
Lagrangian-based approach [35]. Dohrmann et al. studied
equality-SQP for optimal control [36]. Additionally, [37]–
[41] studied the tailored implementation of Interior Point
Methods for optimal control.

In the late 2000’s, with the promise of high-frequency
linear MPC, a large body of work studied how to tailor
Quadratic Programming (QP) for the Constrained Linear
Quadratic Regulator (CLQR) problem. This was done with
active set methods [42], [43], ADMM-based solvers [23] and
interior point method [25], [44]. We refer the reader to [24]
for an extensive survey.

To solve the nonlinear case, [26] recently proposed ef-
ficient software with an SQP implementation for OCP.
[45] studied how to exploit the sparsity induced by time
in IPOPT [46]. Unfortunately, this line of work has not
benefited from as much experimental study as DDP-like
algorithms. Recently, [47] showed impressive experimental
results on quadrupeds using a tailored SQP implementation
based on HPIPM [25], which lies in the continuity of
previous works using [25], [26] on real hardware [48]–[50].
However, to the best of our knowledge, we are not aware of
closed-loop constrained nonlinear MPC on torque-controlled
robots.

Recently, [51] reviewed the models and optimization
algorithms used in robotics in the context of MPC. As
emphasized in this survey, we argue that there is a gap
between the optimization-based control and the robotics
community. On the one hand, an important part of the
robotics community followed the successes of [52] and
continued to propose DDP-like algorithms. On the other

hand, the optimization-based control community followed
the work of [22], [34] and proposed efficient implementations
of established optimization algorithms [24], [26], [45]. In this
work, we aim to bridge this gap.

C. Contributions

In this paper, we follow the line of thought of the
optimization-based control community in order to push the
limits of closed-loop nonlinear MPC in robotics. First, we
shed light on the direct connection between modern multiple-
shooting DDP-like algorithms and textbook SQP algorithms.
Second, we show through an experimental study that a
standard stagewise SQP formulation is, in fact, superior to
the state-of-the-art FDDP [14]. Third, we re-implement a
QP solver tailored for optimal control by leveraging Riccati
recursions in order to maintain linear complexity in the time
horizon while also enforcing constraints [23], [53]. Using this
custom QP implementation inside the SQP formulation, we
can solve arbitrary nonlinear constrained OCPs efficiently
while inheriting the well-known convergence properties of
standard SQPs. Lastly, we demonstrate the ability of this
SQP formulation to enforce arbitrary nonlinear constraints
in MPC experiments on a torque-controlled manipulator. To
the best of our knowledge, this is the first demonstration
of closed-loop nonlinear MPC with hard constraints on real
hardware. The optimization software has been open-sourced
and integrated with Crocoddyl [14] to ensure reproducible
experiments and enable easy use by the research community.

II. SEQUENTIAL QUADRATIC PROGRAMMING FOR
OPTIMAL CONTROL PROBLEMS

Notations. The derivative of a function f with respect to
a vector v is denoted by ∇vf , similarly for second order
derivatives with respect to vectors u, v is denoted as ∇2

uvf .
Bold characters are used to denote a sequence of vectors
indexed over a time horizon, e.g., v = {v1, · · · , vk, · · · }.

In this work, we study constrained optimal control prob-
lems of the form:

min
x,u

T−1∑
k=0

ℓk(xk, uk) + ℓT (xT ) (1a)

subject to xk+1 = fk(xk, uk), (1b)
ck(xk, uk) ≥ 0, 0 ≤ k < T, (1c)

cT (xT ) ≥ 0, (1d)

where x = (x1, ..., xT ) is the state sequence,
u = (u0, u1, ..., uT−1) the control inputs and x0 is the
initial state provided by the user (e.g., estimated state).
The transition functions, fk, the cost functions, ℓk and
the constraint functions, ck, are supposed to be C2. To
keep notations simple, we formulated the OCP with
inequality, which also encompasses equality constraints.
Yet, equality constraints can be treated separately from
general inequalities in practice.



Considering the state sequence as an optimization variable
allows the optimization procedure to iterate through infeasi-
ble trajectories, yielding a multiple-shooting approach [30].

Remark 1. One may choose to optimize only on the se-
quence of control inputs and define the dynamics constraints
implicitly, yielding a single shooting approach. In that case,
if no inequality constraints are considered, the problem is
unconstrained and can be solved via an efficient implemen-
tation of Newton’s method [33] or with a modified Newton’s
method with a nonlinear rollout, namely DDP [7].

In this work, we focus on multiple-shooting approaches.
The associated Lagrangian is:

L(x,u,λ,µ) = ℓT (xT )− µT
T cT (xT ) + (2)

T−1∑
k=0

ℓk(xk, uk)− λT
k+1(xk+1 − fk(xk, uk))− µT

k ck(xk, uk),

where λ = (λ1, ..., λT )
T and µ = (µ0, ..., µT )

T are
Lagrange multipliers.

Intuitively, SQPs iteratively solve QPs to find a tuple
(x,u,λ,µ) that satisfies the KKT conditions [54]. Note that
we consider the constraint x0 = x̄0 to be implicit. Therefore,
no Lagrange multiplier is associated with that constraint.
For simplicity, we slightly abuse the notation by referring
to l0(x0, u0) instead of l0(u0) even if x0 is fixed.

Remark 2. Note that one might also want to consider a
generic constraint on the initial condition c(x0) (e.g., in the
context of robust control [55]). To do so, the initial condition
must be considered an optimization variable. Although we
do not consider this setting to clarify derivations, our work
naturally extends to this case.

More precisely, at the nth iteration, given a guess on the
tuple (x[n], u[n],λ[n],µ[n]), we aim to find a correction on
the guess by solving the following QP problem (Algorithm
18.1, [21]):

min
∆x,∆u

T−1∑
k=0

1

2

[
∆xk

∆uk

]T [
Qk Sk

ST
k Rk

] [
∆xk

∆uk

]
+

[
qk
rk

]T [
∆xk

∆uk

]
+

1

2
∆xT

TQT∆xT +∆xT
T qT (3a)

s.t. ∆xk+1 = Ak∆xk +Bk∆uk + γk+1, (3b)
Dk∆xk + Ek∆uk + ck ≥ 0, 0 ≤ k < T. (3c)

DT∆xT + cT ≥ 0. (3d)

where qT = ∇xℓT (x
[n]
T ) and

QT =
(
∇2

xxℓT − µT
T∇2

xxcT
)
(x

[n]
T ) (4)

Qk =
(
∇2

xxℓk + λT
k+1∇2

xxfk − µT
k∇2

xxck
)
(x

[n]
k , u

[n]
k )

Sk =
(
∇2

xuℓk + λT
k+1∇2

xufk − µT
k∇2

xuck
)
(x

[n]
k , u

[n]
k )

Rk =
(
∇2

uuℓk + λT
k+1∇2

uufk − µT
k∇2

uuck
)
(x

[n]
k , u

[n]
k )

Ak = ∇xfk(x
[n]
k , u

[n]
k ), Bk = ∇ufk(x

[n]
k , u

[n]
k ) (5)

qk = ∇xℓk(x
[n]
k , u

[n]
k ), rk = ∇uℓk(x

[n]
k , u

[n]
k ) 0 ≤ k < T.

Qk, Sk, Rk are the Hessian of the Lagrangian with respect
to the state and control inputs, Dk, Ek, DT are the constraint
Jacobian and γk+1 = fk(x

[n]
k , u

[n]
k )− x

[n]
k+1 is the constraint

violation which is often referred to as dynamic gaps [14]
or defects [12]. Note that this formulation of SQP and its
associated QP is precisely the same as the one proposed in
the seminal multiple-shooting article [30].

Remark 3. In his seminal work introducing multiple shoot-
ing [30], Bock exploits the sparsity of the quadratic problem
of Eq. (3) induced by the multiple shooting structure yielding
to a cubic complexity in the time horizon, T . Instead, this
work exploits the sparsity induced by time in order to achieve
a linear complexity.

The solution of the QP (∆x,∆u) is then used to update
the guess:

x[n+1] = x[n] + α∆x (6a)

u[n+1] = u[n] + α∆u (6b)

Here, α is the step size and is chosen using a line search
method. λ[n+1] and µ[n+1] are then replaced by the asso-
ciated Lagrange multiplier of the QP (3) [54]. Provided
assumptions on the Problem (1), SQPs can guarantee local
quadratic convergence or super-linear convergence in the
case of quasi-Newton approximation [54].

III. SOLVING THE UNCONSTRAINED QP

In this section, we review the case when the OCP has
no constraints to recall the equivalence between the back-
ward Riccati recursions used in DDP and a special type of
Gaussian elimination for tridiagonal matrices, specialized to
the sparsity pattern of the KKT system arising in OCPs.
This result, insufficiently known in the robotics community,
will then be exploited to propose a novel extension to the
constrained case.

Proposition 1. Without inequality constraints, the KKT con-
ditions of Problem (3) can be written as a block tri-diagonal
symmetric matrix equation.



Γ1 MT
1 0 0 · · · 0

M1 Γ2 MT
2 0 · · · 0

0 M2 Γ3 MT
3 · · · 0

0 0 M3 Γ4
. . . 0

...
...

...
. . .

. . .
...

0 0 0 0
. . . ΓT





s1
s2
s3
s4
...
sT


=



g1
g2
g3
g4
...
gT


(7)

where:

Γk =

 Rk−1 0 −BT
k−1

0 Qk I
−Bk−1 I 0

, Mk =

0 ST
k 0

0 0 0
0 −Ak 0


and sk =

∆uk−1

∆xk

−λk

, gk =

−rk−1

−qk
γk

 . (8)



The proof is only computational and is detailed in the
supplementary material1. Note that we slightly abuse the no-
tation by using the λ as the Lagrange multiplier for both the
QP and the nonlinear problem. The most straightforward way
to solve such a system is to apply Gaussian elimination by
using the well-known Thomas algorithm [56] (Algorithm 1)
to achieve a complexity in O(T ).

Algorithm 1: Thomas algorithm

1 Γ̄T ← ΓT

2 ḡT ← Γ−1
T gT

/* backward pass */

3 for k ← 1 to T − 1 do
4 Γ̄k ← Γk −MT

k Γ̄−1
k+1Mk

5 ḡk ← Γ̄−1
k (gk −MT

k ḡk+1)

/* forward pass */

6 s1 ← ḡ1
7 for k ← 1 to T − 1 do
8 sk+1 ← ḡk+1 − Γ̄−1

k+1Mksk

In particular, we use the knowledge of the structure (spar-
sity pattern) in both Γk and Mk to recover simpler recursions.
This leads to another way of obtaining the backward Riccati
equations of LQR, which is accepted knowledge in the
optimization-based control community [22], [24], [33], [57]
but is largely ignored in robotics.

Proposition 2. By applying the Thomas algorithm, we re-
cover the well-known Riccati recursions. Specifically, the
backward pass can be done by initializing VT = QT and
vT = qT , and then by applying the following equations:

hk = rk +BT
k (vk+1 + Vk+1γk+1) (9)

Gk = ST
k +BT

n Vk+1Ak Kk = −H−1
k Gk

Hk = Rk +BT
k Vk+1Bk kk = −H−1

k hk

Vk = Qk +AT
k Vk+1Ak −KT

k HkKk

vk = qk +KT
k rk + (Ak +KkBk)

T (vk+1 + Vk+1γk+1)

Then, the forward pass initializes ∆x0 = 0 and unrolls the
linearized dynamics:

∆xk+1 = (Ak +BkKk)∆xk +Bkkk + γk+1 (10a)
∆uk = Kk∆xk + kk (10b)
λk = Vk∆xk + vk (10c)

Proof. The proof is mainly computational and relies on the
analytical inversion of Γ̄k in order to prove by recursion that:

Γ̄k =

 Rk−1 0 −BT
k−1

0 Vk I
−Bk−1 I 0

 (11a)

ḡk = Γ̄−1
k

−rk−1

−vk
γk

 (11b)

1https://github.com/machines-in-motion/StagewiseSQP

In other words, the recursion on Γ̄k and ḡk can be sub-
stituted by the recursion on the value function hessian and
gradient. The forward recursion can then be recovered using
sk+1 = ḡk+1 − Γ̄−1

k+1Mksk and the analytical inversion of
Γ̄k. Detailed derivations are provided in the supplementary
material.

This result shows that the backward Riccati equations
used for Linear Quadratic Regulators (LQR) are an efficient
technique for solving Quadratic Programs with a tri-diagonal
symmetric KKT matrix. Consequently, these equations are
ideal for solving OCPs with linear dynamics and quadratic
costs.

Remark 4. A vast amount of literature exists on tri-diagonal
matrices. Understanding the structure of the KKT matrices
inherent to OCP enables the use of any of these techniques
directly. There are methods to factor those matrices or to
solve them more efficiently, such tri-diagonal system. For
instance, parallel cyclic reduction can be used in order to
achieve a O(log(T )) complexity, which might be interesting
for problems with long time horizons [58]–[61].

IV. SOLVING THE CONSTRAINED QP

We are now in the position to extend the discussion
of the previous section to the case with inequality con-
straints. When inequalities are added, the underlying KKT
system associated with the QP defined in (3) will have the
same tri-diagonal structure. Therefore, similar recursions can
be used to solve it efficiently. For instance, HPIPM [25]
derives efficiently an interior point method. Although we
could have used this method, we chose OSQP [53] as it
outperforms HPIPM on the set of benchmarks developed
by [62]. Furthermore, ADMM-based methods are known to
find a reasonably good solution in a few iterations [63],
[64], an appealing feature for MPC applications. Finally,
as originally discussed by [23], ADMM-based methods can
easily be implemented sequentially. We illustrate this by
deriving a tailored implementation of the modern ADMM-
based solver OSQP [53] for OCP. However, we would like
to highlight that the reader could choose any other desired
sparsity exploiting QP solver depending on their preference.

A. Background on ADMM

Here, we follow [53], [63] to briefly summarize ADMM.
Using generic notations, Problem (3) aims to solve a problem
of the form:

min
v∈Dom(g)

g(v) s.t. Cv ∈ C (12)

Note that we use generic notations of the QP literature in
this section. Hence, v denotes the optimization variable.
Furthermore, C is a matrix, g is a convex function, and C is

https://github.com/machines-in-motion/StagewiseSQP


a convex set. The ADMM updates are then:

ṽj+1 = argmin
v∈Dom(g)

g(v) +
ρ

2
∥Cv − zj + ρ−1yj∥22

+
σ

2
∥v − vj∥22 (13a)

z̃j+1 = αCṽj+1 + (1− α)zj (13b)

vj+1 = αṽj+1 + (1− α)vj (13c)

zj+1 = ΠC
(
z̃j+1 + ρ−1yj

)
(13d)

yj+1 = yj + ρ
(
z̃j+1 − zj+1

)
(13e)

where ΠC is the projection operator on the convex set C, ρ
is the penalty parameter that encourages consensus between
v and z, and α ∈ (0, 2) is an over-relaxation parameter that
improves convergence speed (e.g., when set between 1.5 and
1.8 [63]).

B. Tailored ADMM for optimal control

Here, we present the ADMM-based QP solver [63], which
is tailored for optimal control problems. The presented
algorithm is mainly inspired by [23]. We further introduce
more recent techniques developed in ADMM [63] to the
previous work [23] to improve solver performance. Finally,
we provide an efficient implementation of the proposed
solver, enabling reliable real-robot deployment.

In order to exploit the time-induced sparsity and leverage
the Riccati recursions specific to the OCP formulation, we
design a QP solver that always maintains the feasibility of
the dynamics. More precisely, we consider the optimization
variable to be

v ≜ (∆x,∆u)T (14)

and g to be the cumulative cost function defined in Eq. (3a),
We propose to define Dom(g) to encode the set of feasible
dynamics (3b) while Cv ∈ C encodes the path and terminal
constraint (3c) (3d). Eq. (13a) can therefore be written as:

min
∆x,∆u

T−1∑
k=0

[
∆xk

∆uk

]T [
Qk Sk

ST
k Rk

] [
∆xk

∆uk

]
+

[
qk
rk

]T [
∆xk

∆uk

]
+∆xT

TQT∆xT +∆xT
T qT +

ρ

2

∥∥∥DT∆xT − zjT + ρ−1yjT

∥∥∥2
2

+

T−1∑
k=0

ρ

2

∥∥∥Dk∆xk + Ek∆uk − zjk + ρ−1yjk

∥∥∥2
2

+

T∑
k=0

σ

2

∥∥∥∆xk −∆xj
k

∥∥∥2
2
+

T−1∑
k=0

σ

2

∥∥∥∆uk −∆uj
k

∥∥∥2
2

(15a)

s.t. ∆xk+1 = Ak∆xk +Bk∆uk + γk+1. (15b)

We denote yj = (yj0, y
j
1, ..., y

j
T )

T and
zj = (zj0, z

j
1, ..., z

j
T )

T . Therefore, Eq. (13a) has the
exact same structure as the unconstrained case mentioned in
Section III. Note that the stagewise nature of the inequality
constraints allows us to write the ρ dependent regularization
terms in a block-sparse way as well. More precisely, as each
inequality only depends on one time-step, the ρ dependent
regularization term can be written as a stagewise sum

of quadratic cost. Consequently, Eq. (13a) can be solved
with a backward and forward pass similar to those of the
unconstrained case, ensuring a linear complexity in the time
horizon. Furthermore, due to the stagewise nature of the
inequality constraint, Eq. (13b) - (13e) can be implemented
recursively or in parallel. Algorithm 2 summarizes the
procedure.

Algorithm 2: ADMM tailored for OCP

Input: ∆xj ,∆uj , zj ,yj

/* Minimization problem */

1 Solve (15) using LQR to get ∆̃x
j+1

, ∆̃u
j+1

/* Lagrange multiplier update */

2 for k ← 1 to T − 1 do
3 z̃jk = α(Dk∆xj+1

k + Ek∆uj+1
k ) + (1− α)zjk

4 ∆xj+1
k = α∆̃x

j+1

k + (1− α)∆xj
k

5 ∆uj+1
k = α∆̃u

j+1

k + (1− α)∆uj
k

6 zjk = max(ck, z̃
j
k + ρ−1yjk)

7 yj+1
k = yjk + ρ(z̃jk − zj+1

k )

8 z̃jT = αDT∆xj+1
T + (1− α)zjT

9 ∆xj+1
T = α∆̃x

j+1

T + (1− α)∆xj
T

10 zjT = max(cT , z̃
j
T + ρ−1yjT )

11 yj+1
T = yjT + ρ(z̃jT − zj+1

T )
Output: ∆xj+1,∆uj+1, zj+1,yj+1

C. Details on the QP

In our implementation, we take σ = 10−6 , α = 1.6
and consider the same schedule as OSQP for the ρ-update
[53]. Subsequently, the new backward recursion is only
needed when ρ is updated (once in 25 ADMM iterations).
This makes the algorithm highly efficient when compared
to a standard QP solver and the solver proposed in [23]
because the forward passes are very cheap (only matrix-
vector multiplications), and the inversion in the backward
pass happens very few times. Furthermore, the QP is warm-
started by the solution of the problem with only equality
constraint (dynamic-feasibility). This comes at the cost of
Riccati recursions but dramatically reduces the total number
of ADMM iterations required. Lastly, we compute a relative
primal and dual tolerance after each ADMM iteration as
discussed in [63]. We use these quantities as termination
criteria.

V. PRACTICAL IMPLEMENTATION OF THE SQP
A. Gauss-Newton approximation

A common practice is to ignore the second-order term of
the constraints as it is expensive to compute [8], [12], [14].
Subsequently, the second-order cost terms become:

QT = ∇2
xxℓT (x

[n]
T ), Qk = ∇2

xxℓk(x
[n]
k , u

[n]
k )

Sk = ∇2
xuℓk(x

[n]
k , u

[n]
k ), Rk = ∇2

uuℓk(x
[n]
k , u

[n]
k ), (16)

for 0 ≤ k < T . A direct consequence is that (3) is now
independent of the multipliers. In this unconstrained case,



the resulting SQP can be efficiently solved by sequentially
constructing a QP at each iterate and solving it with LQR.
This method was initially proposed as the Gauss-Newton
Multiple Shooting (GNMS) method in [12]. However, the
connection to SQPs was not discussed in the paper. Thus,
GNMS is an efficient SQP algorithm to solve equality-
constrained nonlinear optimization problems with block sep-
arable constraints and costs when the second-order terms are
ignored.

Remark 5. Note that more sophisticated schemes estimating
the exact Hessians iteratively could be used as done in
[30]. Furthermore, in the unconstrained case, the recent
work of [20] suggests that the convergence benefits might
compensate for the computational requirement of the second-
order computations.

B. Linear rollout

By nature of the SQP algorithm, the update step (6) is
equivalent to making a linear rollout of the dynamics (cf.
(10a)). However, a nonlinear rollout is often favored in DDP-
like algorithms, e.g., in the popular Feasible-DDP algorithm
[14] or in ALTRO [13]. While [7], [27] studied well the local
and global convergence property of DDP, to the best of our
knowledge there is no guarantee that these nonlinear rollout
formulations maintain global convergence in the multiple
shooting context. Hence, a theoretical analysis of algorithms
such as Feasible-DDP remains to be done. In contrast,
SQPs benefit from a very exhaustive theoretical analysis,
convergence guarantees, and experimental validation in a
variety of fields [21]. Furthermore, allowing the gaps to close
in one step, as in [14], seems to go against the spirit of the
original formulation of multiple shooting with SQP [30].

C. Line search

Now that we essentially use SQPs with a QP that exploits
the block sparsity, we can leverage the vast literature of
line search algorithms to select the right step length (Eq.
(6)). We compared both a filter line-search [65] and a merit
function-based line-search [21]. Let’s define the total cost of
a trajectory, the total gap violation, and the total constraint
violation as:

ℓ(x[j],u[j]) =

T−1∑
k=0

ℓk(x
[j]
k , u

[j]
k ) + ℓT (x

[j]
T ), (17)

γ(x[j],u[j]) =

T−1∑
k=0

∥∥∥x[j]
k+1 − fk(x

[j]
k , u

[j]
k )

∥∥∥
∞

,

c(x[j],u[j]) =

T−1∑
k=0

∥∥∥∥[ck(x[j]
k , u

[j]
k )

]
−

∥∥∥∥
∞

+

∥∥∥∥[cT (x[j]
T )

]
−

∥∥∥∥
∞

.

With the filter line search, a candidate x[n+1],u[n+1] is
accepted if:

∀j ≤ n, ℓ(x[n+1],u[n+1]) < ℓ(x[j],u[j]) (18a)

or ∀j ≤ n, γ(x[n+1],u[n+1]) < γ(x[j],u[j]) (18b)

or ∀j ≤ n, c(x[n+1],u[n+1]) < c(x[j],u[j]) (18c)

In contrast, the merit function is of the form:

ℓ(x[j],u[j]) + µγγ(x
[j],u[j]) + µcc(x

[j],u[j]), (19)

where µγ and µc are weights defined by the user. A step
is accepted if the candidate allows a decrease in the merit
function. The downside of the merit function is that the
weight between each term has to be tuned, which can be
cumbersome. On the other hand, we found that the filter line
search yielded good performances and was more practical as
no parameter tuning was required. In this filter line search,
the cost values, gap norm, and constraint violation of all the
previous iterates are stored and browsed. In our implementa-
tion, we provide the possibility of keeping only a restricted
number of iterates in memory and refer to this parameter as
the filter size. Although a filter keeping all the past estimates
can help with problems that require many iterations (e.g.,
to meet a strict tolerance), it can reasonably be shortened
or even discarded in practice for MPC applications. In our
experience, one can select a filter size of 1 without significant
loss in convergence.

D. Termination criteria

The solver is terminated once the infinity norm of the KKT
condition is below a certain threshold. More precisely, the
following termination criterion is used:∥∥∥∇xL(x[n],u[n],λ[n],µ[n])

∥∥∥
∞
≤ ϵSQP (20)∥∥∥∇uL(x[n],u[n],λ[n],µ[n])

∥∥∥
∞
≤ ϵSQP∥∥∥x[n]

k+1 − fk(x
[n]
k , u

[n]
k )

∥∥∥
∞
≤ ϵSQP , 0 ≤ k < T,∥∥∥∥[ck(x[n]

k , u
[n]
k )

]
−

∥∥∥∥
∞
≤ ϵSQP , 0 ≤ k < T.∥∥∥∥[cT (x[n]

T )
]
−

∥∥∥∥
∞
≤ ϵSQP .

We use here the convergence criteria widely used in the
optimization community [21]. Note that we do not employ a
real-time iteration scheme [66] as we found in practice that
letting the solver converge led to better experimental results
than re-planning faster with a single SQP iteration.

As mentioned in [21], λ[n+1],µ[n+1] are given by the
Lagrange multiplier associated with (3). Note that we can
compute them very efficiently due to the recursions. In the
unconstrained case, we can use (10c). In the constrained case,
we have,

λk = Vk∆̃xk + vk (21)
µk = yk (22)

where Vk, vk are derived from the Riccati recursions defined
by Problem (15) and where ∆̃xk, yk are the primal and dual
solutions of the QP (at time k).

VI. EXPERIMENTS

In this section, we demonstrate the practical benefits of
using a sparsity-exploiting SQP implementation for nonlinear
MPC with and without inequality constraints. The solvers



used in the benchmarks and experiments are open-sourced in
the mim solvers library2, which uses Crocoddyl [14]
as a base software. Rigid-body dynamics computations are
done using the Pinocchio library [67] and its analytical
derivatives [68]. All the benchmarks and figures presented in
this paper can be reproduced using the dedicated repository
StagewiseSQP3.

Firstly, we benchmark the performance of our tailored
SQP in the absence of constraints (Section III) against
other popular methods that use non-linear rollouts. We show
that our tailored SQP implementation performs as well and
sometimes better than other methods to solve challenging
OCPs. We further reinforce this claim by deploying the
tailored SQP in high-frequency nonlinear MPC experiments
on a torque-controlled manipulator.

Secondly, we demonstrate the validity of the SQP ap-
proach with our tailored ADMM implementation (Section
IV) in the presence of nonlinear inequality constraints by
deploying it on real hardware in MPC. Our experiments
show that the solver can satisfy many nonlinear equality and
inequality constraints while maintaining real-time solve rates.

A. Unconstrained case: linear vs nonlinear rollout

As emphasized in Section V-A, when only the dynamics
constraint is present, the efficient SQP formulation boils
down to the GNMS algorithm described in [12]. We propose
for the first time to benchmark this algorithm against state-
of-the-art optimal control solvers, namely DDP [7] and
FDDP [14], on a set of difficult unconstrained OCPs, using a
standard line-search procedure and termination criteria drawn
from the SQP literature.

1) Benchmark Setup: We evaluate and compare the con-
vergence of the following 4 solvers, namely DDP, FDDP
using the default line-search from [14], FDDP using the
proposed filter line-search of Section V-C, and our SQP,
on a set of increasingly difficult randomized problems. We
summarized the characteristics of these solvers (multiple or
single-shooting, type of rollout, and line-search) in Table I.
The classical single-shooting DDP and its multiple-shooting

Multiple shooting Rollout Line-search
DDP No Nonlinear Goldstein

FDDP (default LS) Yes Nonlinear Heuristic [14]
FDDP (filter LS) Yes Nonlinear Filter [65]

SQP Yes Linear Filter [65]

TABLE I: Solver characteristics.

variant FDDP (default LS) are the ones implemented in the
Crocoddyl library [14]. The FDDP (filter LS) was modified
to incorporate the same filter line-search as our tailored SQP
implementation. We use the largest possible filter size for
both solvers, i.e., the maximum number of iterations.

To evaluate the performance of these solvers, the following
OCPs are used:

2https://github.com/machines-in-motion/mim_solvers
3https://github.com/machines-in-motion/StagewiseSQP

• Kuka (nx = 14, nu = 7) : the task is to minimize the
Cartesian distance to an end-effector goal (3D reaching
task in Cartesian space) under state (joint positions and
velocities) and control (joint torques) regularization.

• Quadrotor (nx = 13, nu = 4) : the task is to minimize
the distance to a desired pose (in SE(3)) under state
and control regularization.

• Double Pendulum (nx = 4, nu = 1) : the task is
to minimize the distance to the upward equilibrium
position under state and control regularization.

• Humanoid Taichi (nx = 77, nu = 32) : the task is
to achieve a desired left foot pose (in SE(3)) while
maintaining balance on the right stance foot, starting
from a double foot support configuration, under state
and control regularization, and log-barrier state limits.

The Quadrotor, Double Pendulum, and Humanoid Taichi
examples were copied from the Crocoddyl library. Each
problem is solved for 100 randomized initial configurations
or end-effector goals. The maximum number of iterations
allowed niter depends on the problem. For each problem, the
solvers are warm-started with the same quasi-static solution.
We use the same termination criteria, the KKT residual norm
(20) with tolerance set to ϵSQP = 10−4 on all problems.
In order to reflect cases where the maximum number of
iterations is hit without reaching the desired tolerance, we
use as a metric the number of solved problems for a given
maximum number of iterations.

2) Benchmark results: The results are shown in Figure 1.
On the Kuka example, all solvers exhibit a similar behavior.
The advantage of multiple-shooting over single-shooting
becomes clear in the Quadrotor (Figure 1b) and Double
Pendulum (Figure 1c) examples. These two examples, along
with the Humanoid taichi (Figure 1d), also highlight clearly
the benefit of using a filter line-search in FDDP. Most
importantly, the tailored SQP solves more problems in less
iterations than all the other solvers. In particular, it is
clear from these benchmarks that the linear rollout has an
advantage over the nonlinear one - we recall that FDDP (filter
LS) (green curves) and SQP (blue curves) only differ by their
rollouts (nonlinear and linear respectively).

For MPC applications, the solver’s ability to converge
to a desired tolerance within a small number of iterations
is critical because real-time constraints impose a limited
computation budget. In that respect, all experiments show
that SQP is able to solve more problems in fewer iterations
than all other solvers. For instance, in difficult problems like
the humanoid taichi example, nearly 80% of the problems
are solved by the SQP within 50 iterations, while the FDDP
(filter LS) requires almost 200 iterations to solve the same
amount of problems.

3) MPC experiments: We implemented FDDP (filter LS)
and SQP in MPC on the KUKA LBR14 iiwa to execute
the task of tracking a circle with the end-effector. The cost
function includes state and torque regularization, and an end-
effector position tracking term. The robotic setup follows our
previous work [1], where more details are available. We used
an MPC frequency of 500Hz, with an OCP discretization of

https://github.com/machines-in-motion/mim_solvers
https://github.com/machines-in-motion/StagewiseSQP
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(a) Kuka reaching task with randomized initial state and niter ∈
[1, 100].
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(b) Quadrotor pose task with randomized initial state and niter ∈
[1, 200].
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(c) Double pendulum swing-up task with randomized initial state
and niter ∈ [1, 500].
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(d) Humanoid taichi task with randomized end-effector goal and
niter ∈ [1, 300].

Fig. 1: Percentage of problem solved as a function of the maximum number of iterations allowed niter on 4 randomized
unconstrained OCPs for the 4 solvers: DDP, FDDP with default line-search, FDDP with filter line-search and our SQP. Our
SQP exhibits a faster and more robust convergence on difficult problems, such as the humanoid taichi task.

50ms, 10 nodes in the horizon, and a maximum number of
SQP iterations niter = 5. At each MPC cycle, the solvers
are warm-started with the previous trajectory. Although both
solvers exhibited equal tracking performance, they differed
in their convergence speeds which corroborates our bench-
marks. Indeed the cumulative costs achieved are similar but
the SQP converges faster to its optimal solution as shown in
Figure 2.

B. Constrained case
We now discuss the performance of the SQP with the pro-

posed tailored ADMM implementation to handle constraints.
First, we demonstrate our ability to solve constrained multi-
contact OCPs. Then, we show that the proposed method
can be used in MPC to satisfy arbitrary constraints on real
hardware.

1) Quadruped standing task with friction cones: The
Solo [69] quadruped is tasked with tracking a desired CoM
position while maintaining its contact forces within the
friction cone, i.e.,

∥FT ∥2 ≤ µFN (23)

where FT , FN represent the tangential and normal forces,
respectively. We use 250 nodes in the OCP, with a discretiza-

tion of 20ms. The CoM must track a circular trajectory of
13 cm diameter and 0.2 rad s−1 velocity. The QP absolute
and relative tolerances are set to 10−6, and the termination
tolerance to 10−4. We use the filter line-search with the
maximum size of the KKT residual termination criteria
as previously described. The same OCP was solved with
and without constraint (23). The solver converged in 34
iterations in the unconstrained case and in 31 iterations
in the constrained case. Note that the merit function with
default parameter µγ = µc = 1 was used in this illustrative
example, which seems to benefit the solver’s convergence
in the constrained case over the unconstrained case. The
accompanying video shows the corresponding motion, and
snapshots are provided in Figure 4. Figure 5 shows the ratio
of tangential over normal forces of the unconstrained and
constrained solutions. One can see that the task cannot be
achieved without slipping when no constraint is enforced.
Hence our tailored SQP implementation can enforce nonlin-
ear inequality constraints (Lorentz cones) while also keeping
the number of iterations low.

2) MPC experiments setup: We deployed our tailored
SQP implementation in MPC on the KUKA robot to achieve
various constrained tasks. In all the experiments, the MPC
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Fig. 2: KKT residual norm and number of iterations for
the circle tracking task. Our SQP solver converges within
3 iterations while FDDP hits the maximum number of
iterations (niter = 5) without reaching the desired tolerance.
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Fig. 3: Joint position q1 for the circle task in the constrained
(blue) and unconstrained case (green). The gray-shaded area
represents the infeasible region.

runs at 100Hz, the OCP discretization is 50ms and the hori-
zon has 10 nodes. We allow a maximum of 4 SQP iterations
and 50 QP iterations. Relative and absolute tolerances for
the QP are 10−5 and 10−4 for the SQP. The size of the filter
for the line-search is set to 1. The ρ penalty parameter is
not reset throughout the iterations, and the primal solution is
warm-started with the previous trajectory (no warm-start on
the dual variables y and z which are reset to 0).

Our experiments focus on constrained circle tracking
tasks: the robot must track a circle with its end-effector
while satisfying various constraints in the joint space or
in the end-effector space. The objective includes state and
control regularization terms and a term to follow a circle with
the end-effector (3D task). We observed that reducing the

MPC frequency to 100Hz (vs 500Hz in the unconstrained
experiments) was beneficial since it allowed to increase the
maximum number of QP and SQP iterations and thereby a
better convergence.

3) MPC experiments results: In the first experiment, the
robot must track the circle while keeping the position of
the first joint within [−0.05 rad,+0.05 rad]. The position
of the constrained joint is shown in Figure 3. Without the
constraint, the circle tracking average absolute error is lower
(3.3 cm) than the constrained case (8.5 cm) but the constraint
is largely violated. Increasing the end-effector tracking cost
weight in the constrained case leads to an improved tracking
performance but a more aggressive behavior on the robot due
to an increased constraint saturation.

In the second experiment, an end-effector constraint was
imposed during the circle task. Figures 6a, 6b show the
Cartesian space trajectories for circle tasks in which the
end-effector is constrained to lie within specific half-spaces.
We observed that increasing the velocity of the reference
circle had the effect of smoothing out the edges of the
square. This is behavior can be explained by the prediction
horizon which enables the controller to anticipate constraints:
remaining some distance away from the constraint boundary
is the optimal way to minimize the objective while preventing
constraints violation in the future. This confirms the intuition
that the horizon is crucial in constrained dynamic tasks.

We were able to achieve many other constrained tasks on
the robot that are not formally described in this article due
to space limits, but illustrated in the accompanying video.
For example, the robot can also be constrained to move
only along a vertical line in Cartesian space (i.e. equality
constraint Y = 0 in Figure (6)), which shows the ability
to satisfy tight constraints. We were also able to enforce
the end-effector to remain within the horizontal plane, even
under external disturbances from a human operator. In that
case, as seen in the video, the robot is able to adapt auto-
matically its configuration in order to satisfy the constraint.
This confirms that arbitrary constraints can be enforced at
real-time rates, without having to re-define the task (i.e. no
re-tuning the cost function weights), which demonstrates the
practicality and versatility of the approach.

VII. DISCUSSION

The benchmark introduced in the unconstrained case ques-
tions what allowed this improvement. We argue that FDDP
appears to be a hybrid method laying between single and
multiple shooting. This idea comes both from our results on
the Humanoid taichi robot, where FDDP behaves like DDP
and from the theory, as it is known that once the gaps close in
FDDP, they cannot re-open again. Consequently, we believe
that the improvement observed in the benchmark comes from
the multiple shooting formulation.

Our work follows the line of work started in the 1990s
[22], [34], [36]–[39], [41] showing that standard optimiza-
tion tools can be implemented specifically for OCPs by
exploiting time-induced sparsity. We simply use the same
tenets with SQP and ADMM as they are well-established



Fig. 4: Snapshots of standing motion. The red arrows represent the contact forces and the white cones are the friction
constraint (µ = 0.8). In the 3rd and 4th frames, one can see the tangential forces lying on the boundary on the friction cone.
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Fig. 5: Solo center-of-mass tracking task with friction cone
constraints. The continuous lines represent the ratio FT

FN
at the

front left foot, and the gray dashed line represent the friction
cone constraint. Observe in the Fz plots the unconstrained
OCP solution (green) crossing the friction cone constraint
while the constrained OCP solution (blue) remains within
the constraint.

in the optimization community. Additionally, ADMM has
properties (easy to warm start and quick convergence to
few iterations) that benefit MPC [63]. However, we would
like to insist on the fact that the same principles could
be applied to other optimization techniques. Future work
would be especially interesting to modify such state-of-the-
art QP solvers to exploit stagewise sparsity given that they
outperformed OSQP, in general, [70], [71].

Finally, a direct by-product of the tailored implementation
is the Riccati-like gains that can also enforce the additional
inequality constraints. This is a natural consequence of
using Riccati recursions to efficiently solve the sparse linear
matrix equation that appears in the QP solver. However, it is
important to note that so far, we have not used these Riccati
gains on a real robot in MPC. A study on their effect on
control performance and constraint satisfaction remains to
be done.

During deployment, we usually early terminate the
ADMM-based QP in the interest of higher re-planning
frequency (100Hz). A lower-quality solution seems to be
sufficient to ensure higher reactivity and compliance on the
robot. One key advantage of ADMM in this context is that
the sub-QP solver can reach a reasonable solution in a few
iterations and also guarantee the availability of some solution
even when the constraints may be infeasible because it is

based on the ADMM algorithm [63]. Both of these are
desirable in non-linear MPC where obtaining a solution is
essential during deployment.

VIII. CONCLUSION

A central message of this paper is that the existing
nonlinear optimization literature already provides sufficient
tools to solve OCPs with and without constraints in real time
and thereby achieve state-of-the-art nonlinear MPC on real
robots. We substantiated this message through a tailored,
sparsity-exploiting SQP formulation that provided a unify-
ing framework clarifying the connections between existing
solvers from the robotics literature and a practical approach
to achieving state-of-the-art MPC. We demonstrated through
various benchmarks and hardware experiments that such
a tailored SQP implementation outperformed state-of-the-
art solvers based on DDP on challenging unconstrained
problems. We then showed that it can efficiently solve
arbitrary constrained nonlinear OCPs for MPC applications.
In particular, we could enforce many nonlinear constraints
on a real robot in MPC.

In conclusion, it is extremely encouraging to see that
standard optimization techniques can already push the limits
of closed-loop MPC for torque-controlled robots. The recent
advances in Quadratic Programming suggest that more im-
provements are possible. This opens the way toward more
advanced experimental studies of nonlinear closed-loop MPC
on complex systems. In light of these results, we believe that
as a robotics community, it might be worth investing more
time in re-implementing efficiently established algorithms
developed in the control community to push state-of-the-
art constrained MPC approaches for real-world robotics
applications.
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