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Abstract

Some safety standards (e.g., ISO 26262 in automotive industry) propose the

use of argument structures to justify that the high-level safety properties of a

system have been ensured. The goal structuring notation (GSN) is a graphi-

cal tool used to represent these argument structures. However, this approach

does not address the uncertainties that may affect the validity of the arguments.

Thus, some authors proposed to complement GSN patterns with a quantitative

confidence assessment procedure. In this paper, we first present a refined proce-

dure that expresses the relation between premises (pieces of evidence) and the

conclusion (top-goal to be demonstrated) using logical expressions. Then using

Dempster-Shafer theory, we quantify uncertainty on each expression to build

an explicit mathematical formula for propagating uncertainty to the conclusion.

Inputs for the propagation model are collected from experts and transformed

into numerical values using an improved elicitation model. Afterwards, we in-

troduce a purely qualitative alternative to the quantitative procedure based on

the theory of qualitative capacities. Finally, we adapt the propagation and

elicitation models to this framework.
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1. Introduction

Safety critical systems developed in industries such as aerospace, railway or

automotive are more and more complex. Hence more reliable safety assessment

procedures are needed. For instance, the development of technologies based

on artificial intelligence (e.g. machine learning) rises the issue of safety, since

these techniques are not yet fully understood nor covered by safety standards.

Argument structures are often used to argue in favor of safety. The so-called

Goal Structuring Notation (GSN) is used to replace textual argument structures

that are not always easy to operate. This graphical tool is well structured, clear

and concise (compared to the text format). It allows a better visualization

and understanding of the arguments. It explains how a top goal is reached by

providing a body of evidence supporting it. Nevertheless, it has been noticed

[1] that this representation poorly describes how the pieces of evidence interact

to support a goal nor does it assess how much evidence-based confidence can

be granted to them. This point raises the issue of uncertainty management

in argument structures. Two main challenges emerge: (1) how to propagate

uncertainties in argument structures, and (2) how to feed these structures with

expert opinions ?

Several works already proposed mathematical models to quantify and propa-

gate confidence/uncertainty in graphical representations of argument structures

like GSN. Graydon and Holloway [1], as well as Duan et al.[2], stated and dis-

cussed proposals that deal with the issue of uncertainty. An important number

of approaches used probability theory to model uncertainty and propagate it

with Bayesian networks [3, 4]. More specifically, some authors [5] transform

a GSN into a Bayesian network (BBN) and propagate probabilities accord-

ingly. Due to the limited expressiveness of the probabilistic framework, such

approaches can properly deal with uncertainties due to aleatory phenomena,

but they poorly represent epistemic uncertainties due to incomplete informa-

tion. In addition, these methods are also very greedy in terms of data, which

requires a lot of time in order to collect and process. Other approaches, like in
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Yuan et al. [6], use subjective logic to also define some basic argument types and

rules of confidence propagation. In contrast, we use propositional logic to define

basic argument types considering the possible relationships between premises in

their support of the conclusion, and Dempster-Shafer Theory (DST) to quantify

and propagate confidence in GSN-based arguments.

Building such a confidence propagation model relies on input values, usually

provided by experts in a qualitative form, then transformed into quantitative

values. Hence, there is a need of developing an “expert opinion elicitation”

approach. This method is more often used with probabilistic models. For

instance, in [7], authors used an expert elicitation procedure in a risk assessment

approach to fault trees. However, such a procedure can also be used in evidence

theory. Ben Yaghlane et al. [8] generate belief functions from a preference

relation between events provided by experts. In relation to our framework,

few authors augmented their confidence assessment method by such a data

elicitation procedure in order to provide quantitative values for their models.

Only some authors such as [9, 10, 11] used an elicitation method that transforms

expert opinions, about pieces of evidence, given in the form of qualitative values,

into quantitative ones. In this paper, we also develop an elicitation model based

on DST which improves those proposed in the literature, notably the works of

[9, 12].

However, the naive translation of qualitative information into quantitative

information is somewhat arbitrary. Furthermore, the reverse transformation

back to the qualitative, using the elicitation model, can also introduce addi-

tional uncertainty to the argument. For these reasons and more listed in this

paper, investigating an approach with a qualitative (as in [13]) counterpart of

belief functions seems promising, both for uncertainty propagation and expert

elicitation.

This paper relies on and completes preliminary works presented at confer-

ences [14, 15, 16]. It is structured as follows. Section 2 introduces the theoretical

and practical background needed to develop our approaches. Then in sections 3

and 4, we respectively present our quantitative and qualitative propagation and
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elicitation models. Finally, in section 5, we present our confidence assessment

procedure which relies on the two previous models and conduct a preliminary

comparison between the quantitative procedure and its qualitative counterpart.

2. Background

This section defines safety argument structures and introduces a graphical

formalism used to model them known as Goal Structuring Notation (GSN). We

also present some basic concepts and tools of Dempster-Shafer Theory (DST)

and Qualitative Capacity Theory (QCT).

2.1. Safety argument structures

A safety argument structure, or safety case is a document that gathers a

body of solid and reliable evidence demonstrating that a system is acceptably

safe to accomplish a given function (or task) under given circumstances. These

documents can be used, for instance, as certification tools in safety critical fields,

such as automotive, railway and aerospace industries. Goal structuring notation

(GSN), defined in [17], is a non-formal graphical tool, inspired from Toulmin ar-

gumentation studies [18]. As presented in Figure 1, it breaks down a top claim,

called “goal”, into elements, called “sub-goals” according to a “strategy” (that

justifies this decomposition choice) and following a specific “context” and “as-

sumptions” (restricting the argumentation to their contents). It also provides

each sub-goal with a reference to pieces of evidence supporting it, called “solu-

tions”. The “justification” component gives the rationale behind the adoption

of a strategy or the presentation of a goal. These seven elements can either be

connected with an “in context of ” link relating an item to the context compo-

nent or by a “supported by” link which relates the remaining items.

Figure 1, represents a typical hazard avoidance GSN pattern. To be con-

sidered as “acceptably safe” (G1) all hazards (from G2 to Gn) of the system

(X), listed in the context box (C1), should be provably handled (Sn1, Sn2, ...)

following the strategy (S1). The diamonds connected to the sub-goals (i.e, Gn)

means that they have not yet been achieved.
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Figure 1: GSN example adapted from Hazard Avoidance Pattern [19]

“Assurance case” is a general term that includes argument structures justi-

fying properties beyond safety (e.g, security, reliability, etc).

2.2. Dempster-Shafer Theory

Dempster-Shafer theory (DST) (aka Theory of Evidence) [20] was developed

to address the issue of imprecise evidence [21]. It represents a form of generalized

probability theory where probability masses are assigned to sets of possible

values, instead of singletons. The idea is that there is not enough information

to share a probability mass assigned to a subset among its elements. DST

offers tools to model and propagate both aleatory (due to random events) and

epistemic uncertainty (due to ignorance).

A mass function, or basic belief assignment (BBA), is a probability distri-

bution over the power set of the universe of possibilities (Ω), known as the

“frame of discernment”. Formally, a mass function mΩ : 2Ω → [0, 1] is such

that
∑

E⊆Ω m(E) = 1, and m(∅) = 0. Any subset E of Ω such as m(E) > 0 is

called a focal set of m. m(E) quantifies the probability that we only know that

the truth lies in E; in particular m(Ω) quantifies the amount of ignorance.

A mass assignment induces a so-called belief function (Bel : 2Ω → [0, 1]).
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It represents the sum of all the masses supporting a statement of the form

x ∈ A ⊆ Ω (x is the ill-known entity of interest); the belief function is defined

by:

Bel(A) =
∑

E⊆A,E ̸=∅

m(E). (1)

Belief in the negation ¬A of the statement A is called disbelief and is represented

by: Disb(A) = Bel(¬A); the value Uncer(A) = 1−Bel(A)−Disb(A) quantifies

the lack of information about A. It is maximal where there is neither belief nor

disbelief in A. In this paper, we shall use non-dogmatic belief functions such

that m(Ω) > 0, categoric ones, such that m(E) = 1 for a single non-empty

set, and simple support belief functions that are non-dogmatic ones such that

0 < m(E) < 1 for a single non-empty set E ⊂ Ω, and 0 for other subsets of Ω. In

this work, a conjunctive rule of combination is used for uncertainty propagation.

It combines multiple pieces of evidence (represented by mass functions mi, with

i = 1, 2, ..., n) coming from independent sources of information. When n = 2,

we define m∩ = m1 ⊗m2 such that:

m∩(A) =
∑

E1∩E2=A

m1(E1) ·m2(E2) (2)

This combination rule is commutative and associative. The value m∩(∅) repre-

sents the degree of conflict between m1 and m2. Note that for the calculation

of the belief function (1) when m∩(∅) > 0, the condition E ̸= ∅ makes full sense

since otherwise m∩(∅) would appear in the expressions of belief and disbelief,

then potentially violating the consistency condition Bel(A) +Disb(A) ≤ 1.

Dempster rule of combination requires an additional normalization step when

m∩(∅) > 0: m(A) = m∩(A)/(1−m∩(∅)). However, this normalisation is ques-

tionable when the value of m∩(∅) is close to 1. Indeed, it enforces the division

by a very small number, which makes the result numerically unstable. A high

level of conflict indicates we must reconsider the sources of information.

2.3. Qualitative Capacity theory

In contrast, we outline the qualitative approach in [22, 23, 24]. Let L be

a finite totally ordered set representing certainty levels. In Ω, the universe of
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possibilities (frame of discernment), a qualitative capacity (q-capacity, for short)

is a function γ : 2Ω → L such that:

γ(∅) = 0; γ(Ω) = 1; A ⊆ B ⇒ γ(A) ≤ γ(B)

Any q-capacity can be put in the form:

γ(A) = max
∅̸=E⊆A

ρ(E),∀A ⊆ Ω (3)

where ρ is formally a basic possibility assignment (BΠA) [22], namely, a possi-

bility distribution ρ : 2Ω → L on the power set of Ω, such that maxE⊆Ω ρ(E) = 1

and ρ(∅) = 0. The value ρ(E) is the strength of piece of evidence E. Note the

similarity between (3) and the definition of the belief function (replacing the

sum by the maximum). However, several BΠA’s can generate the same γ, the

least of which is the qualitative Moebius transform (QMT) of γ such that:

γ#(A) =

γ(A) if γ(A) > γ(A \ {w}),∀w ∈ A;

0 otherwise.

(4)

In the paper, we shall use non-dogmatic q-capacities such that ρ(Ω) = 1, and

simple support q-capacities that are non-dogmatic ones such that 0 < ρ(E) ≤ 1

for a single non-empty set E ⊂ Ω, and 0 for other subsets of Ω. The value γ(A)

(resp. γ(¬A)) qualifies the support in favor of (resp. against) A, i.e. belief

(resp. disbelief) in A using an element in the qualitative scale L. The pair

(γ(A), γ(¬A)) thus describes our epistemic stance with respect to A in terms of

belief and disbelief, ranging from no information (i.e., (0, 0)), to full conflicting

information (i.e., (1, 1)), from full belief (i.e., (1, 0)) to full disbelief (i.e., (0,

1)). This is more general than possibility theory where the case (1, 1) is not

allowed.

Figure 2 presents the credibility and information orderings on pairs (belief,

disbelief) including extreme cases [24]. A proposition A is at least as credible as

B if A is at least as supported as B, and ¬B is at least as supported as ¬A, i.e.,

γ(A) ≥ γ(B) and γ(¬A) ≤ γ(¬B) (solid arrows from B to A); it thus ranges

from certainty of falsity (0, 1) up to certainty of truth (1, 0). A proposition
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Figure 2: Evolution of certainty and information in pairs (belief, disbelief)

A is at least as informed as B if A is at least as supported as B, and ¬A is

at least as supported as ¬B, i.e., γ(A) ≥ γ(B) and γ(¬A) ≥ γ(¬B) (dotted

arrows from B to A); it thus ranges from ignorance ((0, 0), no information) up

to conflict ((1, 1), full contradictory information). When the amount of evidence

supporting the conclusion is equal to the one rejecting it, we are in the situation

of indecision. Equipped with these two orderings, the set L× L then possesses

a bilattice structure, well-known in inconsistency-tolerant logics (more details

in [24]).Note that the credibility and information orderings make sense in the

quantitative case as well, comparing pairs (Bel(A), Disb(A)). However, the full

conflict situation corresponds to (Bel(A), Disb(A)) = (0.5, 0.5).

In order to qualitatively combine pieces of evidence represented by possibilis-

tic mass functions, i.e., BΠA’s ρi, coming from several sources of information,

the qualitative counterpart of the conjunctive rule of combination for belief

functions is: ρ∩ = ρ1 ⊙ ρ2 such that [24]:

ρ∩(A) = max
E1∩E2=A

{min[ρ1(E1), ρ2(E2)]} (5)

This is similar to (2), replacing sum by maximum and product by minimum.

However, due to the use of the (idempotent) minimum operation, the combined

pieces of evidence are not supposed to be independent. The result is not always
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a BΠA, strictly speaking. First we may have that ρ∩(A) < 1 for all A. So

we must add the condition ρ∩(Ω) = 1, which makes the combination non-

associative [24]. This will not occur if we restrict to non-dogmatic BΠA’s such

that ρi(Ω) = 1, which we assume in this paper. Under this restriction, the

qualitative combination rule is associative. Besides, we may have that ρ∩(∅) > 0,

indicating conflict between the pieces of evidence.

3. Quantitative confidence elicitation and propagation models

In order to assess confidence in GSN, we first need to collect assessments

about its components and transform them into usable format in the setting of

DST (i.e. belief and disbelief measures). Then, we need to propagate them

to the top-goal while taking into account the relation between GSN elements,

notably those between a goal and its sub-goals that we will respectively call

conclusion and premises in the following.

3.1. A logical approach to GSN

Apart from the relationship “supported by” (between a goal and its sub-

goals) or “in context of ” (between a goal and its context), a GSN does not

explicitly specify the nature of the relation between a top-goal and its sub-

goals. These relations are essential to justify the choice of the uncertainty

propagation schemes to be used. Wang et al. [11, 12] proposed the use of

equivalence (≡) to express the relation between a conclusion and its premise(s).

This choice assumes that the expert has information to both validate or refute

the conclusion, based on the truth or the falsity of the premise. To remain

more flexible about the state of knowledge where the expert could have only

information to validate, or the one to refute the conclusion or both, we decided

to use material implication (denoted by ⇒). In the following, we use Boolean

variables 1 to represent premises (p) and the conclusion (C). When the premise

1Each variable is denoted by x when it takes the value “True” and ¬x when it takes the

value “False”.
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is sufficient to validate the conclusion, we use p ⇒ C = ¬p∨C; when the falsity of

the premise is sufficient to invalidate the conclusion, we use ¬p ⇒ ¬C = p∨¬C;

when both statements are true, using two implications is the same as using

equivalence, i.e. ([p ⇒ C] ∧ [¬p ⇒ ¬C]) ⇔ (p ≡ C).

On the other hand, the GSN formalism does not either specify the relation

between sub-goals (premises) in their support to the goal (conclusion). From

a purely logical standpoint, when a conclusion is supported by more than one

premise, we identify two types of links between them: logical conjunction (e.g.

p1 ∧ p2) and logical disjunction (e.g. p1 ∨ p2).

3.2. Quantitative confidence elicitation model

Experts can be uncertain about the truth or the falsity of pieces of infor-

mation they specify in a GSN. In this section, we present how to qualitatively

express an expert judgment on a statement and how to turn qualitative uncer-

tainty into quantitative belief values in DST.

3.2.1. Collecting expert data

To assess uncertainty of a proposition, say x, the expert is supposed to

provide two pieces of qualitative information:

• A level of decision Dec on a qualitative scale, which describes a trend

from acceptance (maximal belief) to rejection (maximal disbelief) of a

proposition.

• A level of confidence Conf , on a qualitative scale, which reflects the

amount of information an expert possesses that can justify his/her de-

cision.

Each expert judgment, expressed in the form of a decision and the degree of

confidence associated to it, is collected using an evaluation matrix presented in

Figure 3. Each dot in this matrix corresponds to a pair (Dec, Conf).
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Figure 3: Evaluation matrix

3.2.2. From symbolic to numerical data

The symbolic scale of confidence (from C1 to C6 in Figure 3) is associated

to a numerical scale between 0 and 1. We choose a linear scale for transforming

qualitative pairs (Dec,Conf) into numerical values like in header columns and

rows of Table 1. Choosing a scale for (Dec,Conf) and translating such pairs

into numerical degrees is not trivial, we thus make the equidistance assumption

for simplicity and to be comparable to previous works [9, 25]. This choice will

be discussed in section 4.

When Conf(x) = 1, it means that the expert has full information supporting

his choice of Dec(x). While, when Conf(x) = 0, it means that he has no

information to accept or deny x.

3.2.3. Deriving belief and disbelief degrees

Formally, confidence is defined as summation of belief (evidence in favor of

the proposition) and disbelief (evidence against the proposition) degrees.

Conf(x) = Bel(x) +Disb(x) (6)

In the same way each item of the decision scale (from D1 to D5 in Figure 3)

is associated with a numerical value, which can be understood as the probability
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of acceptance. For instance, when Dec(x) = 1 it indicates a full certainty on the

truth of x. On the other hand, whenDec(x) = 0 it indicates a full certainty of its

falsity. And, when for some reason the expert cannot take side, Dec(x) = 1/2.

Formally, we define the decision as the result of the Pignistic transform [26]

that turns a mass function m on a set Ωx (the frame of discernment) into a

probability, changing the focal sets into uniform distributions. When Ωx =

{x,¬x} has two possible states, as it is the case here, Dec(x) is the midpoint of

uncertainty interval between belief and plausibility of x.

Dec(x) =
1 +Bel(x)−Disb(x)

2
(7)

Note that when Bel(x) = Disb(x) (= 0, in particular), we get Dec(x) = 1/2.

From equations (7) and (6), we get:

Bel(x) =
Conf(x)− 1

2
+Dec(x), Disb(x) =

Conf(x) + 1

2
−Dec(x) (8)

The degree of uncertainty can easily be deduced (Uncer(x) = 1 − Bel(x) −

Disb(x)). The expert is allowed to choose any pair (decision, confidence) - a

dot in Fig 3. However, some of these assessments cannot be interpreted by pairs

(Bel(x), Disb(x)), in particular clear-cut decisions (acceptance or rejection, i.e.,

Dec(x) = 1 or 0) with low confidence degree. A constraint known as “Josang

constraint” [27] needs to be respected between Conf(x) andDec(x). Otherwise,

the transformation (Dec,Conf) to (Bel,Disb) will lead to values outside the

unit interval [0, 1].

Enforcing Bel(x), Disb(x) ∈ [0, 1], expressions in (8) yield 1 − Conf(x) ≤

min(2Dec(x), 2(1 − Dec(x)). Hence, we can express the feasibility range of

Dec(x) for a given confidence level as:

1− Conf(x)

2
≤ Dec(x) ≤ 1 + Conf(x)

2
(9)

which defines a triangle in the evaluation matrix (Figure 3). Graphically, the

assessments outside the triangle are those that do not respect the constraint

and thus lead to negative belief (black dots) or negative disbelief (grey dots)

values, which make no sense.
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As a consequence, when the expert makes a clear-cut decision (acceptance

Dec(x) = 1 or rejectionDec(x) = 0) the confidence must be maximal (Conf(x) =

1, fully informed expert), otherwise his/her decision assessment will have no

grounds. The closer you get to the midpoint value (Dec(x) = 1/2, no decision),

the larger the allowed confidence interval will be. The pair (Dec(x) = 1/2,

Conf(x) = 0) means that the expert cannot take side because he/she has no

information (total ignorance), while (Dec(x) = 1/2, Conf(x) = 1) means that

he/she cannot take side because he/she has as much evidence in favor of the

premise as against (total conflict).

When the pair (Dec(x), Conf(x)) provided by an expert is situated outside

the triangle, we make a correction. As confidence reflects the amount of in-

formation, we keep it and modify the Dec value. When Dec(x) < 1−Conf(x)
2

(rejection: black dots on Figure 3), we set Dec(x) = 1−Conf(x)
2 . On the other

hand, when Dec(x) > 1+Conf(x)
2 (acceptance: grey dots on Figure 3), we set

Dec(x) = 1+Conf(x)
2 .

Example 1. Suppose we have the following assessments on two premises (p1)

and (p2):

• p1: Opposable with high confidence (Dec(p1) = 0.25, Conf(p1) = 0.6).

• p2: Acceptable with very high confidence (Dec(p2) = 1, Conf(p2) = 0.8).

We calculate Bel(pi) and Disb(pi) using (8). We notice that the assessment for

p1 is inside the triangle in the matrix (Figure 3). We can therefore claim that

there is no need to adjust the values according to Josang constraint (Eq. 9):

Bel(p1) =
0.6−1

2 +0.25 = 0.05, Disb(p1) =
0.6+1

2 −0.25 = 0.55 and Uncer(p1) =

1−Bel(p1)−Disb(p1) = 0.4.

On the other hand, the assessment for p2 is situated outside the triangle. In

this case, we can be sure that the decision degree must be adjusted in accor-

dance with the confidence value to get correct inputs. Before adjustment, we

find: Bel(p2) =
0.8−1

2 + 1 = 0.9 and Disb(p2) =
0.8+1

2 − 1 = −0.1, a negative
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Table 1: Values from (Dec, Conf) to (Bel,Disb) pairs on premises (see Figure 3 for symbol

meaning)

Conf

Dec
D1 (0) D2 (0.25) D3 (0.5) D4 (0.75) D5 (1)

C1 (0) (0,0) (0,0) (0,0) (0,0) (0,0)

C2 (0.2) (0,0.20) (0,0.20) (0.10,0.10) (0.20,0) (0.20,0)

C3 (0.4) (0,0.40) (0,0.40) (0.20,0.20) (0.40,0) (0.40,0)

C4 (0.6) (0,0.60) (0.05,0.55) (0.30,0.30) (0.55,0.05) (0.60,0)

C5 (0.8) (0,0.80) (0.15,0.65) (0.40,0.40) (0.65,0.15) (0.80,0)

C6 (1) (0,1) (0.25,0.75) (0.50,0.50) (0.75,0.25) (1,0)

value of disbelief, which does not make sense. Following the discussion above,

we set Dec(p2) =
1+Conf(p2)

2 = 1+0.8
2 = 0.9. Then we find that Bel(p2) = 0.8,

Disb(p2) = 0 and Uncer(p2) = 1−Bel(p2)−Disb(p2) = 0.2. □

In Table 1, we grouped all possible (Dec, Conf) pairs on premises with their

appropriate (Bel, Disb) counterparts. We notice that when no information is

available (C1: Lack of confidence), no matter what choice is made the degree

of uncertainty is maximal (Uncer(p) = 1). On the other hand, in the case of a

fully informed expert (C6: For sure) the decision value varies from rejection to

acceptance, which follows the restrictions imposed by “Josang constraint”.

3.2.4. Comparison with other approaches

There are other formulas to transform a mass function into a probability

distribution that can be employed instead of the pignistic transform. Shenoy

transform [28] is one of them. It consists in renormalizing the plausibilities

of singletons, dividing each by their sum. Applying it to a two-state frame of

discernment Ωx = {x,¬x}, we get the following formula:

Dec(x) =
1−Disb(x)

2− [Bel(x) +Disb(x)]
(10)

Notice that like the pignistic formula (equation 7) when Bel(x) = Disb(x),
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Dec(x) = 1/2 which expresses the situation of indecision. The decision value

calculated from Shenoy transform needs also to respect Josang constraint in

order to give correct belief and disbelief degrees (included in the unit interval

[0, 1]). Hence, we also frame each decision between to values:

1

2− Conf(x)
≤ Dec(x) ≤ 1− Conf(x)

2− Conf(x)
(11)

However, the pignistic transform is a better choice to use in our situation

for the following reasons:

1. The decision interval obtained by applying Josang constraint to the pig-

nistic transform (Eq. 9) is larger than the one obtained by the Shenoy

transform (Eq. 11). Figure 4 presents the feasibility areas for each trans-

formation (triangle for Pignistic Eq. 9 and curvy inner triangle for Shenoy

Eq. 11). Notice that, indeed, the usable values (not requiring adjustment)

represented by the area inside the two triangles is larger in the case where

we use the Pignistic transform (triangle with plain edges) than in the

Shenoy case (curvy triangle with dashed edges).

2. The decision value obtained by the pignistic transform represents the mid-

point of the uncertainty interval. This is not the case with Shenoy trans-

form, which may sound counterintuitive. Hence, with the formula of con-

fidence (Eq. 6), which gives the length of the uncertainty interval, we

can recover the uncertainty interval from its midpoint using the pignistic

transform.

On the other hand, Cyra and Gorski [9], and Wang et al. [11, 12] formally

defined decision as: If Conf(x) > 0 : Dec(x) = Bel(x)
Bel(x)+Disb(x)

If Conf(x) = 0 : Dec(x) = 1 (Cyra & Gorski), or 0 (Wang et al.)

(12)

Notice that in situation of total ignorance (Conf = Bel + Disb = 0) Cyra

and Gorski adopted an optimistic point of view by accepting the conclusion

(Dec = 1), while Wang et al. choose a more conservative approach by rejecting
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Figure 4: Pignistic (plain line) and Shenoy (dashed line) transforms constraint

the conclusion (Dec = 0). These choices seem arbitrary since they are based on

no evidence. It would be better to take a neutral position because no evidence is

provided to justify taking side (for or against). Therefore we replace this model

by the Pignistic transform.

3.3. Quantitative confidence propagation model

Once we have defined the process of transforming experts judgments into

degrees of belief, disbelief and uncertainty, we need to define how to propagate

these values to the conclusion.

3.3.1. Sources of uncertainty in a GSN

In order to define propagation formulas to compute the confidence in the

conclusion, we need to identify the sources of uncertainty in a GSN. Thus, we

consider two sources:

• Uncertainty in a premise, known as trustworthiness [9, 11], in which

the truth and falsity of pieces of evidence supporting the conclusion are
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Uncertainty in the 
conclusion (C)

The system X is acceptably 
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(C)

All test results are conclusive

(p)

?

?

?

Uncertainty in the 
premisse (p)

Uncertainty in (p) 
supporting (C)

Figure 5: Sources of uncertainty in GSN - A simple argument type (S-Arg) example (Note

that the arrow direction is not intuitive regarding the inference p supports C)

questioned. For instance, in Figure 5 one can doubt the test results

because the experimental protocol was not respected. Formally, to as-

sess confidence/uncertainty of a premise p, we define a mass function

mp on Ωp = {p,¬p}, assigning masses to the premise (p), its nega-

tion (¬p) and the tautology (⊤ standing for Ωp) summing to 1 (i.e.

mp(p) + mp(¬p) + mp(⊤) = 1, where mp(⊤) represents the amount of

ignorance). Note that Bel(p) = mp(p), and Disb(p) = mp(¬p)

• Uncertainty in the support relation between a premise and its conclusion,

known as appropriateness [11], in which one can doubt the truth of this

support. For instance, in Figure 5 an expert may argue whether the truth

of the premise is sufficient to conclude the safety of the system. This sup-

port relation is expressed in propositional logic by material implications

that we call rules. They are used to justify the propagation schemes for

different argument types. Formally, each rule r is assigned a simple sup-

port mass function mr [20], such that: mr(r) +mr(⊤) = 1. Explanation

of why, unlike a premise, the negation of a rule (¬r) is not taken into

consideration will be given later.

Note that assessing the support relationship in GSN between a goal (a conclusion
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C) and its sub-goals (premises p) means assessing the chosen strategy, taking

into account all the restrictions associated with it which define its scope (i.e.

context, assumption and justification components).

3.3.2. Argument types

Looking through the literature, four common argument types were identified.

In the following, we present and explain how confidence is propagated for a

situation of one premise (p) supporting a conclusion (C), then for two premises

(p1) and (p2) . Finally, we deduce formulas for “n” premises.

Simple argument type (S-Arg):

This argument describes the case of a conclusion (C) supported by a single

premise (p), like in Figure 5. If the premise is true, then so is the conclusion.

Material implication (p ⇒ C) is used to express the inference (support) between

the premise and its conclusion. It is called direct rule: it propagates the truth

(belief) in p. However, implication can only infer the acceptance of the conclu-

sion when p holds (Modus ponens pattern). When p is not true, whether the

conclusion holds is unknown. An additional rule, called reverse rule in oppo-

sition to the first one, which can infer the rejection of the conclusion, will be

added: ¬p ⇒ ¬C. Direct and reverse rules are designed to respectively propa-

gate belief and disbelief degrees of the premises. Figure 5 presents an example

of a simple argument. In this case, the top-goal (or conclusion) “The system is

acceptably safe” is achieved, only if the premise “The test results are conclu-

sive” is true (direct rule). Otherwise, the conclusion is false (reverse rule). For

each rule (direct and reverse), we assign resp. a simple support mass function

(m⇒ and m⇐), which puts a mass on the rule and the rest on the tautology

(⊤)2 summing to 1. We also assign another function to the premise (mp), which

puts a mass on the premise (p), its negation (¬p) and the tautology (⊤) sum-

ming to 1. Using the conjunctive rule of combination, we merge masses on rules

2Also denotedy b m(Ω) according to the set theory syntax, [⊤] = Ω.
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(mr = m⇒ ⊗ m⇐) in Table 2; then its result is merged with mp in Table 3:

mC = mr⊗mp. This approach is a special case of the general reasoning method

with uncertain propositional logic formulas proposed in [29].

Table 2: Combination of direct (m⇒) and reverse (m⇐) rules for S-Arg

mr = m⇒ ⊗m⇐ m⇒(p ⇒ C) m⇒(⊤)

m⇐(¬p ⇒ ¬C) p ≡ C ¬p ⇒ ¬C

m⇐(⊤) p ⇒ C ⊤

Table 3: Combination of the mass on premise (mp) with its rule (mr) for S-Arg

m = mp ⊗mr mr(p ≡ C) mr(p ⇒ C) mr(¬p ⇒ ¬C) mr(⊤)

mp(p) p ∧ C p ∧ C p p

mp(¬p) ¬p ∧ ¬C ¬p ¬p ∧ ¬C ¬p

mp(⊤) p ≡ C p ⇒ C ¬p ⇒ ¬C ⊤

To calculate the belief degree of the conclusion, we sum the masses of all

formulas that infer the conclusion (C) in Table 3 (dark grey areas).

BelC(C) =
∑

ϕ:ϕ implies C

m(ϕ) = m(p ∧ C)

= mp(p)×mr(p ≡ C) +mp(p)×mr(p ⇒ C)

= mp(p) · [mr(p ≡ C) +mr(p ⇒ C)]

= mp(p) · [m⇒(p ⇒ C)×m⇐(¬p ⇒ ¬C) +m⇒(p ⇒ C)× (1−m⇐(¬p ⇒ ¬C))]

= mp(p) ·m⇒(p ⇒ C)

To calculate the disbelief degree of the conclusion, we sum the masses of all

formulas that infer the negation of the conclusion (¬C) in Table 3 (bright grey

areas). The calculation is similar to the previous one, and we get

DisbC(C) =
∑

ϕ:ϕ implies ¬C

m(ϕ) = m(¬p ∧ ¬C)

= mp(¬p) ·m⇐(¬p ⇒ ¬C)
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Hence, we obtain the propagation formulas for an S-Arg, in 13:

S-Arg :

 BelC(C) = Belp(p) ·Bel⇒(p ⇒ C)

DisbC(C) = Disbp(p) ·Bel⇐(¬p ⇒ ¬C)
(13)

Remarks:

- As said earlier, since, we work on a two states frame of discernment (True,

False) for both premises Ωp = {pi,¬pi} and the conclusion ΩC = {C,¬C},

masses and degrees of (dis-)belief in premises, rules and conclusion, are equal.

For instance, mp(p) = Belp(p) and mp(¬p) = Belp(¬p) = Disbp(p).

- Unlike mass functions of premises, we do not assign a mass on negations of

rules p∧¬C = ¬(p ⇒ C) (resp. ¬p∧C = ¬(¬p ⇒ ¬C)). First, the negation of

a rule is not a rule. Moreover, we do not assume that the truth of a premise can

lead to the negation of the conclusion (at least in the GSN context). Components

like rebuttals, which bring evidence against the conclusion or defeaters, which

specify some exceptions to the rule, do not exist in GSN. However, it is allowed to

question the truth of the premise for valid reasons (e.g., expert cannot trust the

experiment because test conditions are not acceptable), which is more likely to

occur. Therefore, we limit ourselves only to rules that can propagate belief and

disbelief in the premises. Taking disbelief in rules into consideration will only

make the calculations more complex and create conflict between mass functions.

- The belief in the conclusion BelC(C) (resp. disbelief) only depends on the

belief of the direct rule Bel⇒(p ⇒ C) (resp. reverse rule) and the belief (resp.

disbelief) of the premise Belp(p). Indeed, the direct rule p ⇒ C (resp. reverse

rule ¬p ⇒ ¬C) and the falsity (resp. truth) of the premise p cannot infer the

rejection (resp. acceptance) of the conclusion C.

Conjunctive argument type (C-Arg):

This argument type describes the case when all premises are needed to sup-

port the conclusion. The direct rule is obtained by translating this definition

into a logical expression: (∧n
i=1pi) ⇒ C. On the other hand, the reverse one

is obtained by reversing the direct one: ¬(∧n
i=1pi) ⇒ ¬C, which is equivalent

to ∧n
i (¬pi ⇒ ¬C), a conjunction of elementary reverse rules. For instance, in
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List of hazards :
- Chemical leakage.
- Explotion. 

(Ctx)

The battery is safe

(C)

The risk of chemical 
leakage is treated

(p1)

The risk of explosion is 
treated

(p2)

Figure 6: A conjunctive argument type (C-Arg) example

the example of Figure 6 both risks (listed in the context box) should be treated

to guarantee the safety of the battery. However, if at least one premise is not

treated, the system is no longer safe. To get propagation formulas (Eqs. 14) of

a C-Arg for n premises, we combine the mass on rules (mr = m⇒ ⊗ [⊗n
i=1m

i
⇐])

with those on premises (mp = ⊗n
i=1m

i
p) using the conjunctive rule of combina-

tion (mC = mp ⊗mr):

C-Arg :

 BelC(C) = Bel⇒([∧n
i=1pi] ⇒ C)

∏n
i=1 Belp(pi)

DisbC(C) = 1−
∏n

i=1[1−Disbip(pi)Beli⇐(¬pi ⇒ ¬C)]
(14)

We can notice from the equations in (14), that the belief formula takes the

form of a general conjunction (the product of belief degrees in promises weighted

by the mass in the conjunctive rule). On the other hand, the disbelief formula

takes the form of a general disjunction (when n = 2, the probabilistic sum 1−(1−

Disb1C(C)) · (1−Disb2C(C)) = Disb1C(C) +Disb2C(C)−Disb1C(C) ·Disb2C(C),

where: DisbiC(C) = Disbip(pi) · Beli⇐(¬pi ⇒ ¬C) the disbelief degree in the

conclusion induced by the failure of one premise). The propagation scheme of

this argument type favors the premise with the least strength (minimal belief

obtained by the product of the belief on premises and maximal disbelief obtained

by the probabilistic sum of disbeliefs of premises).
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The safe-deposit box is 
secure

(C)

Strong digit code system

(p1)

Reliable fingerprint 
recognition system

(p2)

Figure 7: A disjunctive argument type (D-Arg) example

Disjunctive argument type (D-Arg):

This argument type describes the case when one premise is enough to support

the whole conclusion. The corresponding rules are: ∧n
i=1(pi ⇒ C) (direct), and

(∧n
i=1¬pi) ⇒ ¬C (reverse). In the example of Figure 7, each premise (digit

code or fingerprint recognition systems) can guarantee the security of the safe-

deposit box. Their conjunction does not, in any case, improve the degree of

support in the conclusion (C). To get propagation formulas (Eqs. 15) of a D-

Arg for n premises, we combine the mass on rules (mr = m⇐⊗ [⊗n
i=1m

i
⇒]) with

those on premises (mp = ⊗n
i=1m

i
p) using the conjunctive rule of combination

(mC = mp ⊗mr).

D-Arg :

 BelC(C) = 1−
∏n

i=1[1−Belip(pi)Beli⇒(pi ⇒ C)]

DisbC(C) = Bel⇐([∧n
i=1¬pi] ⇒ ¬C)

∏n
i=1 Disbip(pi)

(15)

In opposition to the C-Arg, the belief (resp. disbelief) formula in equa-

tion (15) expresses a general disjunction (resp. conjunction). The propagation

scheme of this argument (D-Arg) favors the premise with the greatest strength.

Hybrid argument type (H-Arg):

This argument type describes the case where each premise supports the

conclusion to some extent, but their conjunction does it to a larger extent. This

argument type could be considered as a general type which includes the two

22



The code is safe

(C)

Formal verification results 
were conclusive

(p1)

Test results were 
conclusive

(p2)

Figure 8: A hybrid argument type (H-Arg) example

previous ones. In fact, conjunctive and disjunctive types correspond to limit

cases of the hybrid one. In the example of Figure 8, the premise “Test results

were conclusive” supports the conclusion to some point. Since evidence based

on formal verification was also provided, which allows to identify some unsafe

states that the system will never reach, experts usually do not conduct lot of

tests (which are limited by issues such as cost, feasibility, etc). On the other

hand, tests can cover issues that formal verification might not capture. Unlike

the D-Arg, the conjunction of these two premises improves the support degree in

the conclusion. To get propagation formulas (Eqs. 16) of a H-Arg for n premises,

we combine the mass on rules (mr = m⇒ ⊗ [⊗n
i=1m

i
⇐]⊗m⇐ ⊗ [⊗n

i=1m
i
⇒]) with

those on premises (mp = ⊗n
i=1m

i
p) using the conjunctive rule of combination.

See Appendix A.1 for the detailed calculation.

H-Arg :



BelC(C) = Bel⇒([∧n
i=1pi] ⇒ C)×

∏n
i=1 Belip(pi) · [1−Beli⇒(pi ⇒ C)]

+{1−
∏n

i=1[1−Belip(pi) ·Beli⇒(pi ⇒ C)]} −m
(n)
C (⊥)

DisbC(C) = Bel⇐([∧n
i=1¬pi] ⇒ ¬C)×

∏n
i=1 Disbip(pi) · [1−Beli⇐(¬pi ⇒ ¬C)]

+{1−
∏n

i=1[1−Disbip(pi) ·Beli⇐(¬pi ⇒ ¬C)]} −m
(n)
C (⊥)

(16)
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where the mass m
(n)
C (⊥)3 represents the conflict degree for (n) premises. We

propose a recursive formula to calculate conflict mass for n ≥ 2 premises:

m
(n)
C (⊥) = Bel

(n−1)
C (C)×mn(¬pn∧¬C)+Disb

(n−1)
C (C)×mn(pn∧C)+m

(n−1)
C (⊥)

(17)

where:

- m
(1)
C (⊥) = 0

- Bel
(n−1)
C (C) = {1−

∏n−1
i=1 [1−Belip(pi) ·Beli⇒(pi ⇒ C)]} −m

(n−1)
C (⊥)

- Disb
(n−1)
C (C) = {1−

∏n−1
i=1 [1−Disbip(pi) ·Beli⇐(¬pi ⇒ ¬C)]}−m

(n−1)
C (⊥)

- mi(pi ∧ C) = Belip(pi) ·Beli⇒(pi ⇒ C)

- mi(¬pi ∧ ¬C) = Disbip(pi) ·Beli⇐(¬pi ⇒ ¬C).

See Appendix A.2 for the detailed calculation of the conflict mass.

Note that in the expression (16) of Bel(C) and Disb(C), we first directly

calculate expressions of the form b(C) =
∑

ϕ|=C m(n)(ϕ) and d(C) = b(¬C) =∑
ϕ|=¬C m(n)(ϕ) that include the term m(n)(⊥), but are easier to compute than

Bel(C) and Disb(C). Then we subtract the term m(n)(⊥) calculated recursively

in a separate way (see Appendix A.2). Remember that we may have b(C) +

d(C) > 1 since m(n)(⊥) is then counted twice. Additional explanation is given

through an example of computation of belief and disbelief propagation formulas

for the case of two premises supporting one conclusion in Appendix A.1.

We can notice that belief and disbelief propagation formulas for an H-Arg

(Eqs. 16) have the same form. They sum two parts. A first one which expresses

the conjunctive component of this type, weighted by the uncertainty on the

direct elementary rules (1−Beli⇒(pi ⇒ C), resp. the reverse ones). The second

part represent its disjunctive component. To deduce the formulas of a C-Arg

from H-Arg, all you need is to set the elementary rules (Beli⇒(pi ⇒ C)) and

the reverse conjunctive one (Bel⇐([∧n
i=1¬pi] ⇒ ¬C)) to zero. Conversely, if we

set to zero the masses of the direct conjunctive rule and those of the reverse

elementary rules, we get the formulas of a D-Arg. Finally, in the case of a

3Also denoted by m(∅) according to the set theory syntax: [⊥] = ∅.
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conclusion supported by one premise, both masses of the direct and reverse

conjunctive rules are equal to zero. Thus, we also deduce the formula of an S-

Arg. Hence, the propagation formulas of the H-Arg can also be used to calculate

confidence of the other argument types (S-Arg, C-Arg and D-Arg).

A conflict situation represents the case when one or more premises lead to

opposite assessments of the conclusion (e.g., a premise pi supports a conclusion

C, while the negation of another premise pj supports its negation). Formally,

it always takes the form of a combination of four items: pi, pi ⇒ C, ¬pj and

¬pj ⇒ ¬C, which produce empty intersections (noticeable if we combine the

masses of elementary rules and those on the premises). In the case of the C-

Arg and D-Arg this combination never occurs. Indeed, since the definition of a

C-Arg (resp. D-Arg) does not use direct (resp. reverse) elementary rules that

combine with reverse (resp. direct) elementary rules, we can see that the value

of m
(n)
C (⊥) is always zero for these types.

Facing a conflict situation, when we have opposite assessment on premises

supporting the same goal, the conjunctive type adopts a cautious behavior in

favor of the propagation of the premises that does not support the conclusion.

On the contrary, the disjunctive type takes a more optimistic view, which favors

the propagation of the premises that support the conclusion. The hybrid type

(H-Arg) stands between these two limit cases, and the mass m
(n)
C (⊥) may have

a positive value.

Remarks

• In the case of a minor conflict (m
(n)
C (⊥) small), instead of subtracting

m
(n)
C (⊥), we could normalise the result, dividing by the consistency degree

(1−m
(n)
C (⊥)) as proposed in the usual Dempster rule of combination. It

would eliminate the conflict and proportionally increase the contradiction-

free degrees of the belief BelC(C) and disbelief DisbC(C) in a misleading

way. In the case of full conflict, this mass is equal to 1 making this
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normalisation meaningless (division by zero).4 In fact the term m
(n)
C (⊥),

if high enough, provides additional information in the sense that it detects

a contradiction in the expert data, which may lead to questioning the

argument structure.

• Our confidence propagation scheme can be addressed by standard existing

belief function software based on results in [30] (e.g., the belief function

machine implemented in MatLab), but the GSNs we study have a partic-

ular tree-like structure that enables an explicit symbolic calculation of the

belief function on the conclusion space. The explicit formulas make the

calculation more efficient, are easy to interpret and liable to sensitivity

analysis, thus better explaining the obtained results, and validating the

approach.

• Unlike our proposal, which uses simple support functions to quantify con-

fidence in rules separately, Wang et al. [12] represent the relation between

the premises and the conclusion with a single mass function for all rules

with weights summing to 1. This choice makes the confidence in one

premise dependent on confidence in the other ones. The more confidence

in the rule corresponding to a particular premise, the less confidence in

the other rules. Our approach has more degrees of freedom and is closer

to logic.

3.4. Application

A real world case study is provided in [16], but we propose here a smaller

generic example to illustrate our approach. We consider a situation with two

premises p1 and p2 supporting a conclusion C. Then, we set the belief on rules

to the values in Table 4 according, respectively, to the C-Arg, D-Arg and H-Arg

and propagate confidence from premises to the conclusion. We consider three

different settings of premise assessments. A first one, with positive evaluations

4This can be the case with masses on formulas equal to 1.
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Table 4: Example of belief values for the three argument types with two premises (p1 and p2)

supporting a conclusion (C)

Rules

Types
H-Arg C-Arg D-Arg

Bel⇒([p1 ∧ p2] ⇒ C) 1 1 0

Bel⇐([¬p1 ∧ ¬p2] ⇒ ¬C) 1 0 1

Bel1⇒(p1 ⇒ C) 0.75 0 1

Bel1⇐(¬p1 ⇒ ¬C) 0.75 1 0

Bel2⇒(p2 ⇒ C) 0.75 0 1

Bel2⇐(p2 ⇒ ¬C) 0.75 1 0

Table 5: Three examples of (Belief, Disbelief) propagation for a conclusion (C) supported by

two premises (p1 and p2) and their (Decision, Confidence) counterpart

Configuration G1 G2 G (C-Arg) G (D-Arg) G (H-Arg)

1st
(0.75, 0.25) (0.75, 0.25) (0.56, 0.44) (0.94, 0.06) (0.63, 0.13)

(Tol,c6) (Tol,c6) (ND,c6) (Acc,c6) (Tol,c5)

2nd
(0.25, 0.75) (0.25, 0.75) (0.06, 0.94) (0.44, 0.56) (0.13, 0.63)

(Opp,c6) (Opp,c6) (Rej,c6) (ND,c6) (Opp,c5)

3rd
(0.75, 0.25) (0.25, 0.75) (0.19, 0.81) (0.81, 0.19) (0.30, 0.30)

(Tol,c6) (Opp,c6) (Opp,c6) (Tol,c6) (ND,c4)

(both tolerable, for sure), negative evaluations (both opposable, for sure) and

opposite evaluations. Then, we propagate confidence from premises (p1 and p2)

to the conclusion (C) according to each argument type. Finally we transform

and approximate the calculated belief and disbelief values into symbolic decision

and confidence pairs. The results are gathered in Table 5.

Notice that C-Arg, as expected, favors the propagation of the premise with

least strength. The effect of attenuation is due, on the one hand, to the product

between belief degrees on premises, which decreases the belief of the conclusion,

and, on the other hand, to the probabilistic sum of disbelief degrees of premises,

which increases the disbelief of the conclusion. In Table 5, we can notice that the

decision degree of the conclusion respectively moves from tolerable and opposable
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to no decision and rejectable due to the attenuation effect in the first and second

case.

In opposition to C-Arg, we can notice that D-Arg favors the propagation

of the premise with the strongest assessment. The effect of amplification is

due to the use of probabilistic sum for belief degrees and the product for the

disbelief degrees. In Table 5, we can notice that the decision of the conclusion

respectively moves from tolerable and opposable to acceptable and no decision

due to the amplification effect in the first and second case.

Finally, we can notice that the H-Arg achieves a balance between the as-

sessments by maintaining respectively tolerable and opposable decisions in the

first and second cases and giving no decision in the third case when we have

opposite assessments. But in return, it degrades the level of confidence.

3.5. Argument types in the literature - Comparison

As discussed above, the logical definition of the H-Arg includes many argu-

ment types. In the following, we compare some argument types proposed in the

literature with those we propose.

Using the informal definition of the argument types given in [9, 31] and the

formal one [25], we placed those types with respect to ours in Figure 9. We can

notice that in each work there is a pure conjunctive type and a pure disjunctive

one. The rest of the types can be considered as a special case of the hybrid

(H-arg) one. Some are close to the C-Arg, while others are more close to the

D-Arg. The “complementary and alternative combination type”, proposed by

Cyra and Gorski [9], by definition is at equal distance between C-Arg and D-

Arg. However, these authors consider this type either as an alternative type

or a complementary type according to each situation, instead of proposing a

unified formula that cover these two types.

These works also use DST to model and propagate confidence in GSN. As

we did, they proposed different propagation formulas for different identified

types of arguments [31, 9, 12]. However, they poorly describe how premises

interact to support the conclusion (imprecise argument types). For instance,
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Figure 9: Proposed argument types compared to Wang et al. [12], Anaheed et al. [31] and

Cyra & Gorski [9]

Anaheed et al. [31] try to explain these interactions using Venn diagrams where

the logical (conjunction, disjunction, etc) and confidence (mass assignment)

aspects of these argument types are mixed up. Therefore, we cannot guess

the argument type from its propagation formulas. They all take the form of

a weighted average. Similar remarks can be made on Cyra and Gorski’s work

[9], where one cannot identify, from the formulas, the logic that leads to them.

The work of Wang et al. [12] is closer to ours. A separation between the

logic (argument type definition) and confidence (mass assignment definition)

was made, which facilitates the understanding of their formulas. They use

a mix between conjunction and disjunction to model their types and logical

equivalence to link premises to the conclusion. Using equivalence assumes that

information about both the acceptance and denial of the conclusion is available

and they have the same weight [14]. These models do not consider the case

where a single type of information is available, hence the interest of breaking it

down into two implications, as we do.

4. Qualitative confidence propagation and elicitation models

In this section, we present reasons to question the quantitative approach

to uncertainty elicitation. It motivates a purely qualitative counterpart of the

quantitative elicitation and propagation models presented in previous section.

Then, we introduce the new approach based on qualitative capacity theory.
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4.1. Rationale for the qualitative approach

There are three reasons to develop a purely qualitative confidence elicitation

and propagation model in argument structures.

Source independence assumption. Using Dempster rule of combination (with or

without normalization) supposes that the belief functions defined to quantify

confidence (or uncertainty) in a conclusion (C) are coming from independent

sources. Hence, the confidence provided by multiple pieces of evidence support-

ing the same conclusion (acceptance of x or its rejection) is higher than the

one provided by each one individually: i.e, for two pieces of evidence we get a

degree of confidence α1+α2−α1 ·α2 ≥ max(α1, α2), where αi is the confidence

provided by the ith piece of evidence.

In this framework, we often rely on the judgment of a single expert to assess

the confidence in each node of a GSN (a conclusion supported by one or more

premises). Hence, we cannot always assume independence of sources. It is

not systematically verified in practice. Therefore, it is important to investigate

combination rules that do not suppose independence of sources. Destercke et al.

[32] and Denoeux [33] propose some idempotent rules of combination to merge

belief functions induced by dependent sources. In the qualitative setting the

counterpart of the conjunctive rule of combination is idempotent.

Attenuation and amplification effects. As presented in the application of section

3.4, in the case of a C-Arg (the most encountered argument in our state of the

art study), we can have premises with high credibility assessment and yet end

up with a conclusion with little credibility [16]. A similar problem (this time

amplification) occurs with D-Arg. To overcome this problem, we can change the

numerical scale of decision and confidence. The choice of the linear scale adopted

in section 3.2 is adopted only to compare with previous studies. For instance,

using a logarithmic scale, commonly encountered in railway safety applications,

may partially solve this issue, but the results of the calculation will always

strongly rely on the choice of the scale. As seen later this phenomenon will not

occur in the qualitative setting.
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Transformation of qualitative assessments into quantitative ones. Encoding qual-

itative uncertainty assessments with real numbers contains a part of arbitrari-

ness, whatever the chosen target scale. As suggested previously, changing the

linear scale into a logarithmic one can partially mitigate the attenuation and

amplification effects respectively in C-Arg and D-Arg. But this transformation

can introduce instability in the propagation model: the results of the propaga-

tion steps may depend upon the choice of the transformation from qualitative

to quantitative values, including when approximating back the calculated values

of belief, disbelief, and uncertainty of the conclusion into qualitative decision

and confidence pairs.

For all these reasons, we find it valuable to investigate a purely qualitative

approach of confidence elicitation and propagation, which avoids the qualitative-

numerical translation step.

4.2. Qualitative confidence elicitation model

In order to elicit qualitative capacities, we use a modified version of the

quantitative method proposed in sub-section 3.2, already outlined in [24]. Thus,

the same types of information will be collected to assess the GSN pattern:

• The decision index Dec(x), takes values in a bipolar scale D = {0D =

d−n, dn−1, . . . , d0 = e, d1, . . . , dn = 1D} with 2n+ 1 values, the bottom of

which (0D) expresses rejection, the top (1D) acceptance, and the midpoint

(eD) a neutral position. In the application, we assume n = 2.

• The confidence index Conf(x) lies in a positive uni-polar scale with n+1

values C = {0C = c0, c1, . . . , cn = 1C} (the top 1C expresses full confi-

dence, the bottom 0C is neutral- no information). For n = 2: the levels

c0 to c2 may respectively express lack of confidence, moderate confidence

and full confidence.

We now turn pairs (Dec,Conf) into qualitative capacity assessments on the
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scale L. To make decision and confidence scales compatible with the transfor-

mation formulas presented hereafter, we make several assumptions:

(i) The bipolar scale D is equipped with an order-reversing map νD such

that νD(d−i) = di. Especially we have that νD(Dec(x)) = Dec(¬x).

(ii) The unipolar scale C is isomorphic to the positive part of D, and is

equipped with an order-reversing map ν such that: ν(ci) = cn−i.

In order to switch from a pair (Dec(x), Conf(x)) to a pair of capacity values

(γ(x), γ(¬x)), we define a function f that mapsD×C to the belief-disbelief scale

L× L containing pairs (γ(x), γ(¬x)). The scale L must have the same number

of elements as C (i.e., 3 here L = {0, λ, 1}). The mapping f : D × C → L× L:

must satisfy some conditions [24]:

• If the expert declares lack of confidence, the result is f(Dec(x), 0C) =

(0, 0), whatever the trend expressed on the decision scale.

• If the expert is fully confident, then f(1D, 1C) = (γ(x), γ(¬x)) = (1, 0),

and likewise, f(0D, 1C) = (0, 1), f(eD, 1C) = (1, 1). Indeed, for the latter,

there is a total conflict: the expert is maximally informed, and cannot

decide between x and its negation.

• max(γ(x), γ(¬x)) = Conf(x): the belief in x or its negation cannot be

stronger than the confidence.

• if Dec(x) is the midpoint of D, then γ(x) = γ(¬x)(= Conf(x)) (no reason

to take side).

• if Dec(x) is less than the midpoint of D, then the trend is to reject x, so

γ(x) < γ(¬x) = Conf(x), and the smaller D(x), the smaller γ(x).

• if Dec(x) is greater than the midpoint of D, then the trend is to accept

x, so γ(x) = Conf(x) > γ(¬x), and the greater D(x), the smaller γ(¬x).
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Table 6: Values from (Dec, Conf) to (Bel,Disb) pairs on premises for n = 2

Conf

Dec
d−2 (Rej) d−1 (Opp) d0(ND) d1 (Tol) d2 (Acc)

c0 (Lack of conf.) (0,0) (0,0) (0,0) (0,0) (0,0)

c1 (Moderate conf.) (0,λ) (λ,λ) (λ,λ) (λ,λ) (λ,0)

c2 (For sure) (0,1) (λ,1) (1,1) (1,λ) (1,0)

Keep in mind γ : 2Ω → L = {0, λ, 1}.

These conditions lead to propose the following translation formulas [24]:

if Dec(x) < eD, then γ(x) = min[νC(Dec(¬x)), Conf(x)] and γ(¬x) = Conf(x)

if Dec(x) > eD, then γ(x) = Conf(x) and γ(¬x) = min[νC(Dec(x)), Conf(x)]

if Dec(x) = Dec(¬x) = eD, then γ(x) = γ(¬x) = Conf(x)

In Table 1, we grouped all possible (Dec, Conf) pairs on premises with

their appropriate (γ(x), γ(¬x)) counterparts, using the formulas above. We can

notice an anti-symmetry between belief and disbelief degrees with respect to the

central column (d0: No decision). We also notice that when no information is

available (c0: Lack of confidence), no matter what choice is made, the degrees

of belief and disbelief take the minimal value. On the other hand, in the case

of a fully informed expert (c2: For sure) the decision value varies from rejection

to acceptance and is reflected by the pair (γ(x), γ(¬x)). We can see that the

values in the table respect the conditions imposed above.

4.3. Qualitative confidence propagation model

To build the qualitative confidence propagation model, we are going to use

the same rules (argument types) as those defined for the quantitative models

in sub-section 3.2. To represent uncertainty in premises and rules, we use non-

dogmatic q-capacities instead of belief functions, and the qualitative rule of

combination to merge these capacities.
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Table 7: Combination of the focal sets of the premise (ρp) with its rules (ρr) for S-Arg

ρ = ρp ⊙ ρr ρr(p ≡ C) ρr(p ⇒ C) ρr(¬p ⇒ ¬C) ρr(⊤)

ρp(p) p ∧ C p ∧ C p p

ρp(¬p) ¬p ∧ ¬C ¬p ¬p ∧ ¬C ¬p

ρp(⊤) p ≡ C p ⇒ C ¬p ⇒ ¬C ⊤

Simple argument type (S-Arg):

To model this argument type, we associate to each rule (direct and reverse

one) a simple support BΠA (resp., ρ⇒ and ρ⇐), and a BΠA on the premise

space ρp, assigning a mass to its truth ρp(p), its falsity ρp(¬p) and the tautology

ρp(⊤) = 1. Then, using the combination rule in equation (5), we merge the

BΠAs on rules (ρr = ρ⇒ ⊙ ρ⇐) with the one on the premise (ρp): γC = γr ⊙ γp

(Table 7). Similarly to the quantitative formulas, γC(C) = ρC(C), γp(p) = ρp(p)

and γr(r
∗) = ρr(r

∗), ∀r∗ (conjunctive, disjunctive, direct or reverse), since we

work on a two states frame of discernment Ωx = {x,¬x}. We get:

γC(C) = max
ϕ:ϕ⊢C,ϕ̸=∅

ρ(ϕ)

= max(min(ρp(p), ρr(p ≡ C)),min(ρp(p), ρr(p ⇒ C)))

= min[ρp(p), ρ⇒(p ⇒ C)]

as ρr(p ≡ C) = min(ρ⇒(p ⇒ C), ρ⇐(¬p ⇒ ¬C)) ≤ ρ⇒(p ⇒ C) = ρr(p ⇒ C).

A similar computation can be done for γC(¬C).

So, we conclude for the uncertainty propagation in simple argument:

S-Arg :

 γC(C) = min[γp(p), γ⇒(p ⇒ C)]

γC(¬C) = min[γp(¬p), γ⇐(¬p ⇒ ¬C)]
(18)

We can notice that, like in the quantitative setting, the belief γC(C) only de-

pends on the direct rule γ⇒(p ⇒ C) and the belief degree of the premise γp(p),

while the disbelief γC(¬C) only depends on the reverse rule γ⇐(¬p ⇒ ¬C) and

the disbelief of the premise γp(¬p).
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Conjunctive argument type (C-Arg):

We formally defined direct and reverse rules for this type by (resp.): (∧n
i=1pi) ⇒

C and ∧n
i=1(¬pi ⇒ ¬C). Following the same reasoning as for the previous argu-

ment type, we put a simple BΠA on each rule (conjunctive direct rule: ρ⇒ and

elementary reverse rules: ρi⇐), and a function BΠA on each premise: ρip, which

assigns one mass on the truth of (pi), its falsity (¬pi) and the tautology (⊤) such

that ρip(⊤) = 1. Then, using the combination rule in equation (5), we deduce

γC(C) and γC(¬C) from the combination: ρC = ρp ⊙ ρr, where: ρp = (⊙n
i=1ρ

i
p)

and ρr = ρ⇒ ⊙ (⊙n
i=1ρ

i
⇐). Hence, we get the following confidence formulas for

a C-Arg:

C-Arg :

 γC(C) = min{minni=1 γ
i
p(pi), γ⇒([∧n

i pi] ⇒ C)}

γC(¬C) = maxni=1{min[γi
p(¬pi), γi

⇐(¬pi ⇒ ¬C)]}
(19)

In the formulas of the quantitative approach (Eqs. 14), we use probabilistic sum

(a+b−ab) and the product (ab) instead of max,min, highlighting the similarity

between the results obtained in both models. In fact, we can better see with

min-max operators that the C-Arg favors the propagation of the premise with

the lowest strength (minimal belief, with a maximal disbelief degree).

Disjunctive argument type (D-Arg):

Formally, the direct and reverse rules are defined as follows: ∧n
i=1(pi ⇒ C)

and (∧n
i=1¬pi) ⇒ ¬C. The calculation of γC(C) and γC(¬C) is identical to the

one above, swapping the two expressions (ρC = ρp⊙ρr, where ρr = (⊙n
i=1ρ

i
⇒)⊙

ρ⇐ and ρp = ⊙n
i=1ρ

i
p). We get the confidence propagation formulas for a D-Arg:

D-Arg :

 γC(C) = maxni=1{min[γi
p(pi), γ

i
⇒(pi ⇒ C)]}

γC(¬C) = min{minni=1 γ
i
p(¬pi), γ⇐([∧n

i ¬pi] ⇒ ¬C)}
(20)

We can notice that this model, like its quantitative counterpart (Eqs. 15),

favors the propagation of the premise with the greatest strength (maximal belief

and minimal disbelief degree).

35



Hybrid argument type (H-Arg):

Merging the q-capacity functions of all rules with those on premises, such

that: ρC = ρp ⊙ ρr, where ρr = ρ⇒ ⊙ (⊙n
i=1ρ

i
⇐) ⊙ ρ⇐ ⊙ (⊙n

i=1ρ
i
⇒) and (ρp =

⊙n
i=1ρ

i
p), we get the confidence propagation formulas for an H-Arg:

H-Arg :



γC(C) = max{min[minni=1 γ
i
p(pi), γ⇒([∧n

i=1pi] ⇒ C)],

maxni=1(min[γi
p(pi), γ

i
⇒(pi ⇒ C)]}

γC(¬C) = max{min[minni=1 γ
i
p(¬pi), γ⇐([∧n

i=1¬pi] ⇒ ¬C)],

maxni=1 min[γi
p(¬pi), γi

⇐(¬pi ⇒ ¬C)]}

(21)

In order to get a non-trivial H-argument, we need that the weight of rules

of the form [∧n
i=1pi] ⇒ C be greater than the weight of individual rules pi ⇒ C,

and likewise, the weight of rules of the form [∧n
i=1¬pi] ⇒ ¬C be greater than

the weight of individual rules ¬pi ⇒ ¬C.

We can notice, as expected (analogy to quantitative formulas), that formulas

of H-Arg (Eqs. 21), are more general than C-Arg formulas (Eqs. 19), and D-

Arg (Eqs. 20). Assuming maximal belief (= 1) (resp. disbelief) on premises,

it is enough that the simple direct rules take a null value (resp. the reversed

conjunctive one) to get the conjunctive argument type. And conversely, to get

the disjunctive argument type, we have to put null values on direct conjunctive

and simple reverse rules. The S-Arg, represents a special case when only one

premise is available (n = 1). In the following, only the H-Arg will be used since

it covers the four types.

Conflict degree impact on the H-Arg. Remember that C-Arg and D-Arg argu-

ment types are conflict-free (m(n)(⊥) = 0 in the quantitative setting). They

respectively propagate the premise with lowest and highest assessments. How-

ever, it is not the same for H-Arg. Indeed, merging BΠA’s ρip (on pi, ¬pi and

⊤), ρi⇒, ρi⇐, i = 1, . . . n, as in its quantitative counterpart, the BΠA pertaining

to the conclusion C obtained from this fusion may assign a mass to the contra-

diction. Conflict always appears when four items are merged of the form: pi and
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pi ⇒ C with ¬pj and ¬pj ⇒ ¬C, j ̸= i, whose conjunction is a contradiction ⊥

with mass:

ρijC (⊥) = min[ρiC(pi ∧ C), ρjC(¬pj ∧ ¬C)]

= min[ρip(pi), ρ
i
⇒(pi ⇒ C), ρjp(¬pj), ρj⇒(¬pj ⇒ ¬C)]]

The final weight on contradiction for n premises takes the form ρC(⊥) =

maxi ̸=j ρ
ij
C (⊥). Besides, this capacity on contradiction does not affect the final

results of belief and disbelief since γC(C) and γC(¬C) are not less than γC(⊥).

For instance, for n = 2: ρC(⊥) = max(ρ12C (⊥), ρ21C (⊥)). Using equation 3, we

get:

γC(C) ≥ max(min(ρ1p(p1), ρ
1
⇒(p1 ⇒ C)),min(ρ2p(p2), ρ

2
⇒(p2 ⇒ C)))

≥ max(ρ12C (⊥), ρ21C (⊥)).

and likewise for γC(¬C).

5. Confidence assessment procedure for a GSN

In this section, we present our confidence assessment procedure, which in-

cludes both our elicitation and propagation models. This procedure is the same

for the quantitative (section 3) and purely qualitative (section 4) settings.

5.1. Determination of belief weights for rules

Before presenting the details of the belief estimation procedure for rules,

we draw your attention on an observation made for the propagation model

presented in sub-section 3.3. The whole procedure is based on this observation.

Assuming clear-cut knowledge about some (or all) premises (Belip(pi) = 1 −

Disbip(pi) ∈ {0, 1}) and total ignorance about the others (Uncerip(pi) = 1, i.e.,

Belip(pi) = Disbip(pi) = 0), BelC(C) and DisbC(C) respectively take the belief

values of direct and reverse rules. For example, in the case of a conclusion

(C) supported by two premises (p1) and (p2), assuming total acceptance of

these two premises with maximal confidence, i.e. Bel1p(p1) = Bel2p(p2) = 1

then: BelC(C) = Bel⇒([p1 ∧ p2] ⇒ C) using equation (14). While assuming
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total rejection with maximal confidence of (p1), i.e Disb1p(p1) = 1 and total

ignorance about (p2), i.e. Uncer2p(p2) = 1 then: DisbC(C) = Bel⇐(¬p1 ⇒ ¬C)

using equation (14).

We propose a procedure for collecting belief degrees of rules based on the

elicitation model (as for the premises) and the observation of the paragraph

above where we assume that the GSN pattern to be assessed is a C-Arg (resp. D-

Arg) to estimate the values of Bel⇒([∧n
i=1pi] ⇒ C) and Beli⇐(¬pi ⇒ ¬C) (resp.

Beli⇒(pi ⇒ C) and Bel⇐([∧n
i=1¬pi] ⇒ ¬C)). Thus, from the expert assessment

of the conclusion for predefined extreme premise assessments (Bel,Disb), we

can measure the belief values of the rules. These values can be used afterwards

to calculate the confidence of a conclusion based on belief values of the premises.

Moreover, as mentioned before, no positive disbelief is assigned to a rule.

This constraint impacts the allowed pairs (Dec, Conf) for the expert. The

latter is constrained to choose only a decision on the positive side (from “no

decision” to “acceptable”) for direct rules. On the contrary, (s)he can only

choose a negative decision (from “rejectable” to “no decision”) for the reverse

rules. Formulas in (6) and (7) are used to derive the degrees of belief on rules.

Example 2. Suppose the case of a conclusion (C) supported by one premise

(p). Figure 10 describes the procedure of rule elicitation. To get the belief

on the direct rule R1 : p ⇒ C and the reverse one R2 : ¬p ⇒ ¬C, we ask

an expert to give his/her assessment about the conclusion respectively when

(Dec(p) = 1, Conf(p) = 1) for R1, and then when (Dec(p) = 0, Conf(p) = 1)

for R2.

Suppose the expert gives the following assessments:

• When (Dec(p) = 1, Conf(p) = 1), the expert assigns “Tolerable, with

high confidence” to the conclusion (C), hence: Dec(C) = 0.75 and Conf(C) =

0.6.

• When (Dec(p) = 0, Conf(p) = 1), the expert assigns “Opposable, with

very high confidence” to the conclusion (C), hence: Dec(C) = 0.25 and

Conf(C) = 0.8.
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Figure 10: Belief elicitation of rules

We can notice in this example that both cases respect the Josang constraint

(Eq. 9). Hence, there is no need to adjust the decision value. The first sit-

uation (Dec(p) = 1, Conf(p) = 1) for R1 is equivalent to Belp(p) = 1. We

thus are investigating the direct rule p ⇒ C. Using equations (6) and (7) for

the direct rule R1: Bel⇒(R1) = BelC(C) = (0.6)−1
2 + (0.75) = 0.55 and we

set Bel⇒(¬R1) = 0. In the same way, for the reverse rule R2: Bel⇐(R2) =

DisbC(C) = (0.8)+1
2 − (0.25) = 0.65 and we set Bel⇐(¬R2) = 0.

We note that the results obtained for these two rules are consistent with

our expectations. Indeed, starting from high confidence values, we find that the

belief value of these rules is indeed higher than the uncertainty value.

To collect the masses on rules, Wang et al. [12] choose to use identification

techniques. They ask the expert to give his/her assessment about the conclusion

(outputs) according to predefined assessment of premises (inputs). Then, using

a non-linear least square method, they identify the values of the rules weight

(denoted ωi). However, we notice that this method could lead to values outside
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the unit interval [0, 1], which makes no sense. Moreover, asking the expert

to give his/here assessment of the conclusion according to predefined inputs

(i.e, Supposing that we have “tolerable, with high confidence” and “opposable,

with low confidence” assessment on premises, what this your assessment on

the conclusion ?) can be disturbing and difficult, specially if you have several

premises. In our case, we ask the expert to give his/her opinion only on extreme

situations assuming that the argument is a C-Arg (resp. D-Arg) to define the

direct (resp. reverse) conjunctive rule and the reverse (resp. direct) elementary

rules.

5.2. Outline of the confidence assessment procedure

Figure 11 illustrates our assessment procedure structured in two phases.

The first one is called modeling phase. It provides the beliefs on the rules. The

second is called the application phase. It provides the beliefs on the premises

and then propagates them with the beliefs on the rules, using the propagation

model, up to the conclusion. This procedure is the same for both quantitative

and purely qualitative methods.

5.2.1. Modeling phase

It will be conducted by asking 2n + 2 questions to the assessor using the

evaluation matrices, n being the number of premises. The first 2n questions

concern masses on elementary rules (direct and reverse). For instance, to get

(resp.) the values of Bel1⇐(¬p1 ⇒ ¬C) and Bel1⇒(p1 ⇒ C) the expert will be

asked the following questions (in the case n = 2):

1. Supposing no knowledge about the premise p2: (Dec = 0.5, Conf = 0)

and total rejection (rejectable for sure) of p1: (Dec = 0, Conf = 1), what

is your Decision/Confidence in the conclusion ?

2. Supposing no knowledge about the premise p2: (Dec = 0.5, Conf = 0)

and total acceptance (acceptable for sure) of p1 : (Dec = 1, Conf = 1),

what is your Decision/Confidence in the conclusion ?
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Figure 11: Outline of the assessment framework for safety argument

The additional two questions concern the conjunctive rules (resp. reverse

and direct):

3. Supposing total reject of both premises p1, p2 : (Dec = 0, Conf = 1),

what is your Decision/Confidence in the conclusion ?

4. Supposing total acceptance of both premises p1, p2 : (Dec = 1, Conf = 1),

what is your Decision/Confidence in the conclusion ?

It is important to mention that the expert can only select pairs (Dec,Conf)

from the positive side of the evaluation matrix (“no decision” to “acceptable”)

while assessing direct rules. Conversely, he/she can only select negative as-

sessment for the reverse rules (“rejectable” to “no decision”). For instance in

Figure 11 (modelling phase), choosing a pair from this forbidden zone (shaded)

will assign a mass to Bel2⇒(¬[p2 ⇒ C]) which is not a rule (see, sub-sections 3.1

and 3.3). Even if we set all the positive masses of this kind (disbelief on rules)

to zero, we prefer not to allow access to this area to keep consistency with the

rules definition. The implication used to define rules can only infer one side of
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the assessment at a time.

Once the masses on rules are obtained, one can deduce the argument type

of the assessed GSN pattern (C-Arg, D-Arg or H-Arg). The case of C-Arg

is simple to identify, since verification of one premise (i.e., true) cannot infer

the conclusion C alone. Thus, Beli⇒(pi ⇒ C) = 0. Conversely, the denial of

one premise (i.e., false) infers the conclusion denial ¬C. However, it is not the

same for D-Arg. If a premise p1 supports the conclusion C, then p1 ∧ p2 also

supports it even if p2 cannot. To keep consistency with the definition of D-Arg,

we set the mass of the direct conjunction and the reverse elementary ones to

zero (Bel⇒([∧n
i=1pi] ⇒ C) = Beli⇐(¬pi ⇒ ¬C) = 0), if at least the mass on

one elementary rule is equal to the one on the conjunction. In this case, we can

say that the conjunction of premises does not bring additional support to the

conclusion.

Then, once the masses of the rules are acquired and the propagation formula

is specified, we can proceed to the next step of this assessment procedure by

following the instructions below, for the considered system.

Note: The number of pieces of information/questions to collect, is a critical

point of this interaction. The smaller the amount of data required, the easier

the approach will be for both user and evaluator. We did not specifically drive

any study to assess the best number of information items. But what we have

done so far is to compare the number of pieces of information needed in some

similar approaches and in ours. For instance, when using Bayesian approaches

[5, 34] to propagate confidence in the network, we need 2n pieces of information

to quantify the inference between a parent node and its child nodes (rules in our

approach). Having only 2n+ 2 questions per node represents an asset in favor

of our approach.

5.2.2. Application phase

In this phase, the expert will be asked again n additional questions (1 ques-

tion per premise). Hence, we end-up with 3n + 2 questions per node. These

questions are grouped in a questionnaire [35].
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G

G1 G2

P1 P2 P3 P4

H-Arg

C-Arg D-Arg

Figure 12: GSN artificial example

Then using the propagation formulas, we calculate the belief and disbelief

in the conclusion. This procedure will be iterated for each node consisting of

a conclusion (goal in GSN formalism) supported by its premises (sub-goals),

starting from the bottom of the GSN, up to the top-goal.

Finally, we may transform the resulting pair (Belief, Disbelief), of the con-

clusion, into a pair (Decision, Confidence) (using formulas (6) and (7) in the

numerical setting) and approximate them by choosing the qualitative values, of

the closest pair (Dec,Conf) to their corresponding numerical values.

5.3. Quantitative vs. qualitative assessment procedures

On an artificial example (Figure 12) that displays three argument types

(C-Arg, D-Arg and H-Arg), we apply our approach in order to see how each

type affects the propagation of uncertainty from premises to the overall goal

(conclusion). We also apply the quantitative approach on this artificial case

study. To compare results from both approaches, we will use the same decision

and confidence scales presented in Figure 13.

The example in Figure 12, presents a top-goal (G) supported by two sub-

goals (G1) and (G2) through a hybrid argument type (H-Arg). Each one of

them is also supported, respectively, by two premises. Goal (G1) is supported

by the premises (P1) and (P2) related by a conjunctive argument type (C-Arg).

On the other hand, goal (G2) is supported by the premises (P3) and (P4) related

by a disjunctive argument type (D-Arg).
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Confidence scale 

d-1: Opposabled-2: Rejectable d0: No decision d1: Tolerable d2: Acceptable 

c2: For sure

c0: Lack of 
confidence

Decision scale

c1: Moderate  
confidence

Figure 13: Evaluation matrix

For simplicity, we set all masses on rules of C-Arg, D-Arg, and the con-

junctive ones of H-Arg to their maximal values (“acceptable for sure”). While

we set the value of elementary rules of H-Arg to “tolerable, for sure”. Then,

we use four different cases of premises assessments and compute the confidence

in the top goal for each. To get, respectively, belief degrees and q-capacities

from the assessment of rules (see Table 8) and premises, we use the appropriate

elicitation models in sub-sections 3.2 and 4.2.

In general, we can see from Table 9 that both approaches give close results,

which fits well with our expectations. The only difference is in the confidence

values. We can say that, in this case the qualitative approach gives results with

higher levels of confidence than the quantitative one.

We notice from Table 9 in the 1st and 2nd lines that, as expected, the top

goal keeps the same decision as premises respectively: “tolerable” and “oppos-

able”., with a degradation of the degree of confidence in the quantitative case.

Calculating the conflict mass in both cases, we can notice that their values are

not null (i.e., mG(⊥) = 0.25 for both cases). These values result from the differ-

ence between the calculated evaluations of the conjunctive argument in G1 and

disjunctive argument in G2. In the 3rd line, we get “tolerable” decision, because

the D-Arg favors the propagation of the premise with the greatest weight (toler-
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Table 8: Values of the belief degrees on rules

Type Rule Qualitative

value (γ)

Quantitative

value (Bel)

C-Arg

(P1 ∧ P2) ⇒ G1 1 1

¬P1 ⇒ ¬G1 1 1

¬P2 ⇒ G1 1 1

D-Arg

(¬P3 ∧ ¬P4) ⇒ ¬G2 1 1

P3 ⇒ G2 1 1

P4 ⇒ G2 1 1

H-Arg

(G1 ∧G2) ⇒ G 1 1

(¬G1 ∧ ¬G2) ⇒ ¬G 1 1

G1 ⇒ G λ 0.75

¬G1 ⇒ ¬G λ 0.75

G2 ⇒ G λ 0.75

¬G2 ⇒ ¬G λ 0.75

Remember: Bel : 2Ω → [0, 1] and γ : 2Ω → L = {0, λ, 1}.

Table 9: Pairs (decision, confidence) using qualitative (Qual.) and quantitative (Quant.)

methods

Case P1 P2 P3 P4 G (Quant.) G (Quali.)

1st (Tol,c2) (Tol,c2) (Tol,c2) (Tol,c2) (Tol,c1) (Tol,c2)

2nd (Opp,c2) (Opp,c2) (Opp,c2) (Opp,c2) (Opp,c1) (Opp,c2)

3rd (Tol,c2) (Tol,c2) (Tol,c2) (Opp,c2) (Tol,c1) (Tol,c2)

4th (Opp,c2) (Tol,c2) (Tol,c2) (Tol,c2) (ND,c1) (λ, λ) ≡ (ND,c1)

Where: c2: For sure, c1: Moderately confident and c0: Lack of confidence.
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able) to G2 (G1: tolerable). The conflict mass in this situation is mG(⊥) = 0.26.

The opposite assessments in the disjunctive argument does not have a signifi-

cant impact on the top goal G. On the contrary, in the 4th line, we get a “no

decision”. This result is explained by the fact that we end up with two oppo-

site judgments in the H-Arg (conflict situation) due to C-Arg that propagates

the premise with least strength (opposable) to G1 (G2: tolerable). This also

explains the high value of the conflict mass (i.e., mG(⊥) = 0.44), in contrast

to previous cases.. The degree of confidence also decreases in the quantitative

case.

The difference in the degree of confidence between qualitative and quantita-

tive approaches is due to the nature of the operations used. For example, the

C-Arg favors the propagation of the weakest premise (weaker belief and stronger

disbelief). In the quantitative setting, we use the product and the probabilistic

sum. And in the qualitative case, we use min and max, which does not model

attenuation or reinforcement effects in case of independent pieces of information.

Notice that in the 4th case, we get the assessment for the qualitative setting:

γC(C) = γC(¬C) = λ. In this situation, we choose to translate these values

to “no decision” (ND), with “moderate confidence” (c1). However, if we go

back to Table 6, we notice that this assessment could express three different

decision values (opposable, no decision and tolerable). This is one limitation of

the qualitative approach, a relative lack of discrimination.

6. Conclusion

In this article, we propose an approach to confidence assessment in assurance

cases based on GSN. To do this, we formally define argument types using logical

expressions, and model the inference of the goal to be proven from the pieces

of evidence they support. Then, using belief functions, we quantify confidence

(belief and disbelief) in these expressions, and merge them with a variant of

Dempster rule of combination, thus defining a quantitative confidence propa-

gation model. In contrast to similar approaches proposed in the literature, we
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propose a general model covering the different types of arguments. The prop-

agation formula can be used to compute the confidence in the conclusion for

the four types of arguments we have defined (H-Arg, C-Arg, D-Arg and S-Arg).

According to the values taken by the degrees of belief of the rules (direct and

inverse), the type is easily identifiable. This allows for easy implementation and

fast execution of this model for possible future applications. The propagation

model also takes into consideration conflict situations involving two or more

opposite assessments regarding different pieces of evidence supporting the same

goal. We also improved an existing expert information elicitation model, using

the pignistic transform, and adding a neutral (indecisive) option to the possi-

ble uncertainty assessment choices. In addition, we propose a questionnaire to

collect data about rules and premises.

To avoid the relative arbitrariness of the quantitative assessment approach,

notably the issues related to the attenuation-amplification effects, choice of nu-

merical scales, and the independence of sources assumption, we propose a new

purely qualitative confidence assessment method which propagates qualitative

belief and disbelief from the premises to the conclusion. This approach avoids

the need for transforming expert assessments from natural language into nu-

merical values which can be seen as a source of uncertainty.

The use of DST to quantify and propagate confidence in graphical models of

argument structure such as GSN is not widespread and is relatively new com-

pared to Bayesian approaches. However, the main problem to overcome lies in

the elicitation procedure. The elicitation model for both the quantitative and

qualitative approach need improvements. On one hand, it is important to de-

velop specific scales calibrated to real assurance cases and verify that the results

given by the elicitation model are intuitively correct. On the other hand, it is

also necessary to develop the questionnaire by improving, for instance, the way

in which the questions are asked. Indeed, it seems that the way in which the

questions are asked so far encourages the experts to give extreme assessments,

which leads to extreme argument types. In particular, most case studies we

encountered only involved the C-Arg. However, for a robust validation of our
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approach, more experiments on general cases must be conducted for both quan-

titative and qualitative assessment methods. These experiments would be useful

to further compare the quantitative assessment method and the qualitative one

so as to determine which approach is best.

Finally, the approach we propose only takes into consideration components

from the GSN formalism (goal, strategy, solutions, context, etc). Thus, it is

not always easy to switch from one formalism to another. By integrating other

components, our approach will become more generic. An interesting proposal

is to take into account exceptions to rules (i.e. defeaters) or evidence against

the conclusion (i.e. rebuttals) by considering disbelief respectively in direct and

reverse rules.
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[5] D. Nešić, M. Nyberg, B. Gallina, A probabilistic model of belief in safety

cases, Safety science 138 (2021) 105–187.

48



[6] C. Yuan, J. Wu, C. Liu, H. Yang, A subjective logic-based approach for

assessing confidence in assurance case, International Journal of Performa-

bility Engineering 13 (6) (2017) 807–822.

[7] C. De Persis, J. L. Bosque, I. Huertas, S. P. Wilson, Quantitative system

risk assessment from incomplete data with belief networks and pairwise

comparison elicitation, arXiv preprint arXiv:1904.03012.

[8] A. B. Yaghlane, T. Denœux, K. Mellouli, Elicitation of expert opinions for

constructing belief functions, in: Uncertainty and intelligent information

systems, World Scientific, 2008, pp. 75–89.
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Appendix A. Propagation formulas - detailed calculation

In the following, we present a detailed calculation of propagation formulas

for the hybrid argument type (H-Arg) in the case of a conclusion (C) supported

by two premises (p1) and (p2) in the numerical setting. Then, we present how

we calculate the mass of conflict for “n” premises.

To calculate propagation formulas in a pure qualitative setting, it is enough

to replace, respectively, the mass functions (BPA: mp, mr and mC) and the con-

junctive combination rule (equation 2) by qualitative capacity functions (BΠA:

ρp, ρr and ρC) and the qualitative combination rule (equation 5). Since we

always combine the same rules for each type of argument, all the following

combination tables are the same for the quantitative and qualitative approach.

Appendix A.1. Propagation formulas for the hybrid argument type

Considering the example in Figure 8, we define the rules of a H-Arg with

n = 2 premises, which includes those of C-Arg and D-Arg defined above.

Using the conjunctive rule of combination (equation 2) we combine the mass

on premises with those on rules: mC = (m⇐ ⊗m⇒) ⊗ ((m1
⇐ ⊗m1

⇒) ⊗m1
p) ⊗

((m2
⇐⊗m2

⇒)⊗m2
p) (parentheses indicate the order of computations from Table

A.10 to A.14) and deduce belief and disbelief propagation formulas.

Table A.10: Combination of direct and reverse conjunctive rules for H-Arg

mr = m⇒ ⊗m⇐ m⇒([¬p1 ∧ ¬p2] ⇒ ¬C) m⇒(⊤)

m⇒([p1 ∧ p2] ⇒ C) Fc = ([p1 ∧ p2] ⇒ C) ∧ ([¬p1 ∧ ¬p2] ⇒ ¬C) [p1 ∧ p2] ⇒ C

m⇒(⊤) [¬p1 ∧ ¬p2] ⇒ ¬C ⊤

Table A.11: Combination of direct and reverse elementary rules for the H-Arg

mi
r = mi

⇒ ⊗mi
⇐ mi

⇒(pi ⇒ C) mi
⇒(⊤)

mi
⇐(¬pi ⇒ ¬C) pi ≡ C ¬pi ⇒ ¬C

mi
⇐(⊤) pi ⇒ C ⊤
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Table A.12: Combination of the ith premise (pi, i = {1, 2}) with its elementary rules for

H-Arg

mi = mi
p ⊗mi

r mi
r(pi ≡ C) mi

r(pi ⇒ C) mi
r(¬pi ⇒ ¬C) mi

r(⊤)

mi
p(pi) pi ∧ C pi ∧ C pi pi

mi
p(¬pi) ¬pi ∧ ¬C ¬pi ¬pi ∧ ¬C ¬pi

mi
p(⊤) pi ≡ C pi ⇒ C ¬pi ⇒ ¬C ⊤
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Table A.13: Combination of the 1st and 2nd premises (pi) with their elementary rules for H-Arg

m12 = m1 ⊗ m2 m2(p2 ∧ C) m2(¬p2 ∧ ¬C) m2(p2) m2(¬p2) m2(p2 ⇒ C) m2(¬p2 ⇒ ¬C) m2(p2 ≡ C) m2(⊤)

m1(p1 ∧ C) p1 ∧ p2 ∧ C ∅ p1 ∧ p2 ∧ C p1 ∧ ¬p2 ∧ C p1 ∧ C p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C p1 ∧ C

m1(¬p1 ∧ ¬C) ∅ ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬C

m1(p1) p1 ∧ p2 ∧ C p1 ∧ ¬p2 ∧ ¬C p1 ∧ p2 p1 ∧ ¬p2 p1(p2 ⇒ C) p1(¬p2 ⇒ ¬C) p1(p2 ≡ C) p1

m1(¬p1) ¬p1 ∧ p2 ∧ C ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ p2 ¬p1 ∧ ¬p2 ¬p1(p2 ⇒ C) ¬p1(¬p2 ⇒ ¬C) ¬p1(p2 ≡ C) ¬p1

m1(p1 ⇒ C) p2 ∧ C ¬p1 ∧ ¬p2 ∧ ¬C p2(p1 ⇒ C) ¬p2(p1 ⇒ C) (p1 ⇒ C)(p2 ⇒ C) (p1 ⇒ C)(¬p2 ⇒ ¬C) (p1 ⇒ C)(p2 ≡ C) (p1 ⇒ C)

m1(¬p1 ⇒ ¬C) p1 ∧ p2 ∧ C ¬p2 ∧ ¬C p2(¬p1 ⇒ ¬C) ¬p2(¬p1 ⇒ ¬C) (p2 ⇒ C)(¬p1 ⇒ ¬C) (¬p2 ⇒ ¬C)(¬p1 ⇒ ¬C) (p2 ≡ C)(¬p1 ⇒ ¬C) ¬p1 ⇒ ¬C

m1(p1 ≡ C) p1 ∧ p2 ∧ C ¬p1 ∧ ¬p2 ∧ ¬C p2(p1 ≡ C) ¬p2(p1 ≡ C) (p1 ≡ C)(p2 ⇒ C) (p1 ≡ C)(¬p2 ⇒ ¬C) (p1 ≡ C)(p2 ≡ C) (p1 ≡ C)

m1(⊤) p2 ∧ C ¬p2 ∧ ¬C p2 ¬p2 p2 ⇒ C ¬p2 ⇒ ¬C p2 ≡ C ⊤
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Table A.14: Combination of premises and their elementary rules with the conjunctive rules (table A.10) for H-Arg

m = m12 ⊗ mr mr(Fc) mr([p1 ∧ p2] ⇒ C) mr([¬p1 ∧ ¬p2] ⇒ ¬C) mr(⊤)

m12(p1 ∧ p2 ∧ C) p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C

m12(¬p1 ∧ p2 ∧ C) ¬p1 ∧ p2 ∧ C ¬p1 ∧ p2 ∧ C ¬p1 ∧ p2 ∧ C ¬p1 ∧ p2 ∧ C

m12(p1 ∧ ¬p2 ∧ C) p1 ∧ ¬p2 ∧ C p1 ∧ ¬p2 ∧ C p1 ∧ ¬p2 ∧ C p1 ∧ ¬p2 ∧ C

m12(p1 ∧ C) p1 ∧ C p1 ∧ C p1 ∧ C p1 ∧ C

m12(p2 ∧ C) p2 ∧ C p2 ∧ C p2 ∧ C p2 ∧ C

m12(¬p1 ∧ ¬p2 ∧ ¬C) ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C

m12(¬p1 ∧ p2 ∧ ¬C) ¬p1 ∧ p2 ∧ ¬C ¬p1 ∧ p2 ∧ ¬C ¬p1 ∧ p2 ∧ ¬C ¬p1 ∧ p2 ∧ ¬C

m12(p1 ∧ ¬p2 ∧ ¬C) p1 ∧ ¬p2 ∧ ¬C p1 ∧ ¬p2 ∧ ¬C p1 ∧ ¬p2 ∧ ¬C p1 ∧ ¬p2 ∧ ¬C

m12(¬p1 ∧ ¬C) ¬p1 ∧ ¬C ¬p1 ∧ ¬C ¬p1 ∧ ¬C ¬p1 ∧ ¬C

m12(¬p2 ∧ ¬C) ¬p2 ∧ ¬C ¬p2 ∧ ¬C ¬p2 ∧ ¬C ¬p2 ∧ ¬C

m12(p1 ∧ p2) p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C - -

m12(¬p1 ∧ ¬p2) ¬p1 ∧ ¬p2 ∧ ¬C - ¬p1 ∧ ¬p2 ∧ ¬C -

. . . . . . . . . . . . . . .

m12(∅) ∅ ∅ ∅ ∅

m12(⊤) Fc [p1 ∧ p2] ⇒ C [¬p1 ∧ ¬p2] ⇒ ¬C ⊤

In Table A.14, we have chosen not to represent the focal elements resulting from Table A.13 which imply neither the

conclusion nor its negation, so as to reduce the size of the table.

To calculate the belief degree of the conclusion, we sum the masses of all elements that imply the conclusion (C) in Table

A.14 (dark grey areas).
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BelC(C) = [m12(p1 ∧ p2 ∧ C) +m12(¬p1 ∧ p2 ∧ C) +m12(p1 ∧ ¬p2 ∧ C) +m12(p1 ∧ C) +m12(p2 ∧ C)] ·
∑

E⊆Ωr

mr(E)

+m12(p1 ∧ p2)[mr(FC) +mr([p1 ∧ p2] ⇒ C)] see Table A.14

= m1(p1 ∧ C) ·
∑

E⊆Ω2

m2(E) +m2(p2 ∧ C) ·
∑

E⊆Ω1

m1(E)

−m1(p1 ∧ C) ·m2(p2 ∧ C)− [m1(¬p1 ∧ ¬C) ·m2(p2 ∧ C) +m1(p1 ∧ C) ·m2(¬p2 ∧ ¬C)]∗

+m1(p1) ·m2(p2) ·m⇒([p1 ∧ p2] ⇒ C) see Tables A.10 and A.13

= [m1
p(p1) ·m1

⇒(p1 ⇒ C) +m2
p(p2) ·m2

⇒(p2 ⇒ C)−m1
p(p1) ·m1

⇒(p1 ⇒ C) ·m2
p(p2) ·m2

⇒(p2 ⇒ C)]−m12(∅)

+m⇒([p1 ∧ p2] ⇒ C) ·m1
p(p1) · [1−m⇒(p1 ⇒ C)] ·m2

p(p2) · [1−m⇒(p2 ⇒ C)] see Tables A.11 and A.12

= {1− [1−m1
p(p1) ·m1

⇒(p1 ⇒ C)] · [1−m2
p(p2) ·m2

⇒(p2 ⇒ C)]} −m12(∅)

+m⇒([p1 ∧ p2] ⇒ C) ·m1
p(p1) · [1−m⇒(p1 ⇒ C)] ·m2

p(p2) · [1−m⇒(p2 ⇒ C)]

∗To take advantage of
∑

E⊆Ωi
mi(E) = 1, i = {1, 2} and simplify the calculation of the terms: m12(p1 ∧ p2 ∧ C) +m12(¬p1 ∧

p2 ∧ C) + m12(p1 ∧ ¬p2 ∧ C) + m12(p1 ∧ C) + m12(p2 ∧ C) in Table A.13, we replace them by the sum of m1(p1 ∧ C) and

m2(p2 ∧ C) from which we subtract the masses of the empty intersection and the redundant term m1(p1 ∧ C)×m2(p2 ∧ C).

Notice that m12(∅) results from the combination in Table A.13 only, since the empty intersection does not appear when

conjunctive rules are combined with themselves (i.e. direct and reverse rules in Table A.10) or with elementary rules (i.e. Table

A.14), mC(∅) = m12(∅) includes only the conflict mass resulting from the combination of elementary rules (i.e. white entries
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in Table A.13).

To calculate the conflict degree, we sum the masses of all elements that have an empty intersection (∅) in Table A.14.

mC(∅) = m12(∅) ·
∑

E⊆Ωr

mr(E)

= [m1(¬p1 ∧ ¬C) ·m2(p2 ∧ C) +m2(¬p2 ∧ ¬C) ·m1(p1 ∧ C)]× 1

= m1
p(¬p1) ·m1

⇐(¬p1 ⇒ ¬C) ·m2
p(p2) ·m2

⇒(p2 ⇒ C) +m2
p(¬p2) ·m2

⇐(¬p2 ⇒ ¬C) ·m1
p(p1) ·m1

⇒(p1 ⇒ C)

Let’s put: bC(C) = m⇒([p1 ∧ p2] ⇒ C) · m1
p(p1) · [1 − m⇒(p1 ⇒ C)] · m2

p(p2) · [1 − m⇒(p2 ⇒ C)] + {1 − [1 − m1
p(p1) ·

m1
⇒(p1 ⇒ C)] · [1 − m2

p(p2) · m2
⇒(p2 ⇒ C)]}. For the conjunctive part Bel(E) = b(E) because mr(∅) = 0. Keep also in

mind that for frame of discernment with two elements (i.e. |Ω|= 2): Belip(pi) = mi
p(pi), Beli⇒(pi ⇒ C) = mi

⇒(pi ⇒ C) and

Beli⇐(¬pi ⇒ ¬C) = mi
⇐(¬pi ⇒ ¬C)

To calculate the disbelief degree of the conclusion, we sum the masses of all elements that imply the negation of the

conclusion (¬C) in Table A.14 (bright grey areas).
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DisbC(C) = [m12(¬p1 ∧ ¬p2 ∧ ¬C) +m12(¬p1 ∧ p2 ∧ ¬C) +m12(p1 ∧ ¬p2 ∧ ¬C) +m12(¬p1 ∧ ¬C) ·m12(¬p2 ∧ ¬C)] ·
∑

E⊆Ωr

mr(E)

+m12(¬p1 ∧ ¬p2)[mr(FC) +mr([¬p1 ∧ ¬p2] ⇒ ¬C)]

= m1(¬p1 ∧ ¬C) ·
∑

E⊆Ω2

m2(E) +m2(¬p2 ∧ ¬C) ·
∑

E⊆Ω1

m1(E)

−m1(¬p1 ∧ ¬C) ·m2(¬p2 ∧ ¬C)]− [m1(¬p1 ∧ ¬C) ·m2(p2 ∧ C) +m1(p1 ∧ C) ·m2(¬p2 ∧ ¬C)]

+m1(¬p1) ·m2(¬p2) ·m⇐([¬p1 ∧ ¬p2] ⇒ ¬C)

= [m1
p(¬p1) ·m1

⇐(¬p1 ⇒ ¬C) +m2
p(¬p2) ·m2

⇐(¬p2 ⇒ ¬C)−m1
p(¬p1) ·m1

⇐(¬p1 ⇒ ¬C) ·m2
p(p2) ·m2

⇐(p2 ⇒ C)]−m12(∅)

+m⇐([¬p1 ∧ ¬p2] ⇒ ¬C) ·m1
p(¬p1) · [1−m⇐(¬p1 ⇒ ¬C)] ·m2

p(¬p2) · [1−m⇐(¬p2 ⇒ ¬C)]

= {1− [1−m1
p(¬p1) ·m1

⇐(¬p1 ⇒ ¬C)] · [1−m2
p(¬p2) ·m2

⇐(¬p2 ⇒ ¬C)]} −m12(∅)

+m⇐([¬p1 ∧ ¬p2] ⇒ ¬C) ·m1
p(¬p1) · [1−m⇐(¬p1 ⇒ ¬C)] ·m2

p(¬p2) · [1−m⇐(¬p2 ⇒ ¬C)]

Let’s put: dC(C) = bC(¬C) = m⇐([¬p1 ∧¬p2] ⇒ C) ·m1
p(¬p1) · [1−m⇐(¬p1 ⇒ ¬C)] ·m2

p(¬p2) · [1−m⇐(¬p2 ⇒ ¬C)] + {1−

[1−m1
p(p1) ·m1

⇐(¬p1 ⇒ ¬C)] · [1−m2
p(¬p2) ·m2

⇐(¬p2 ⇒ ¬C)]}.

Hence, we show that for n = 2:  BelC(C) = bC(C)−m12(⊥)

DisbC(C) = dC(C)−m12(⊥)
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Appendix A.2. Conflict mass calculation

In this section, we calculate the conflict mass formula for “n” premises. Let

us enumerate all conflicting combinations of 4 formulas when merging mass

functions on premises and rules.

The case n = 2 is already addressed in the previous section.

For n = 3, we can calculate m123 = m1 ⊗m2 ⊗m3 directly but we have to

calculate 8× 8× 8 intersections and select the contradictory conjunctions. We

can also calculate more easily:

m123(⊥) =
∑

i ̸=j;i,j=1,2,3

mi(pi ∧ C) ·mj(¬pj ∧ ¬C)

= m12(⊥) +m13(⊥) +m23(⊥)

However, this calculation counts contradictory terms several times. Thus, we

may find that this mass (m123(⊥)) is greater than 1. Denote the contradictory

term as m1(p1 ∧C) ·m2(¬p2 ∧¬C) ·m3(¬p3 ∧¬C) with 12̄3̄, etc. We can write

m1(p1 ∧C) ·m2(¬p2 ∧¬C) as m1(p1 ∧C) ·m2(¬p2 ∧¬C) ·
∑

ϕ∈Ω3
m3(ϕ), since∑

ϕ∈Ω3
m3(ϕ) = 1. Hence, the term m1(p1 ∧ C) · m2(¬p2 ∧ ¬C) of m12(⊥)

includes 12̄3̄ and 12̄3. Similarly, we get the remaining duplicate terms (in bold):

• m1(¬p1 ∧ ¬C) ·m2(p2 ∧ C) includes 1̄23̄ et 1̄23.

• m1(¬p1 ∧ ¬C) ·m3(p3 ∧ C) includes 1̄23 et 1̄2̄3.

• m1(p1 ∧ C) ·m3(¬p3 ∧ ¬C) includes 123̄ et 12̄3̄.

• m2(p2 ∧ C) ·m3(¬p3 ∧ ¬C) includes 123̄ et 1̄23̄.

• m2(¬p2 ∧ ¬C) ·m3(p3 ∧ C) includes 12̄3 et 1̄2̄3.

Hence, the sum m12(⊥)+m13(⊥)+m23(⊥) counts twice the product of three

terms. There are 12 such terms, so we have to delete 6 of them (the ones in
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bold). Thus we prove that:

m123(⊥) = m12(⊥) +m1(p1 ∧ C)m3(¬p3 ∧ ¬C)[1−m2(¬p2 ∧ ¬C)]

+m1(¬p1 ∧ ¬C)m3(p3 ∧ C)[1−m2(p2 ∧ C)]

+m2(p2 ∧ C)m3(¬p3 ∧ ¬C)[1−m1(p1 ∧ C)−m1(¬p1 ∧ ¬C)]

+m2(¬p2 ∧ ¬C)m3(p3 ∧ C)[1−m1(p1 ∧ C)−m1(¬p1 ∧ ¬C)]

= m12(⊥) +m3(p3 ∧ C) ·Disb
(2)
C (C) +m3(¬p3 ∧ ¬C) ·Bel

(2)
C (C)

Where:

- Bel
(2)
C (C) = 1− [1−Bel1p(p1)Bel1⇒(p1 ⇒ C)] · [1−Bel2p(p2)Bel2⇒(p2 ⇒ C)]

-Disb
(2)
C (C) = 1−[1−Disb1p(p1)Bel1⇐(¬p1 ⇒ ¬C)]·[1−Disb2p(p2)Bel2⇐(¬p2 ⇒

¬C)]

This calculation can be extended to n > 1 premises. Hence, we get as many

as
∑n−1

i=1 Ci
n−1(2

i−1) focal sets inducing the conclusion C ({Ωp1
×...×Ωpn

}∧C)

and others of the same count inducing its negation ¬C ({Ωp1
× ...×Ωpn

}∧¬C).

Combining these focal sets respectively with (¬pn∧¬C) and (pn∧C) generates

an empty intersection. Summing the masses of these focal sets gives the general

formula of conflict m(n)(⊥) (equation 17).

Notice that conjunctive rules [∧n
i=1pi] ⇒ C and [∧n

i=1¬pi] ⇒ ¬C were not

involved in this calculation because they do not generate an empty intersection

(e.g., ([p1 ∧ p2] ⇒ C)⊗ ¬p1 = ¬p1).
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