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Observer-based Switched Control of the Three Level Neutral Point
Clamped Rectifier

Manon Doré, Yassine Ariba and Germain Garcia

Abstract— In this paper, an observer-based switched control
law is proposed for the three level neutral point clamped (NPC)
converter operating as a rectifier. Modeling the converter as a
switched affine system, the proposed control is based on the well
known argmin control law to track a varying state reference
trajectory. A full-order observer is introduced to compute the
control law with only the measure of the input and the output
voltages. The control aims at tracking a state reference defined
from a power analysis and three objectives are addressed:
to stabilize the output at a given DC voltage, to ensure a
unit power factor by having the input current and voltage on
phase and to have balanced capacitor voltages on the output.
Based on a unified modeling methodology, the control and the
observer are easily derived from LMI conditions. An outer loop
is added to regulate the output when constant perturbations
are considered. The results are illustrated by simulations on
MATLAB/Simulink.

I. INTRODUCTION

Neutral Point Clamped (NPC) inverters or rectifiers is
one of the most used topology of multilevel converter in
high power electrical applications. Indeed, this converter has
several advantages like a low total harmonic distortion (THD)
of the output and a high efficiency [1], which make it popular
for AC/DC applications [2], [3]. The main objectives of the
control are to achieve a unit power factor on the AC side
while maintaining the DC side at a constant given voltage.
Another objective is to ensure that the capacitor voltages are
balanced to avoid the switches to undergo excessive voltage
stress and preserve the quality of the output voltage [4].

From a control point of view, converter models belong
to the class of switched affine systems. This nature comes
from the fact that the dynamic of a converter depends on the
state of electrical switches in the circuit. In the literature,
most widely studied control solutions for power converters
are based on averaged linearized models. More recently, an
effort has been done to propose control methods that take
into account the discontinuous behavior of such systems [5],
[6]. However, control oriented papers on converters usually
consider simple examples such as the Boost converter.

In the literature, some classical approaches can be found
to control the NPC rectifier, like the direct power control
methods based on an averaged model and the use of Pulse-
Width Modulation (PWM) signal. In this case, linear or
nonlinear control techniques are applied, involving several
control loops to handle every control objectives [4], [7].
Advanced control strategies have also been considered, like
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space vector modulation [8] or predictive control methods
[8], [9]. Regarding the switching nature of the converter,
the number of papers dealing with it in the hybrid control
framework is reduced [10].

In the same vein, the observation problem has been even
less considered for this specific power converter, except in
adaptive control schemes [11]–[13], or based on approx-
imated/averaged model [14]. Indeed, the three level NPC
converter have a large number of switches and a dynamic
reference which are the sources of difficulties when com-
pared to numerous examples of converters usually considered
[15]–[17]. Also, the use of an observer is relevant to reduce
the number of sensors and maintenance costs.

This paper addresses the observer-based control problem
of the Three Level Neutral Point Clamped Rectifier. Using
a unified modeling methodology [18] in Section II, a state
space representation of the converter is establish from its
electrical equations while considering its switching nature.
In Section III-A, a full-order observer is designed through
a set of Linear Matrix Inequalities (LMI) deduced from
a Lyapunov analysis. Power analysis allows the derivation
of a suitable state reference trajectory according to control
objectives. The reconstructed state is then used in Section
III-B to build an observer based control law. The proposed
control is of an argmin state feedback control law type [5],
[17], [18], and ensures the global asymptotic stability of the
origin of the tracking error. To regulate the output in the
presence of constant perturbations, Section III-C proposes to
complete the control scheme adding an outer loop that adapts
appropriately the state reference. Section IV presents simu-
lation results carried out on MATLAB/Simulink to illustrate
the effectiveness of the proposed approach.

II. MODELING

Fig. 1: Three Level Neutral Point Clamped Rectifier Circuit

The considered converter is a three level neutral clamped
rectifier presented in Figure 1. The input supplies are three



phase grid voltages ea, eb and ec, each connected to an
inductor L including a parasitic resistance rL. On the DC
side, the load is a resistor R, connected in parallel with two
capacitors C with a parasitic resistance rC . For the AC side,
the following Assumption 1 is taken into account.

Assumption 1: The circuit operates in balanced mode.
Therefore •a+•b+•c = 0 with • = e, i, and ea = E cos(ωt)
, eb = E cos(ωt− 2π

3 ), and ec = E cos(ωt− 4π
3 ).

The circuit contains 12 switches and 6 diodes that aim
at connecting each phase a,b and c to the point P , O or N .
Therefore, we can model the switches with 9 boolean control
variables uij , where i = a, b, c and j = p, o, n. A uij will
be equal to one if the phase i is connected to the point j.
Since a phase can be connected to only one point at a time,
the following constraints exist:

u•p + u•o + u•n = 1 with • = a, b, c (1)

With this modeling, a phase of the circuit can be repre-
sented as in Figure 2. Applying Kirchhoff’s laws:

e• = rLi• + Li̇• + v•o + vok with • = a, b, c (2)

Using Assumption 1 and (2), the sum of the three input
voltages is equal to 3vok + vao + vbo + vco. Therefore, we
can deduce thatvakvbk

vck

 =
1

3

 2 −1 −1
−1 2 −1
−1 −1 2

vaovbo
vco

 := T

vaovbo
vco

 (3)

Since

v•o =

 0 if u•o = 1
v1 if u•p = 1
−v2 if u•n = 1

with • = a, b, c

Then vaovbo
vco

 =

uap

ubp

ucp

 v1 −

uan

ubn

ucn

 v2 (4)

Substituting (3) and (4) in (2), we have the following model
for the AC part:

L

i̇ai̇b
i̇c

 =

eaeb
ec

− rL

iaib
ic

− T

uap

ubp

ucp

 v1 −

uan

ubn

ucn

v2


Regarding the DC side, according to Figure 1, i1 and i2 are
currents flowing through capacitors. Therefore, Kirchhoff’s
laws give:

i1 = uapia + ubpib + ucpic − v1+v2
R − v1

rC
i2 = −(uania + ubnib + ucnic)− v1+v2

R − v2
rC

Fig. 2: Schematic of phase a with control variables

Considering the objectives of stabilizing the output and
balancing the capacitor voltages, it is interesting to express
the model through the variables v+ = v1+v2, v− = v1−v2
and ia, ib and ic. Therefore, the model becomes:

L

i̇ai̇b
i̇c

=
eaeb
ec

− rL

iaib
ic

− 1

2
T

ua−
ub−
uc−

v+ +

ua+

ub+

uc+

v−


Cv̇+ = i1 + i2 = ua−ia + ub−ib + uc−ic − v+
Re

Cv̇− = i1 − i2 = ua+ia + ub+ib + uc+ic − v−
rC

(5)

where ui± = uip ± uin for i = a, b, c and Re =
RrC

R+2rC
.

In the context of balanced mode operation (see Assump-
tion 1), it is possible to simplify the model using the
Clarke-Concordia’s transformation, which transforms an abc
vector

[
ga gb gc

]T
into an αβγ vector

[
gα gβ gγ

]T
according to:gαgβ

gγ

 =

√
2

3

 1 − 1
2 − 1

2

0
√
3
2 −

√
3
2

1√
2

1√
2

1√
2


gagb
gc

 := C

gagb
gc


Multiplying (5) on the left by C and after some tedious
calculations, the model can be written as:

L

[
i̇α
i̇β

]
=
[
eα
eβ

]
−rL

[
iα
iβ

]
−

[√
6
6

−
√
6

12
−
√
6

12

0
√
2
4

−
√
2

4

]ua−
ub−
uc−

v++
ua+

ub+

uc+

v−


Cv̇+ =
√
6 2ua−−ub−−uc−

6 iα +
√
2ub−−uc−

2 iβ − v+
Re

Cv̇− =
√
6 2ua+−ub+−uc+

6 iα +
√
2ub+−uc+

2 iβ − v−
rC

where eα = Vαβ cos(ωt), eβ = Vαβ sin(ωt) and Vαβ =√
3
2E. If we choose x =

[
iα iβ v+ v−

]T
as state vector

and v+ as the output, we have the following state space
model:

ẋ =
(
A0 + uapAuap + uanAuan + ubpAubp

+ubnAubn
+ ucpAucp

+ ucnAucn

)
x+B0vin

y =
[
0 0 1 0

]
x := C0x

(6)

where :

A0 =


−rL
L 0 0 0
0 −rL

L 0 0
0 0 −1

ReC
0

0 0 0 −1
CrC

 B0 =


1
L 0
0 1

L
0 0
0 0

 vin =

[
eα
eβ

]

Auap
=


0 0−

√
6

6L
−
√
6

6L
0 0 0 0√
6

3C 0 0 0√
6

3C 0 0 0

 Auan
=


0 0

√
6

6L
−
√
6

6L
0 0 0 0

−
√
6

3C 0 0 0√
6

3C 0 0 0



Aubp
=


0 0

√
6

12L

√
6

12L

0 0 −
√
2

4L
−
√
2

4L
−
√
6

6C

√
2

2C 0 0
−
√
6

6C

√
2

2C 0 0

 Aubn
=


0 0

√
6

12L
−
√
6

12L

0 0 −
√
2

4L

√
2

4L√
6

6C
−
√
2

2C 0 0
−
√
6

6C

√
2

2C 0 0



Aucp
=


0 0

√
6

12L

√
6

12L

0 0
√
2

4L

√
2

4L
−
√
6

6C
−
√
2

2C 0 0
−
√
6

6C
−
√
2

2C 0 0

 Aucn
=


0 0 −

√
6

12L

√
6

12L

0 0 −
√
2

4L

√
2

4L√
6

6C

√
2

2C 0 0
−
√
6

6C
−
√
2

2C 0 0





To apply the methodology proposed in [18], modes should
be ordered and a change of variable is required to obtain a
polytopic model. A mode corresponds to a configuration of
the circuit, thus constraints (1) must be considered in their
definitions. Modes and new Aλi

matrices are summed up in
Table I.
After the change of variables, the model can be expressed as{

ẋ =
(
A0 +

∑27
i=1 λiAλi

)
x+B0vin

y = C0x
(7)

This is a polytopic model where the λi’s are the new control
variables. Since only one mode can be active at a time, only
one λi can be equal to one at a time. Thus, λi variables
select a circuit configuration, and we have a switched affine
system. Let us now gather the λi variables into a vector λ ∈
ΛS where ΛS =

{
λ ∈ {0, 1}27 :

∑27
i=1 λi = 1

}
. Finally, the

model can be expressed in a compact form expressed as:{
ẋ = A0x+B0(x)λ
y = C0x

(8)

where B0(x) =
[
Aλ1

x+B0vin . . . Aλ27
x+B0vin

]
.

III. OBSERVATION AND CONTROL

A. Observer design

The state of a system is not always available to compute a
control law. Moreover, the introduction of an observer can be
useful to reduce the number of sensors. In this context, we
want to design an observer to asymptotically reconstruct the
state of system (8). We assume that in addition of vin, vC1

and vC2 are measured. Thus, let us consider the measured
output ym defined as:

ym =

[
vC1

vC2

]
=

1

2

[
0 0 1 1
0 0 1 −1

]
x := Cmx (9)

Theorem 1: For a given symmetric positive definite matrix
QO ∈ R4×4, if it exists a symmetric positive definite matrix
S ∈ R4×4 and matrices Wi ∈ R4×2 such that the LMI(
A0+Aλi

)T
S+S

(
A0+Aλi

)
−CT

mWT
i −WiCm+2QO < 0

(10)
holds ∀i = 1, . . . , 27, then the observer{

˙̂x = A0x̂+B0(x̂)λ+
∑27

i=1 λiLλi
(ym − ŷm)

ŷm = Cmx̂
(11)

where Lλi
= S−1Wi, ensures the convergence of x̂ to x.

Proof: Let ε = x− x̂ be the reconstruction error signal.
Its dynamic is:

ε̇ =
(
A0 +

∑27
i=1 λi

(
Aλi

− Lλi
Cm

))
ε

Consider the Lyapunov function V (ε) = εTSε where S =
ST > 0. V (0) = 0 and V (ε) > 0 ,∀ε ̸= 0. Regarding its
time derivative, we have

V̇ (ε) = εT
((
A0 +

∑27
i=1λiAλi

)T
S + S

(
A0 +

∑27
i=1λiAλi

)
−
∑27

i=1λi

(
SLλi

Cm−CT
mLT

λi
S
))
ε<−2εTQOε < 0

The last inequality is obtained from LMI condition (10) by
defining Wi = SLλi . Since V̇ (ε) < 0 ,∀ε ̸= 0 and the
dynamic of ε doesn’t jump when the control change, we can
conclude that the origin of ε is globally asymptotically stable
(GAS).

B. Observer based control

The control aims at tracking a state reference computed
according to three objectives: to stabilize the output y at a
given DC voltage setpoint ye, to ensure a unit power factor
by having the input currents and input voltages on phase,
and to have balanced capacitor voltages on the output.

The first and third objectives directly set a part of the
state reference since y = v+ and the difference between the
capacitor voltages is v−. The second objective suggests that
the currents references should be of the form Iαβ cos(ωt) for
iα and Iαβ sin(ωt) for iβ . Therefore, the state reference can
be expressed as:

xe(t) =


iαe(t)
iβe(t)
v+e

v−e

 =


Iαβ cos(ωt)
Iαβ sin(ωt)

ye
0

 (12)

where Iαβ has to be determined. To achieve this, the power
balance of the system can be studied. Using (6), we can
calculate instantaneous powers in capacitors and inductors,
and recover the rest of the power balance expression:

Liαi̇α + Liβ i̇β +
C

2
v+v̇+ +

C

2
v−v̇−

= −rL(i
2
α + i2β) + eαiα + eβiβ −

v2+
2Re

−
v2−
2rC

(13)

For x = xe given by (12), the power balance expression
reduces to:

0 = −rlI
2
αβ + VαβIαβ − y2e

2Re
(14)

To simplify the problem, the objectives can be expressed
in terms of instantaneous active and reactive power p and q
instead of currents and voltages. They are expressed as [19]:[

p
q

]
=

[
eα eβ
−eβ eα

] [
iα
iβ

]
(15)

With those definitions, the control objectives can now be
summarized as follows: p = p∗, q = 0, v+ = ye and v− = 0,
where p∗ has to be determined. The power balance is then
expressed as follows:

0 = −rL
p∗2

V 2
αβ

+ p∗ − y2e
2Re

Hence, for a fixed ye, p∗ is expressed as:

p∗ =
V 2
αβ

2rL

(
1±

√
1− 2rL

V 2
αβRe

y2e

)
with ye < Vαβ

√
Re

2rL
(16)

To reduce the power in the system, the smallest solution
should be selected. Finally, by definition (15), Iαβ = p∗

Vαβ
.

Remark 1: Since the system is a switched system, the
state reference is considered in the sense of Filipov [20].



TABLE I: Modes and change of variables from the physical model (6) to the polytopic model (7)

Mode(i) uap uan uao ubp ubn ubo ucp ucn uco Aλi

1 0 0 1 0 0 1 0 0 1 0
2 0 0 1 0 0 1 0 1 0 Aucn

3 0 0 1 0 0 1 1 0 0 Aucp

4 0 0 1 0 1 0 0 0 1 Aubn

5 0 0 1 0 1 0 0 1 0 Aubn +Aucn

6 0 0 1 0 1 0 1 0 0 Aubn +Aucp

7 0 0 1 1 0 0 0 0 1 Aubp

8 0 0 1 1 0 0 0 1 0 Aubp +Aucn

9 0 0 1 1 0 0 1 0 0 Aubp +Aucp

10 0 1 0 0 0 1 0 0 1 Auan

11 0 1 0 0 0 1 0 1 0 Auan +Aucn

12 0 1 0 0 0 1 1 0 0 Auan +Aucp

13 0 1 0 0 1 0 0 0 1 Auan +Aubn

14 0 1 0 0 1 0 0 1 0 Auan +Aubn +Aucn

15 0 1 0 0 1 0 1 0 0 Auan +Aubn +Aucp

16 0 1 0 1 0 0 0 0 1 Auan +Aubp

17 0 1 0 1 0 0 0 1 0 Auan +Aubp +Aucn

18 0 1 0 1 0 0 1 0 0 Auan +Aubp +Aucp

19 1 0 0 0 0 1 0 0 1 Auap

20 1 0 0 0 0 1 0 1 0 Auap +Aucn

21 1 0 0 0 0 1 1 0 0 Auap +Aucp

22 1 0 0 0 1 0 0 0 1 Auap +Aubn

23 1 0 0 0 1 0 0 1 0 Auap +Aubn +Aucn

24 1 0 0 0 1 0 1 0 0 Auap +Aubn +Aucp

25 1 0 0 1 0 0 0 0 1 Auap +Aubp

26 1 0 0 1 0 0 0 1 0 Auap +Aubp +Aucn

27 1 0 0 1 0 0 1 0 0 Auap +Aubp +Aucp

The addressed problem is to design a control law λ :
R → ΛS which asymptotically stabilizes the state of the
system (7) at the state reference xe defined by (12), only
measuring the output ym. The control is expressed based on
the reconstructed state provided by the observer (11). The
observer and the control law can be designed separately,
leading to a separation principle.

Theorem 2: Let ẽ := x̂−xe be the estimated tracking error
signal, where x̂ is the state estimated by the observer (11)
and xe is defined by (12). For a given symmetric positive
definite matrix QC ∈ R4×4, if it exists a symmetric positive
definite matrix P ∈ R4×4 solution of

AT
λi
P + PAλi

+ 2QC < 0 (17)

∀i = 1 . . . 27, then the control law

λ∗ = arg min
d∈ΛS

(
ẽTP

(
A0x̂+B0(x̂)d

))
(18)

= arg min
i=1...27

(
ẽTPAλi

x̂
)

makes the origin of the tracking error e := x− xe globally
asymptotically stable (GAS).

Proof: Consider the Lyapunov function V (ẽ, ε) =
1
2

(
ẽTP ẽ+ αεTSε

)
where P = PT > 0 is solution of (17),

S = ST > 0 is solution of (10) and α > 0 is a scalar.
V (0, 0) = 0 and V (ẽ, ε) > 0 ,∀ẽ, ε ̸= 0. The time derivative
is expressed as

V̇ (ẽ, ε) = ẽTP
(
A0x̂+B0(x̂)λ+

∑27
i=1 λiLλiCmε− ẋe

)
+ αεTS

(∑27
i=1 λi

(
A0 +Aλi

− Lλi
Cm

))
ε

For the proposed switching control λ∗ (18), by construction
and convexity

ẽTP
(
A0x̂+B0(x̂)λ

∗
)
≤ ẽTP

(
A0x̂+B0(x̂)λe

)
Therefore

V̇ (ẽ, ε)≤ ẽTP
(
A0ẽ+

(
B0(x̂)−B0(xe)

)
λe+

∑27
i=1λiLλi

Cmε
)

+ αεTS
(∑27

i=1 λi

(
A0 +Aλi

− Lλi
Cm

))
ε

= ẽTP
((
A0 +

∑27
i=1 λeiAλi

)
ẽ+
∑27

i=1 λiLλiCmε
)

+ αεTS
(∑27

i=1 λi

(
A0 +Aλi

− Lλi
Cm

))
ε

Inequalities (17) and (10) imply

V̇ (ẽ, ε) ≤ −ẽTQC ẽ+ ẽTP
∑27

i=1 λiLλi
Cmε− αεTQOε

= −
[
ẽ
ε

]T [QC γ

γT αQO

] [
ẽ
ε

]
:= −

[
ẽ
ε

]T
Q

[
ẽ
ε

]
where γ = − 1

2P
∑27

i=1 λiLλiCm. Consequently, V̇ (ẽ, ε) <
0 if Q > 0. By Schur complement, this condition holds for

αQO − 1
4

∑27
i=1 λiC

T
mLT

λi
PQ−1

C PLλiCm > 0

Hence, a sufficient condition is

α > max
i=1...27

{
λmax

(
1
4Q

− 1
2

O CT
mLT

λi
PQ−1

C PLλiCmQ
− 1

2

O

)}
Finally, for a sufficiently large α and since the state doesn’t
jump when the control change, we can conclude that the
origins of ε and ẽ are GAS. Noticing that e = ẽ + ε, it
proves that the origin of e is GAS too.



Fig. 3: Block diagram of the output regulation loop

C. Regulation of the output

In this section, the objective is to regulate the output v+
when constant perturbations are considered. Such perturba-
tions may stem from, for example, some variations of the
resistive load R or some variations of the amplitude of the
input source voltages Vαβ . The idea consists in modifying
the current reference amplitude Iαβ adding an extra term
∆Iαβ . This extra term is obtained from an outer loop on v+
with an integral action whose output ∆Iαβ is expressed as

∆Iαβ(t) = KI

∫ t

0

(ye − v+(u))du

where KI is a constant gain. The control scheme is de-
picted in Figure 3 where the inner loop corresponds to the
closed-loop system designed in the previous paragraph: the
converter controlled by the observer based control (18). To
design gain KI , it is assumed that the dynamic of the inner
loop is much faster than the one of the introduced outer
loop. In that context, the transfer function between ∆Iαβ
and ∆v+ = ye − v+ can be approximated from the power
balance equation. Introducing iα = (Iαβ + ∆Iαβ) cos(ωt),
iβ = (Iαβ + ∆Iαβ) sin(ωt), v+ = ye − ∆v+ and v− =
0−∆v−, the power balance equation (13) becomes

C

2
(ye −∆v+)∆v̇+ = −rL(Iαβ +∆Iαβ)

2

+Vαβ(Iαβ +∆Iαβ)−
(ye −∆v+)

2

2Re
− (0−∆v−)

2

2rC

Taking into account (14) and retaining the first order terms,
we obtain

Cye
2

∆v̇+ = −2rLIαβ∆Iαβ + Vαβ∆Iαβ − ye
Re

∆v+

The transfer function is given by

Gv+(s) =
∆v+
∆Iαβ

=

(Vαβ−2rLIαβ)Re

ye

1 + ReC
2 s

:=
K

1 + Ts

Considering the control scheme in Figure 3, the outer open-
loop transfer function is given by

KKI

s(1 + Ts)

If the desired phase margin is π/3 radians, a simple calcu-
lation gives KI =

2

3KT
=

4ye
3R2

eC(Vαβ − 2rLIαβ)
.

IV. SIMULATION

To illustrate the performance of the proposed control,
simulations were performed on MATLAB/Simulink. Com-
ponents parameters are summed up in Table II. With those
values, the equilibrium power is p∗ = 782.02 W.

TABLE II: Parameters of simulations

Parameters Values Parameters Values
L 15 mH rL 0.4 Ω
C 1500 µ F rC 20 kΩ
E 72 V R 30 Ω
ye 150 V ω 2π×50 rad/s

Using MATLAB and a SDP solver to minimize the trace
of P and S while satisfying (17) for QC = I4, (10) and
S > 10−4I4 for QO = 10−2I4, we obtain:

P = diag(600, 600, 23, 30) and S = diag(4, 4, 1, 1)× 10−4

and 27 Lλi gains.
During simulation, the outer loop is turned on after 0.2s

to prevent overshoots at start-up and to observe the system
behavior without it. For a simulation step of T = 5× 10−5s
and with the initial condition x0 =

[
0 0 15 5

]T
,

Figure 4 presents the evolution of the currents at start-up.
The observer states reaches system states as expected, and
currents follows their references.

Perturbations that affect the output and the amplitude
of the input voltage are reported in Figure 5, along with
the evolution of the amplitude of the reference currents
Iαβ+∆Iαβ due to the outer loop. As expected, the reference
is adapted when a perturbation affects the system, which
ensures that the control objectives are still met.

The evolution of instantaneous powers p and q, currents
stabilization and reconstruction errors, as well as system and
observer voltages with references are presented in Figure 6.
It can be noticed that the output y = v+ and p present a
steady state error before the outer loop is activated, of 2%
and 3.2% respectively. Once the outer loop is turned on,
steady state errors are cancelled and the output is regulated
to its reference. p, q and system states are affected by
perturbations, but are regulated too. The reactive power q
converge to 0 after each perturbation, the unit power factor
is therefore maintained. As expected, all reconstruction errors
converge to 0 despite the perturbations, which ensures that
the observer-based control law works properly.

V. CONCLUSION

In this paper, an observer-based switched control law
for the three-level neutral point clamped rectifier has been
designed. The modeling process was based on the modeling
methodology proposed in [18] and adapted to take into
account constraints between control variables specific to
this converter. Despite the complexity and the large number
of configurations, a full order observer is easily designed
based on LMI conditions that can be solved with numerical
tools. It allows to reconstruct the state of the system with
the measurement of the input and both capacitors voltages.
The stability of the system with the proposed control law
is assessed with a Lyapunov analysis, and illustrated by
simulations on MATLAB/Simulink. To complete the control
scheme, an outer loop is proposed to regulate the output
for constant perturbations. The future work could consist in
validating those results on an experimental setup.



Fig. 4: System and observer currents with references

Fig. 5: Perturbations and adapted amplitude of the reference
currents

Fig. 6: Active and reactive powers, currents stabilization and
reconstruction errors, system and observer voltages
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