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We propose necessary and sufficient conditions for the synchronization of N identical single-input-single-output (SISO) systems, connected through a directed graph. We consider both the continuous-time and the discretetime case, and we provide conditions that do not require any assumption on the graph and ensure the uniform global exponential stability of the closed attractor that corresponds to the synchronization set, with guaranteed convergence rate.

Introduction

The problems of consensus and synchronization of multi-agent systems [START_REF] Fagnani | Introduction to Averaging Dynamics over Networks[END_REF] have received growing interest, due to the variety of applications in many different areas, including: cooperative control of unmanned aerial vehicles, formation control of mobile robots and communication in sensor networks [START_REF] Fax | Information flow and cooperative control of vehicle formations[END_REF][START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF][START_REF] Ren | Information consensus in multivehicle cooperative control[END_REF], quality-fair delivery of media contents [START_REF] Dal Col | A consensus approach to PI gains tuning for quality-fair video delivery[END_REF], power networks [START_REF] Dörfler | Synchronization in complex oscillator networks and smart grids[END_REF], biological systems [START_REF] Scardovi | Synchronization of Interconnected Systems With Applications to Biochemical Networks: An Input-Output Approach[END_REF], and opinion dynamics [START_REF] Anderson | Recent Advances in the Modelling and Analysis of Opinion Dynamics on Influence Networks[END_REF]. Specifically, consensus refers to agents coming to a global agreement on a state value, thanks to the exchange of information modeled by some communication graph; mild assumptions on the graph connectivity allow to uniformly exponentially reach consensus [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF][START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF][START_REF] Olfati-Saber | Consensus and Cooperation in Networked Multi-Agent Systems[END_REF][START_REF] Moreau | Stability of multiagent systems with time-dependent communication links[END_REF][START_REF] Ren | Consensus algorithms for double-integrator dynamics[END_REF][START_REF] Wieland | On consensus in multi-agent systems with linear high-order agents[END_REF][START_REF] Seo | Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach[END_REF]. Conversely, synchronization refers to agents moving toward a common trajectory in the configuration space [START_REF] Hale | Diffusive coupling, dissipation, and synchronization[END_REF][START_REF] Pecora | Master stability functions for synchronized coupled systems[END_REF][START_REF] Slotine | A Study of Synchronization and Group Cooperation Using Partial Contraction Theory[END_REF][START_REF] Scardovi | Synchronization in networks of identical linear systems[END_REF][START_REF] Carli | Optimal Synchronization for Networks of Noisy Double Integrators[END_REF][START_REF] Sepulchre | Consensus on nonlinear spaces[END_REF][START_REF] Andrieu | Some Results on Exponential Synchronization of Nonlinear Systems[END_REF][START_REF] Dal Col | H∞ control design for synchronisation of identical linear multi-agent systems[END_REF], 2019). Consensus and synchronization problems have been widely investigated for agents modelled by identical linear time-invariant (LTI) systems, with many subsequent extensions to switching network topologies [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF][START_REF] Xiao | Consensus problems for high-dimensional multi-agent systems[END_REF][START_REF] Su | Two consensus problems for discrete-time multi-agent systems with switching network topology[END_REF], heterogeneous and nonlinear systems [START_REF] Khong | A Unifying Framework for Robust Synchronization of Heterogeneous Networks via Integral Quadratic Constraints[END_REF][START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF][START_REF] Adhikari | An emerging dynamics approach for synchronization of linear heterogeneous agents interconnected over switching topologies[END_REF], output synchronization [START_REF] Zhu | A General Framework for Robust Output Synchronization of Heterogeneous Nonlinear Networked Systems[END_REF][START_REF] Isidori | Lectures in Feedback Design for Multivariable Systems[END_REF], and hybrid systems [START_REF] Mayhew | Quaternion-Based Hybrid Feedback for Robust Global Attitude Synchronization[END_REF][START_REF] Teel | A hybrid systems approach to global synchronization and coordination of multi-agent sampled-data systems[END_REF][START_REF] Cristofaro | Multiconsensus control of homogeneous LTI hybrid systems under time-driven jumps[END_REF].

Figure 1 represents the distributed feedback system addressed in this work, where N identical SISO dynamical systems of arbitrary order, with state x i ∈ n evolving as ẋi /x and with scalar inputs u i ∈ and outputs y i ∈ , are interconnected through a directed graph with Laplacian L ∈ N ×N as follows:

+ i = Ax i + Bu i y i = C x i + du i i = 1, . . . , N (1) ẋi /x + i = Ax i + Bu i y i = Cx i + du i
u = -L y = -L ((I N ⊗ C)x + du) , (2) 
where u = [u 1 . . . u N ] ⊤ ∈ N , y = [ y 1 . . . y N ] ⊤ ∈ N and x := x ⊤ 1 . . . x ⊤ N ⊤ ∈ N n , are the aggregate input, output and state vectors, respectively, and ⊗ denotes the Kronecker product.

Due to linearity, a range of equivalent conditions for synchronization can be stated and may lead to powerful numerical tools for distributed controllers tuning. Despite the extensive amount of work in the field, one cannot find a general theorem clearly stating the equivalence of these conditions for identical LTI systems of arbitrary order, connected through an arbitrary graph topology. Here, we provide this result by introducing a list of necessary and sufficient conditions for uniform global exponential synchronization with guaranteed convergence rate both in the continuous-time and in the discrete-time case. For the sake of generality, we also allow for the presence of a direct input-output link d ∈ in (1). With d ̸ = 0, the implicit equation ( 2) can be uniquely solved as

u = -(L d ⊗ C)x := -((I N + d L) -1 L ⊗ C)x (3)
if and only if (linear) well-posedness holds, namely matrix I N + d L is invertible or, equivalently, -d -1 is not an eigenvalue of L. Clearly, when d = 0 we retrieve the classical case L d := (I N + d L) -1 L = L, but our results also characterize the general case with a distributed algebraic loop. Overall, the linear distributed interconnection (1), (2) can be written as ẋ/x + = (

I N ⊗ A)x -(L d ⊗ BC)x. ( 4 
)
Our main contribution consists in providing a list of necessary and sufficient conditions for the uniform global exponential stability of the synchronization set with convergence rate guarantees. We consider the synchronization set, i.e., the (unbounded) set where all pairwise states coincide. These conditions comprise (a) Hurwitz/Schur properties of complex-valued matrices induced by the eigenvalues of L d , (b) equivalent Hurwitz/Schur properties of suitable real-valued matrices, (c) existence of positive-definite solutions to certain Lyapunov inequalities, (d) existence of a strict quadratic Lyapunov function (establishing a quadratic converse Lyapunov theorem), and (e) synchronization of all solutions towards a specific initial value problem.

Proving equivalence of the above properties is a contribution per se, as typically one finds only parts of these equivalences in the literature, possibly with different assumptions on the Laplacian L. Conditions of the same form as (a) for formation stability were given in (Fax and Murray, 2004, Theorem 3) and the uniform global exponential stability condition was exploited in [START_REF] Xia | Synchronization conditions for diffusively coupled linear systems[END_REF], Theorem 1) and (Seo et al., 2009, Theorem 1). The condition related to the initial value problem (e) was given in [START_REF] Scardovi | Synchronization in networks of identical linear systems[END_REF]. Moreover, a list of similar discrete-time statements was given under an undirected graph assumption in (Dal Col et al., 2017, Theorem 1) The presented necessary and sufficient conditions allow us to parametrize all possible stabilizers and possibly select the best one from a certain performance view-point. For example, analogous conditions have been used in the recent work [START_REF] Zaupa | Controlling identical linear multi-agent systems over directed graphs[END_REF] for the design of a simultaneous stabilizing static state-feedback controller in comparison with existing approaches where Riccati-based designs are used to show the existence of a stabilizer. Our proposed conditions can be used to extend the LMI-based H ∞ results in [START_REF] Dal Col | On Distributed Control Analysis and Design for Multi-Agent Systems Subject to Limited Information[END_REF], as well as the LMIbased saturated feedback design in [START_REF] Dal Col | Regional H∞ Synchronization of Identical Linear Multiagent Systems Under Input Saturation[END_REF], to also deal with undirected graphs. More in general, while existence results for global simultaneous stabilizers are already available from [START_REF] Isidori | Lectures in Feedback Design for Multivariable Systems[END_REF][START_REF] Saberi | Synchronization of Multi-Agent Systems in the Presence of Disturbances and Delays[END_REF], our conditions become relevant when solving a multi-objective control (or observer) design problem.

The paper is structured as follows. Section 2 presents basic definitions along with the main theorem, whose proof is provided in Section 3.

Notation. ( ≥0 ), and denote respectively the sets of real (non-negative), complex and natural numbers. We denote with ȷ the imaginary unit and with 1 N ∈ N (0 N ∈ N ) the N -dimensional (column) vector having all 1 entries (0 entries); diag (A 1 , . . . , A N ) indicates the block diagonal matrix whose diagonal blocks are the square matrices A 1 , . . . , A N . Given a complex number λ = a + ȷb, Re(λ) = a denotes its real part, Im(λ) = b its imaginary part, λ * = aȷb its complex conjugate. Given a complex matrix A ∈ n×m , A * denotes its conjugate transpose. A square matrix A ∈ n×n is Hurwitz when all its eigenvalues have strictly negative real part; it is Schur when all its eigenvalues have modulus strictly less than 1; it is Hermitian if A = A * , namely Re(A) is symmetric Re(A) = Re(A) ⊤ and Im(A) is skew-symmetric Im(A) = -Im(A) ⊤ . A Hermitian matrix A has real eigenvalues and is positive semi-definite, A ⪰ 0 (resp. positive definite, A ≻ 0), when its eigenvalues are all non-negative (resp. positive). We denote with σ(A) the spectrum of a square matrix A, and we call dominant the eigenvalue having the largest real part. Eigenpairs for which Av = λv are denoted as (λ, v). We denote the Euclidean distance of a point x from a set as |x| := inf y∈ |x -y|. The topology of a directed graph with N ∈ nodes is characterized by the weighted adjacency matrix ∈ N ×N whose entry i j ≥ 0 denotes the weight of the edge pointing from node j to node i. Defining the diagonal matrix D := diag( 1 N ), we can introduce the Laplacian matrix L := Dassociated with the graph .

Equivalent conditions to α-synchronization

To establish synchronization among systems (1), interconnected via (2), as represented in Figure 1, we first introduce the synchronization set, or attractor,

:= x : x i -x j = 0, ∀i, j ∈ {1, . . . , N } (5) 
along with the definitions of exponential stability and synchronization for the continuous-time and the discretetime case, for a given convergence rate α.

Definition 1 (α-UGES). The attractor in (5) is α-UGES (uniformly globally exponentially stable with rate α > 0) for system (1), (2) if there exists M > 0 such that any solution t → x(t) satisfies

|x(t)| ≤ M e -αt |x(0)| , ∀t ∈ ≥0 (6a) r esp. |x(t)| ≤ M α t |x(0)| , ∀t ∈ . ( 6b 
)
Remark 1. The definition above considers exponential stability of the attractor, which coincides with its asymptotic stability due to the linear and homogeneous dynamics of the system. ⌟ Definition 2 (α-synchronization). For the continuous-time (respectively discrete-time) linear system (1), (2), αsynchronization holds if there exist M > 0 and rate α > 0 (resp. α ∈ (0, 1)) such that, for any initial condition, every sub-system satisfies

|x i (t) -x• (t)| ≤ M e -αt N i=1 |x i (0) -x• (0)|, ∀t ∈ ≥0 (7a) r esp. |x i (t) -x• (t)| ≤ M α t N i=1 |x i (0) -x• (0)|, ∀t ∈ , (7b) 
i = 1, . . . , N , for a suitable target trajectory x• , depending on the initial conditions.

Before stating our main result, we note that, trivially, all the zero eigenvalues of L are also zero eigenvalues of L d = (I N + d L) -1 L. Then we denote by 0 = λ 0 , λ 1 , . . . , λ ν the eigenvalues of L d , where the complex conjugate pairs are only counted once (so that ν := N -1 -n c , with n c being the number of complex conjugate pairs).

Given an assigned convergence rate α ⋆ ≥ 0 of the solutions towards the attractor , we state a list of necessary and sufficient conditions for (continuous-or discrete-time) α ⋆ -exponential synchronization of (1), (2).

Theorem 1. Consider the continuous-time (resp. discrete-time) system in (1), ( 2), the attractor in (5) and the parameter α ⋆ ≥ 0 (resp. α ⋆ ∈ (0, 1]). The following statements are equivalent: (i). [Complex condition] The spectral abscissa (resp. spectral radius) of the complex-valued matrices1 

A k := A -λ k BC, k = 1, . . . , ν, ( 8 
)
is smaller than -α ⋆ (resp. α ⋆ ).

(ii). [Real condition] The spectral abscissa (resp. spectral radius) of the real-valued matrices

A e,k := A -Re(λ k )BC Im(λ k )BC -Im(λ k )BC A -Re(λ k )BC , k = 1, . . . , ν, ( 9 
)
is smaller than -α ⋆ (resp. α ⋆ ).

(iii). [Lyapunov inequality]

For each k = 1, . . . , ν, there exist real-valued matrices P k = P ⊤ k ≻ 0 and Π ⊤ k = -Π k such that one of the following identities holds:

(P k + ȷΠ k )A k + A * k (P k + ȷΠ k ) ≺ -2α ⋆ (P k + ȷΠ k ) (10a) resp. A * k (P k + ȷΠ k )A k ≺ (α ⋆ ) 2 (P k + ȷΠ k ) , ( 10b 
) or P k Π k -Π k P k A e,k + A ⊤ e,k P k Π k -Π k P k ≺ -2α ⋆ P k Π k -Π k P k (11a) resp. A ⊤ e,k P k Π k -Π k P k A e,k ≺ (α ⋆ ) 2 P k Π k -Π k P k . ( 11b 
)

(iv). [Lyapunov function]

There exist α > α ⋆ (resp. 0 < α < α ⋆ ), positive constants c 1 , c 2 and c 3 , and a strict quadratic Lyapunov function V (x) satisfying:

c 1 |x| 2 ≤ V (x) ≤ c 2 |x| 2 , (12a) V (x) ≤ -2αV (x) (12b) resp. V (x + ) ≤ α 2 V (x) . ( 12c 
)

(v). [UGES]

There exists α > α ⋆ (resp. 0 < α < α ⋆ ) such that the closed attractor in ( 5) is α-UGES for the closed loop (1), ( 2).

(vi). [IVP]

There exists α > α ⋆ (resp. 0 < α < α ⋆ ) such that, for the closed loop (1), ( 2), the sub-states x i uniformly globally α-exponentially synchronize to the unique solution of the following initial value problem:

ẋ• /x + • = Ax • , x• (0) = 1 p ⊤ 1 N N k=1 p k x k (0), ( 13 
)
where p := [p 1 . . . p N ] ⊤ ∈ N is a left eigenvector corresponding to the zero eigenvalue of L.

Remark 2. Referring to item (vi) above, the k-th entry of the left eigenvector p, associated with the zero eigenvalue of the Laplacian L, can be seen as a measure of the centrality of node k, which weighs its initial state in the linear combination xo (0) in ( 13); a strong analogy can be observed with the Bonacich centrality [START_REF] Bonacich | Power and centrality: a family of measures[END_REF], which is the left eigenvector associated with the 1 eigenvalue of the normalized adjacency matrix. ⌟ Remark 3. Theorem 1 holds also for weakly-connected or even disconnected graph. In this situation, the algebraic multiplicity of the zero eigenvalue of L is greater than one and therefore we have the trivial condition that matrix A has to be Hurwitz/Schur. This is a reasonable conclusion: for a disconnected network, the only possible common equilibrium without information exchange is the origin. Moreover, referring to item (vi), in this case the vector p is not uniquely determined (up to rescaling) since there exist as many linearly independent eigenvectors as the geometric multiplicity of the zero eigenvalue. In fact, any such selction of p is a valid one for item (vi) because, with disconnected networks, all the equivalent items of the theorem are true if and only if the solution of ( 13) converges to zero (a trivial synchronized motion). ⌟

In the special case where α ⋆ = 0 (resp. α ⋆ = 1) and d = 0, matrix L d becomes the Laplacian L of the graph, and the results in Theorem 1 can be stated in a simplified (and widely studied) setting, as clarified in the next corollary.

Corollary 1. Consider the continuous-time (resp. discrete-time) system (1), ( 2) with d = 0, so that 0 = λ 0 , λ 1 , . . . , λ ν are the eigenvalues of L. The following statements are equivalent (i). [Complex condition] The complex-valued matrices (8) are Hurwitz (resp. are Schur).

(ii). [Real condition]

The real-valued matrices (9) are Hurwitz (resp. are Schur).

(iii). [Lyapunov inequality]

For each k = 1, . . . , ν, there exist real-valued matrices P k = P ⊤ k ≻ 0 and Π ⊤ k = -Π k such that one of the following identities holds:

(P k + ȷΠ k )A k + A * k (P k + ȷΠ k ) ≺ 0 resp. A * k (P k + ȷΠ k )A k ≺ 0 , or P k Π k -Π k P k A e,k + A ⊤ e,k P k Π k -Π k P k ≺ 0 resp. A ⊤ e,k P k Π k -Π k P k A e,k ≺ 0 .

(iv). [Lyapunov function]

There exist positive constants c 1 , c 2 and c 3 and a strict quadratic Lyapunov function V satisfying (12a) and V (x) ≤ -c 3 V (x) (resp. V (x + ) ≤ (1 -c 3 )V (x)) for all x ∈ N n .

(v). [UGES]

The closed attractor in (5) is uniformly globally exponentially stable.

(vi). [IVP]

The closed loop (1), ( 2) is such that the sub-states x i uniformly globally exponentially synchronize to the unique solution of the initial value problem (13).

Remark 4. In the continuous-time case, following [START_REF] Hara | Stability Analysis of Systems With Generalized Frequency Variables[END_REF], Lemma 1), comparing the dynamic matrix A := (I N ⊗ A) -(L ⊗ BC) arising from (4) with [START_REF] Hara | Stability Analysis of Systems With Generalized Frequency Variables[END_REF], equation ( 4)), we may give an additional frequency-domain condition, equivalent to the above items, expressed in terms of a coprime factorization 1) as follows:

n (s) d (s) = C(sI -A) -1 B of dynamics (
(vii). [Frequency domain] σ(L) ⊂ Λ := {λ ∈ : d (s) + λn (s) is Hurwitz}. ⌟

Proof of the main theorem

A few technical lemmas

Before proving Theorem 1, we state some preliminary facts useful for the proof. We prove the following standard result to highlight that no assumptions on the graph are needed.

Lemma 1. Given any (directed) graph

and its Laplacian L = D -, the eigenvalues of M := -L have nonpositive real part and the dominant eigenvalue of M is µ 0 = 0. It is associated with a right eigenvector 1 N and a left eigenvector p ∈ N that can be selected non-negative.

Proof. Since has non-negative elements by construction and D is diagonal, M = -D is a Metzler matrix (i.e., its off-diagonal entries are non-negative). Hence, as a consequence of Perron-Frobenius theory, the dominant eigenvalue µ 0 of M is real and associated with left and right eigenvectors having non-negative elements (Luenberger, 1979, Chapter 6.5, Theorem 1). In view of Gershgorin's Circle Theorem (Horn and Johnson, 2012, Chapter 6.1), the eigenvalues of M lie in the union of the N disks centered at -D ii and with radius N j=1 i j = D ii , i = 1, . . . , N , which are all included in the left half plane and tangent to the imaginary axis at zero. Therefore, all the eigenvalues have non-positive real part and the only possible eigenvalue whose real part is not strictly negative is zero. M is singular, because M 1 N = 0 N . Then, µ 0 = 0 is the dominant eigenvalue and we can select 1 N as a right eigenvector and a vector with non-negative elements as a left eigenvector.

We will rely on the following lemma for the decomposition of the closed-loop dynamics.

Lemma 2. Consider the matrix L d ∈ N ×N defined as L d = (I N + d L) -1 L, where L ∈ N ×N is the Laplacian of a directed graph and d ∈ is such that (I N + d L) is invertible. There exists an orthogonal matrix T , whose first column is 1 N 1 N , that transforms L d into a block upper triangular matrix:

L d := T ⊤ L d T =   λ 0 ⋆ ... ⋆ 0 Λ 1 ... ⋆ . . . . . . . . . . . . 0 0 0 Λ ν   =   0 ⋆ ... ⋆ 0 Λ 1 ... ⋆ . . . . . . . . . . . . 0 0 0 Λ ν   , ( 14 
)
where blocks Λ i , i = 1, . . . , ν, are either scalar (corresponding to real eigenvalues of L d ) or 2-by-2 matrices (corresponding to complex conjugate eigenvalue pairs of L d ).

Proof. First, from (Horn and Johnson, 2012, Theorem 2.3.4, item (b)) it follows that there exists an orthogonal T such that L d can be decomposed as in ( 14) with no particular structure for Λ i . Second, L and L d share the same eigenspace associated with the zero eigenvalue. To show this, let us consider the eigenpair (0, w) for L, such that Lw = 0. Then, since

L d = (I N + d L) -1 L, we have that L d w = (I N + d L) -1 Lw = 0.
This means that (0, w) is also an eigenpair for L d and therefore the zero eigenvalue has the same algebraic and geometric multiplicity for both L and L d . Third, from (Agaev and Chebotarev, 2005, Theorem 4) and (Caughman and Veerman, 2006, Corollary 4.2), the zero eigenvalue of L is semisimple (i.e., its algebraic and geometric multiplicities coincide), which holds also for L d since they share the same eigenspace. Finally, in order to have the first entry of L d equal to zero and T orthogonal, the first column of T must be equal to 1

N 1 N so that 1 N 1 N ⊤ 1 N 1 N = 1.
We will also use the following results, which trivially follow from [START_REF] Stykel | Stability and inertia theorems for generalized Lyapunov equations[END_REF] for the particular case E = I, that guarantee necessary and sufficient conditions for a complex matrix to be Hurwitz or Schur. In particular, for the continuous-time case we consider (Stykel, 2002, Theorem 2.3). Lemma 3. A matrix S ∈ n×n is Hurwitz if and only if, for each positive definite Q ∈ n×n , Q * = Q, there exists a positive definite H ∈ n×n , with H * = H, such that S * H + HS = -Q.

For the discrete-time case we consider (Stykel, 2002, Theorem 3.2), which is a generalization of the results in (Wimmer, 1973, Theorem 7).

Lemma 4. A matrix S ∈ n×n is Schur if and only if, for each positive definite

Q ∈ n×n , Q * = Q, there exists a positive definite H ∈ n×n , with H * = H, such that S * HS -H = -Q.
For the continuous-time case, the proof combines the stability results in [START_REF] Fax | Information flow and cooperative control of vehicle formations[END_REF] with the output feedback coupling approach of [START_REF] Scardovi | Synchronization in networks of identical linear systems[END_REF]. Parts of the result can be found in the literature, possibly with different assumptions on the Laplacian L. For example, necessary and sufficient conditions of the form (i) for formation stability were given in (Fax and Murray, 2004, Theorem 3); implication (i) =⇒ (v) was established in an equivalent formulation in [START_REF] Xia | Synchronization conditions for diffusively coupled linear systems[END_REF], Theorem 1) and [START_REF] Seo | Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach[END_REF] Theorem 1) for the convergence part. In [START_REF] Wieland | An internal model principle is necessary and sufficient for linear output synchronization[END_REF], the equivalence (i) ⇐⇒ (vi) was proven. For the discrete-time case, in [START_REF] Dal Col | A consensus approach to PI gains tuning for quality-fair video delivery[END_REF], Theorem 1) a similar statement is given under an undirected graph assumption.

Proof of Theorem 1

The proof is structured as follows: we first prove the equivalence among items (i), (ii) and (iii). Then we prove (iii) =⇒ (iv), followed by (iv) =⇒ (v), (v) =⇒ (vi), and finally (vi) =⇒ (ii). Proof of (i) ⇐⇒ (ii). Given the complex-valued matrix A k = M k + ȷN k ∈ n×n , where M k , N k ∈ n×n , following (Bernstein, 2005, Fact 2.17.3) we can write

A e,k = M k N k -N k M k = I n 0 ȷI n I n M k + ȷN k N k 0 M k -ȷN k I n 0 -ȷI n I n , ( 15 
)
from which it follows that σ(A e,k ) = σ(A k )∪σ(A * k ). The implication (i) ⇐= (ii) directly follows from the fact that (15

) implies σ(A k ) ⊆ σ(A e,k ). To show (i) =⇒ (ii), note that σ(A * k ) = (σ(A k )) *
, which means that the spectral abscissa (resp. the spectral radius) of A k and A * k are the same. As a consequence, also the union of their spectrum preserves the same properties, i.e. A e,k has the same spectral abscissa (resp. the same spectral radius) as A k , thus concluding the proof of (i) ⇐⇒ (ii).

Proof of (i) ⇐⇒ (iii). Statement (i) is equivalent to imposing that

A k + α ⋆ I is Hurwitz (resp. 1 α ⋆ A k is Schur). Therefore, for the continuous-time case, in view of Lemma 3, Hurwitz stability of A k + α ⋆ I is equivalent to A * k H k + H k A k ≺ -2α ⋆ H k for a positive definite Hermitian matrix H k = H * k .
By splitting real and imaginary part, we write

A k = M k + ȷN k and H k = P k + ȷΠ k , where P k = P ⊤ k and Π k = -Π ⊤ k because H k is Hermitian. Then, A * k H k + H k A k + 2α ⋆ H k = (M k + ȷN k ) * (P k + ȷΠ k ) + (P k + ȷΠ k )(M k + ȷN k ) + 2α ⋆ (P k + ȷΠ k ) = F + ȷG ≺ 0, with F := M ⊤ k P k + P k M k + N ⊤ k Π k -Π k N k + 2α ⋆ P k and G := M ⊤ k Π k + Π k M k -N ⊤ k P k + P k N k + 2α ⋆ Π k .
On the other hand, it can be checked, after some computations, that A ⊤ e,k

P k Π k -Π k P k + P k Π k -Π k P k A e,k + 2α ⋆ P k Π k -Π k P k = F G -G F , which is negative definite, as to be proven, because σ F -G G F = σ(F + ȷG) ∪ σ(F -ȷG), as shown in the proof of (i) ⇐⇒ (ii).
For the discrete-time case, in view of Lemma 4, Schur stability of 1

α ⋆ A k is equivalent to A * k H k A k -(α ⋆ ) 2 H ≺ 0 for a positive definite Hermitian matrix H k = H * k .
By splitting real and imaginary part, we write

A k = M k + ȷN k and H k = P k + ȷΠ k , where P k = P ⊤ k and Π k = -Π ⊤ k because H k is Hermitian. Then, A * k H k A k -(α ⋆ ) 2 H k = (M k + ȷN k ) * (P k + ȷΠ k )(M k + ȷN k ) -(α ⋆ ) 2 (P k + ȷΠ k ) = F + ȷG ≺ 0, with F := M ⊤ k P M + N ⊤ k P N -M ⊤ k Π k M k + N ⊤ k Π k M k -(α ⋆ ) 2 P k and G := M ⊤ k Π k N k -N ⊤ k P M + M ⊤ k Π k M k + N ⊤ k Π k N k -(α ⋆ ) 2 Π k .
On the other hand, it can be checked, after some computations, that A ⊤ e,k

P k Π k -Π k P k A e,k -(α ⋆ ) 2 P k Π k -Π k P k = F G
-G F , which is negative definite, as to be proven, because σ F -G G F = σ(F + ȷG) ∪ σ(F -ȷG), as shown in the proof of (i) ⇐⇒ (ii).

Proof of (iii) =⇒ (iv).

According to Lemma 2, there exists an orthogonal matrix T ∈ N ×N (satisfying T ⊤ T = I N ) whose first column is 1 N 1 N , and such that L d = T ⊤ L d T is as in ( 14). Let us now introduce the similarity transformation z = (T ⊤ ⊗ I n )x. Then, using the associative property of the Kronecker product, the dynamics in (4) can be rewritten as:

ż/z + = Az := (I N ⊗ A) -(L d ⊗ BC) z (16)
where the upper block triangular structure of L d carries over to matrix A, which can be written as

A =     A A 12 . . . A 1ν 0 F 1 . . . A 2ν . . . . . . . . . . . . 0 0 0 F ν     = A M 0 0 A 1 =    A M 0 0 F 1 M 1 0 A 2    =       A M 0 0 F 1 M 1 0 F 2 M 2 0 A 3       , (17) 
and so on. In (17) we introduced the following notation:

A k :=     F k A k+1,k+2 . . . A k+1,ν 0 F k+1 . . . A k+2,ν 0 0 . . . . . . 0 0 0 F ν     , M k-1 := A k,k+1 . . . A k,ν ,
for k = 1, . . . , ν with A ν = F ν and where the matrices in the diagonal blocks are induced by the structure of L d in ( 14). In particular, for each k = 1, . . . , ν, if λ k ∈ , then F k ∈ n×n is given by F k = A k = Aλ k BC. Then we may define P k := P k and obtain, 9) can be expressed as

F ⊤ k P k + P k F k ≺ -2α ⋆ P k , if Im(λ k ) = 0 (18a) resp. F ⊤ k P k F k ≺ (α ⋆ ) 2 P k , if Im(λ k ) = 0 . (18b) Instead, if λ k ∈ , then F k ∈ 2n×2n is given by F k = (I 2 ⊗ A) -(Λ k ⊗ BC), with the spectrum of Λ k being σ(Λ k ) = {λ k , λ * k } = {α k ± ȷβ k }, namely there exists an invertible S k ∈ 2×2 such that Λ k = S -1 k α k -β k β k α k S k . Now, since A e,k in (
A e,k = (I 2 ⊗ A) - α k -β k β k α k ⊗ BC , then F k = (S -1 k ⊗ I n )A e,k (S k ⊗ I n ).
As a consequence, from item (iii), using matrices

P k Π k -Π k P k
and noting that

P k Π k -Π k P k = (I 2 ⊗ P k ) + 0 -1 1 O ⊗ Π k , we may construct P k := (S ⊤ k ⊗ I n ) P k Π k -Π k P k (S k ⊗ I n ) ≻ 0, so that (11) transforms into F ⊤ k P k + P k F k ≺ -2α ⋆ P k , if Im(λ k ) ̸ = 0 (19a) resp. F ⊤ k P k F k ≺ (α ⋆ ) 2 P k , if Im(λ k ) ̸ = 0 . ( 19b 
)
Based on ( 18) and ( 19) and due to the block triangular structure of A 1 , there exist sufficiently small scalars η 1 , . . . , η ν-1 such that, defining P := diag(η 1 P 1 , . . . , η ν-1 P ν-1 , P ν ) we have A ⊤ 1 P+ PA 1 ≺ -2α ⋆ P (resp. A ⊤ 1 PA 1 ≺ (α ⋆ ) 2 P). Additionally, we can always say that there exists α > α ⋆ (resp. 0 < α < α ⋆ ) such that A ⊤ 1 P + PA 1 ⪯ -2α P (resp. A ⊤ 1 PA 1 ⪯ α 2 P). As a consequence, we may partition z = z 0 z , with z 0 ∈ n and z ∈ (N -1)n and define function W (z) := z ⊤ P z := z ⊤ diag(0, P)z = z⊤ Pz, which satisfies, along the trajectories of system (16),

Ẇ (z) = z⊤ A ⊤ 1 P + PA 1 z ≤ -2αz ⊤ Pz = -2αW (z) (20a) resp. W (z + ) = z⊤ A ⊤ 1 PA 1 z ≤ α 2 z⊤ Pz = α 2 W (z) . ( 20b 
)
Based on (20), we define V (x) := W ((T ⊤ ⊗ I n )x) satisfying (12a),(12b) (resp. (12a),(12c)), which immediately implies (12b) (resp. (12c)), because V corresponds to W in the equivalent coordinates x.

To prove (12a), let us first rewrite matrix P := diag(0, P) as follows, denoting by e 1 the first element of the Euclidean basis, and introducing P := (T ⊗ I n ) diag(I N , P) T ⊤ ⊗ I n ≻ 0, we have

P = (I N -e 1 e ⊤ 1 ) ⊗ I n diag(I N , P) (I N -e 1 e ⊤ 1 ) ⊗ I n = (I N -e 1 e ⊤ 1 )T ⊤ ⊗ I n P T (I N -e 1 e ⊤ 1 ) ⊗ I n . (21) 
Since the attractor in ( 5) is a linear subspace generated by vectors (1 N ⊗ I n ), the distance |x| can be characterized in terms of a suitable projection matrix Ψ as follows:

|x| = |Ψ x| = I N - 1 N 1 N 1 ⊤ N ⊗ I n x , ( 22 
)
where Ψ projects x in the directions that are orthogonal to the generator of . Finally, using W (z) = z ⊤ P z, the identity in (21), and noting that the orthogonality of T and its first column being

1 N 1 N implies Te 1 e ⊤ 1 T ⊤ = 1 N 1 N 1 ⊤ N , we may express V as V (x) = x ⊤ (T ⊗ I n )P (T ⊤ ⊗ I n )x = x ⊤ (I N - 1 N 1 ⊤ N N ) ⊗ I n P (I N - 1 N 1 ⊤ N N ) ⊗ I n x = x ⊤ Ψ ⊤ PΨ x,
where Ψ is defined in ( 22). The positive definiteness of P implies that c 1 I N n ⪯ P ⪯ c 2 I N n for some positive scalars c 1 , c 2 , which in turn implies

c 1 |Ψ x| 2 ≤ V (x) ≤ c 2 |Ψ x| 2 ,
thus implying (12a) by virtue of ( 22).

Proof of (iv) =⇒ (v). For the continuous-time case, in view of the standard comparison lemma (Khalil, 2002, Lemma 3.4), condition (12b) implies the existence of a uniform negative exponential bound on V (x(t)) ≤ e -2αt V (x(0)), along any solution x. This bound is easily extended to |x| 2 using (12a) in the following standard way:

|x(t)| 2 ≤ 1 c 1 V (x(t)) ≤ e -2αt c 1 V (x(0)) ≤ c 2 c 1 e -2αt |x(0)| 2 .
For the discrete-time case, we can rewrite relation (12c) as V (x(t + 1)) ≤ α 2 V (x(t)). Then, taking advantage of the chain relation between consecutive time instant, we can state that V (x(t)) ≤ α 2t V (x(0)). We can extend this bound to |x| 2 using (12a) in the following way:

|x(t)| 2 ≤ 1 c 1 V (x(t)) ≤ α 2t c 1 V (x(0)) ≤ c 2 c 1 α 2t |x(0)| 2 .

Proof of (v) =⇒ (vi).

From Lemma 1, a zero eigenvalue of L has non-negative left and right eigenvectors corresponding to p and 1 N . Non-negativity implies that the sum of the components of p cannot be zero (otherwise the components of p would all be zero and p would not be an admissible eigenvector). Hence, p ⊤ L = 0 and

p ⊤ 1 N ̸ = 0. Consider then the dynamics of the state x• (t) := 1 p ⊤ 1 N N k=1 p k x k (t) and note that from (1): ẋ• (t)/x + • (t) = A 1 p ⊤ 1 N N k=1 p k x k (t) + B 1 p ⊤ 1 N N k=1 p k u k (t) = Ax • (t) -B 1 p ⊤ 1 N p ⊤ L y = Ax • (t).
Then x• evolves autonomously following (13), and corresponds to a linear combination of states x k weighted by the (non-negative) components of the eigenvector p. Uniform global α-exponential stability of the attractor implies that all states x k converge globally and exponentially to a common trajectory x with convergence rate at least α, i.e. lim t→+∞ x k (t) -x (t) = 0 and |x k (t) -x (t)| ≤ M e -αt |x k (0) -x (0)| (resp. |x k (t) -x (t)| ≤ M α t |x k (0) -x (0)|) for all k. This common trajectory asymptotically coincides with the solution to the initial value problem (13), because, using p ⊤ 1 N = N k=1 p k , we obtain

lim t→+∞ x• (t) -x (t) = lim t→+∞ 1 p ⊤ 1 N N k=1 p k x k (t) - N k=1 p k p ⊤ 1 N x (t) = 1 p ⊤ 1 N N k=1 p k lim t→+∞ (x k (t) -x (t)) = 0.

Proof of (vi) =⇒ (ii).

We prove this step by contradiction. Therefore, we will prove that given a matrix A e,k +α ⋆ I not Hurwitz (resp. a matrix 1 α ⋆ A e,k not Schur), the sub-states x i do not uniformly globally α ⋆ -exponentially synchronize. In other words, we do not have synchronization to the unique solution of the following problem:

ẋ• = (A + α ⋆ I)x • (23a) resp. x+ • = 1 α ⋆ Ax • . ( 23b 
)
Assume that one of the matrices A e,k in (9) has spectral abscissa greater than -α ⋆ (resp. spectral radius grater than α ⋆ ), and assume without loss of generality that it is A e,ν . Consider the coordinate system in ( 16) with (17). Then, from the upper block triangular structure of A in (17), we obtain that A ν + α ⋆ I is not Hurwitz (resp. 1 α ⋆ A ν not Schur) (A ν = F ν ), and then there exists a vector ω * ∈ n (an eigenvector of one of the non-converging natural modes) such that the solution to ż = (A + α ⋆ I)z (resp. z + = 1 α ⋆ Az) starting at z * (0

) = 0 ⊤ n . . . 0 ⊤ n ω * ⊤ ⊤ corresponds to z * (t) = 0 ⊤ n • • • 0 ⊤ n z * ⊤ ν (t)
⊤ , where z * ν (t) does not converge to zero. Define now a function z → W (z) = z⊤ I N (n-1) z as specified before (20) (that is, the same function W for the specific selection P = I N (n-1) ). Evaluating W along solutions, we get that W (z) = |z * ν (t)| 2 does not converge to zero. With x → V (x) defined after (20), we have that (12a) holds, and evaluating V along the solution x * (t) = (T ⊗ I n )z * (t), we have that V does not converge to zero, which implies that x * does not converge to the consensus set . In other words, the components of x * (t) do not synchronize to the solution of (23) as to be proven.

Conclusions

We have provided necessary and sufficient conditions for the synchronization of identical linear SISO systems, both in the continuous-time and in the discrete-time case, which do not require any assumption on the graph (whose topology is just assumed to be time-invariant). Our conditions provide a guaranteed rate of convergence to the synchronization set and apply also to systems where a direct input-to-output channel is present.

Figure 1 :

 1 Figure 1: Block diagram of the closed-loop system.
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With complex conjugate pairs λ k , λ * k , it is enough to check condition (8) for one of the two eigenvalues. Indeed, if (A-λ k BC)(v + ȷw) = µ(v + ȷw), then by taking the conjugate we get(Aλ * k BC)(vȷw) = µ * (vȷw), where µ and its conjugate µ * have the same real part and the same modulus.
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