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aLAAS – CNRS, Université de Toulouse, CNRS, Toulouse, France.
bDipartimento di Ingegneria Industriale, Università di Trento, Trento, Italy.

Abstract

We propose necessary and sufficient conditions for the synchronization of N identical single-input-single-output
(SISO) systems, connected through a directed graph. We consider both the continuous-time and the discrete-
time case, and we provide conditions that do not require any assumption on the graph and ensure the uniform
global exponential stability of the closed attractor that corresponds to the synchronization set, with guaranteed
convergence rate.

Keywords: Synchronization, uniform global exponential stability, multi-agents system, identical agents, LTI

1. Introduction

The problems of consensus and synchronization of multi-agent systems (Fagnani and Frasca, 2017) have
received growing interest, due to the variety of applications in many different areas, including: cooperative
control of unmanned aerial vehicles, formation control of mobile robots and communication in sensor networks
(Fax and Murray, 2004; Jadbabaie et al., 2003; Ren et al., 2007), quality-fair delivery of media contents (Dal Col
et al., 2017), power networks (Dörfler et al., 2013), biological systems (Scardovi et al., 2010), and opinion
dynamics (Anderson and Ye, 2019). Specifically, consensus refers to agents coming to a global agreement on a
state value, thanks to the exchange of information modeled by some communication graph; mild assumptions on
the graph connectivity allow to uniformly exponentially reach consensus (Jadbabaie et al., 2003; Olfati-Saber and
Murray, 2004; Olfati-Saber et al., 2007; Moreau, 2005; Ren and Beard, 2008; Wieland et al., 2008; Seo et al.,
2009). Conversely, synchronization refers to agents moving toward a common trajectory in the configuration
space (Hale, 1997; Pecora and Carroll, 1998; Slotine and Wang, 2005; Scardovi and Sepulchre, 2009; Carli
et al., 2011; Sepulchre, 2011; Andrieu et al., 2018; Dal Col et al., 2018, 2019). Consensus and synchronization
problems have been widely investigated for agents modelled by identical linear time-invariant (LTI) systems,
with many subsequent extensions to switching network topologies (Olfati-Saber and Murray, 2004; Xiao and
Wang, 2007; Su and Huang, 2012), heterogeneous and nonlinear systems (Khong et al., 2016; Panteley and
Loria, 2017; Adhikari et al., 2021), output synchronization (Zhu et al., 2016; Isidori, 2017), and hybrid systems
(Mayhew et al., 2012; Teel and Poveda, 2015; Cristofaro and Mattioni, 2022).

Figure 1 represents the distributed feedback system addressed in this work, where N identical SISO dynamical
systems of arbitrary order, with state x i ∈ Rn evolving as

ẋ i/x
+
i = Ax i + Bui
yi = C x i + dui

i = 1, . . . , N (1)
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ẋi/x
+
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yi

NETWORK
u = −Ly
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Figure 1: Block diagram of the closed-loop system.

and with scalar inputs ui ∈ R and outputs yi ∈ R, are interconnected through a directed graph G with Laplacian
L ∈ RN×N as follows:

u= −Ly = −L ((IN ⊗ C)x + du) , (2)

where u= [u1 . . . uN ]
⊤ ∈ RN , y = [y1 . . . yN ]

⊤ ∈ RN and x :=
�

x⊤1 . . . x⊤N
�⊤ ∈ RNn, are the aggregate input, output

and state vectors, respectively, and ⊗ denotes the Kronecker product.
Due to linearity, a range of equivalent conditions for synchronization can be stated and may lead to powerful

numerical tools for distributed controllers tuning. Despite the extensive amount of work in the field, one cannot
find a general theorem clearly stating the equivalence of these conditions for identical LTI systems of arbitrary or-
der, connected through an arbitrary graph topology. Here, we provide this result by introducing a list of necessary
and sufficient conditions for uniform global exponential synchronization with guaranteed convergence rate both
in the continuous-time and in the discrete-time case. For the sake of generality, we also allow for the presence of
a direct input-output link d ∈ R in (1). With d ̸= 0, the implicit equation (2) can be uniquely solved as

u= −(Ld ⊗ C)x := −((IN + d L)−1 L ⊗ C)x (3)

if and only if (linear) well-posedness holds, namely matrix IN + d L is invertible or, equivalently, −d−1 is not an
eigenvalue of L. Clearly, when d = 0 we retrieve the classical case Ld := (IN + d L)−1 L = L, but our results also
characterize the general case with a distributed algebraic loop. Overall, the linear distributed interconnection
(1), (2) can be written as

ẋ/x+ = (IN ⊗ A)x − (Ld ⊗ BC)x . (4)

Our main contribution consists in providing a list of necessary and sufficient conditions for the uniform
global exponential stability of the synchronization set with convergence rate guarantees. We consider the syn-
chronization set, i.e., the (unbounded) set where all pairwise states coincide. These conditions comprise (a)
Hurwitz/Schur properties of complex-valued matrices induced by the eigenvalues of Ld , (b) equivalent Hur-
witz/Schur properties of suitable real-valued matrices, (c) existence of positive-definite solutions to certain Lya-
punov inequalities, (d) existence of a strict quadratic Lyapunov function (establishing a quadratic converse Lya-
punov theorem), and (e) synchronization of all solutions towards a specific initial value problem.

Proving equivalence of the above properties is a contribution per se, as typically one finds only parts of these
equivalences in the literature, possibly with different assumptions on the Laplacian L. Conditions of the same
form as (a) for formation stability were given in (Fax and Murray, 2004, Theorem 3) and the uniform global
exponential stability condition was exploited in (Xia and Scardovi, 2014, Theorem 1) and (Seo et al., 2009,
Theorem 1). The condition related to the initial value problem (e) was given in (Scardovi and Sepulchre, 2009).
Moreover, a list of similar discrete-time statements was given under an undirected graph assumption in (Dal Col
et al., 2017, Theorem 1)

The presented necessary and sufficient conditions allow us to parametrize all possible stabilizers and possibly
select the best one from a certain performance view-point. For example, analogous conditions have been used in
the recent work (Zaupa et al., 2023) for the design of a simultaneous stabilizing static state-feedback controller in
comparison with existing approaches where Riccati-based designs are used to show the existence of a stabilizer.
Our proposed conditions can be used to extend the LMI-based H∞ results in (Dal Col, 2016), as well as the LMI-
based saturated feedback design in (Dal Col et al., 2019), to also deal with undirected graphs. More in general,
while existence results for global simultaneous stabilizers are already available from (Isidori, 2017; Saberi et al.,
2022), our conditions become relevant when solving a multi-objective control (or observer) design problem.
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The paper is structured as follows. Section 2 presents basic definitions along with the main theorem, whose
proof is provided in Section 3.

Notation. R (R≥0), C and N denote respectively the sets of real (non-negative), complex and natural numbers.
We denote with ȷ the imaginary unit and with 1N ∈ RN (0N ∈ RN ) the N -dimensional (column) vector having
all 1 entries (0 entries); diag (A1, . . . , AN ) indicates the block diagonal matrix whose diagonal blocks are the
square matrices A1, . . . , AN . Given a complex number λ = a + ȷb, Re(λ) = a denotes its real part, Im(λ) = b its
imaginary part, λ∗ = a − ȷb its complex conjugate. Given a complex matrix A ∈ Cn×m, A∗ denotes its conjugate
transpose. A square matrix A∈ Cn×n is Hurwitz when all its eigenvalues have strictly negative real part; it is Schur
when all its eigenvalues have modulus strictly less than 1; it is Hermitian if A = A∗, namely Re(A) is symmetric
�

Re(A) = Re(A)⊤
�

and Im(A) is skew-symmetric
�

Im(A) = − Im(A)⊤
�

. A Hermitian matrix A has real eigenvalues
and is positive semi-definite, A ⪰ 0 (resp. positive definite, A ≻ 0), when its eigenvalues are all non-negative
(resp. positive). We denote with σ(A) the spectrum of a square matrix A, and we call dominant the eigenvalue
having the largest real part. Eigenpairs for which Av = λv are denoted as (λ, v). We denote the Euclidean
distance of a point x from a setH as |x |H := inf

y∈H
|x − y|. The topology of a directed graph G with N ∈ N nodes

is characterized by the weighted adjacency matrixW ∈ RN×N whose entryWi j ≥ 0 denotes the weight of the edge
pointing from node j to node i. Defining the diagonal matrix D := diag(W1N ), we can introduce the Laplacian
matrix L := D−W associated with the graph G .

2. Equivalent conditions to α–synchronization

To establish synchronization among systems (1), interconnected via (2), as represented in Figure 1, we first
introduce the synchronization set, or attractor,

A :=
�

x : x i − x j = 0, ∀i, j ∈ {1, . . . , N}
	

(5)

along with the definitions of exponential stability and synchronization for the continuous-time and the discrete-
time case, for a given convergence rate α.

Definition 1 (α–UGES). The attractorA in (5) is α-UGES (uniformly globally exponentially stable with rate α > 0)
for system (1), (2) if there exists M > 0 such that any solution t 7→ x(t) satisfies

|x(t)|A ≤ M e−αt |x(0)|A , ∀t ∈ R≥0 (6a)
�

resp. |x(t)|A ≤ Mαt |x(0)|A , ∀t ∈ N
�

. (6b)

Remark 1. The definition above considers exponential stability of the attractor, which coincides with its asymp-
totic stability due to the linear and homogeneous dynamics of the system. ⌟

Definition 2 (α–synchronization). For the continuous-time (respectively discrete-time) linear system (1), (2), α–
synchronization holds if there exist M > 0 and rate α > 0 (resp. α ∈ (0, 1)) such that, for any initial condition,
every sub-system satisfies

|x i(t)− x̃◦(t)| ≤ M e−αt
N
∑

i=1

|x i(0)− x̃◦(0)|, ∀t ∈ R≥0 (7a)

�

resp. |x i(t)− x̃◦(t)| ≤ Mαt
N
∑

i=1

|x i(0)− x̃◦(0)|, ∀t ∈ N
�

, (7b)

i = 1, . . . , N, for a suitable target trajectory x̃◦, depending on the initial conditions.

Before stating our main result, we note that, trivially, all the zero eigenvalues of L are also zero eigenvalues
of Ld = (IN + d L)−1 L. Then we denote by 0= λ0,λ1, . . . ,λν the eigenvalues of Ld , where the complex conjugate
pairs are only counted once (so that ν := N − 1− nc , with nc being the number of complex conjugate pairs).

Given an assigned convergence rateα⋆ ≥ 0 of the solutions towards the attractorA , we state a list of necessary
and sufficient conditions for (continuous- or discrete-time) α⋆–exponential synchronization of (1), (2).
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Theorem 1. Consider the continuous-time (resp. discrete-time) system in (1), (2), the attractor A in (5) and the
parameter α⋆ ≥ 0 (resp. α⋆ ∈ (0, 1]). The following statements are equivalent:

(i). [Complex condition] The spectral abscissa (resp. spectral radius) of the complex-valued matrices1

Ak := A−λkBC , k = 1, . . . ,ν, (8)

is smaller than −α⋆ (resp. α⋆).

(ii). [Real condition] The spectral abscissa (resp. spectral radius) of the real-valued matrices

Ae,k :=
�

A−Re(λk)BC Im(λk)BC
− Im(λk)BC A−Re(λk)BC

�

, k = 1, . . . ,ν, (9)

is smaller than −α⋆ (resp. α⋆).

(iii). [Lyapunov inequality] For each k = 1, . . . ,ν, there exist real-valued matrices Pk = P⊤k ≻ 0 and Π⊤k = −Πk
such that one of the following identities holds:

(Pk + ȷΠk)Ak + A∗k(Pk + ȷΠk)≺ −2α⋆(Pk + ȷΠk) (10a)
�

resp. A∗k(Pk + ȷΠk)Ak ≺ (α⋆)2(Pk + ȷΠk)
�

, (10b)

or
�

Pk Πk
−Πk Pk

�

Ae,k + A⊤e,k

�

Pk Πk
−Πk Pk

�

≺ −2α⋆
�

Pk Πk
−Πk Pk

�

(11a)

�

resp. A⊤e,k

�

Pk Πk
−Πk Pk

�

Ae,k ≺ (α⋆)2
�

Pk Πk
−Πk Pk

� �

. (11b)

(iv). [Lyapunov function] There exist α > α⋆ (resp. 0 < α < α⋆), positive constants c1, c2 and c3, and a strict
quadratic Lyapunov function V (x) satisfying:

c1 |x |
2
A ≤ V (x)≤ c2 |x |

2
A , (12a)

V̇ (x)≤ −2αV (x) (12b)
�

resp. V (x+)≤ α2V (x)
�

. (12c)

(v). [UGES] There exists α > α⋆ (resp. 0 < α < α⋆) such that the closed attractor A in (5) is α–UGES for the
closed loop (1), (2).

(vi). [IVP] There exists α > α⋆ (resp. 0< α < α⋆) such that, for the closed loop (1), (2), the sub-states x i uniformly
globally α–exponentially synchronize to the unique solution of the following initial value problem:

˙̃x◦/ x̃
+
◦ = Ax̃◦, x̃◦(0) =

1
p⊤1N

N
∑

k=1

pk xk(0), (13)

where p := [p1 . . . pN ]⊤ ∈ RN is a left eigenvector corresponding to the zero eigenvalue of L.

Remark 2. Referring to item (vi) above, the k-th entry of the left eigenvector p, associated with the zero eigen-
value of the Laplacian L, can be seen as a measure of the centrality of node k, which weighs its initial state in
the linear combination x̃o(0) in (13); a strong analogy can be observed with the Bonacich centrality (Bonacich,
1987), which is the left eigenvector associated with the 1 eigenvalue of the normalized adjacency matrix. ⌟

1With complex conjugate pairs λk , λ∗k , it is enough to check condition (8) for one of the two eigenvalues. Indeed, if (A−λkBC)(v+ ȷw) =
µ(v + ȷw), then by taking the conjugate we get (A−λ∗kBC)(v − ȷw) = µ∗(v − ȷw), where µ and its conjugate µ∗ have the same real part and
the same modulus.
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Remark 3. Theorem 1 holds also for weakly-connected or even disconnected graph. In this situation, the alge-
braic multiplicity of the zero eigenvalue of L is greater than one and therefore we have the trivial condition that
matrix A has to be Hurwitz/Schur. This is a reasonable conclusion: for a disconnected network, the only possible
common equilibrium without information exchange is the origin. Moreover, referring to item (vi), in this case the
vector p is not uniquely determined (up to rescaling) since there exist as many linearly independent eigenvectors
as the geometric multiplicity of the zero eigenvalue. In fact, any such selction of p is a valid one for item (vi)
because, with disconnected networks, all the equivalent items of the theorem are true if and only if the solution
of (13) converges to zero (a trivial synchronized motion). ⌟

In the special case where α⋆ = 0 (resp. α⋆ = 1) and d = 0, matrix Ld becomes the Laplacian L of the graph,
and the results in Theorem 1 can be stated in a simplified (and widely studied) setting, as clarified in the next
corollary.

Corollary 1. Consider the continuous-time (resp. discrete-time) system (1), (2) with d = 0, so that 0= λ0,λ1, . . . ,λν
are the eigenvalues of L. The following statements are equivalent

(i). [Complex condition] The complex-valued matrices (8) are Hurwitz (resp. are Schur).

(ii). [Real condition] The real-valued matrices (9) are Hurwitz (resp. are Schur).

(iii). [Lyapunov inequality] For each k = 1, . . . ,ν, there exist real-valued matrices Pk = P⊤k ≻ 0 and Π⊤k = −Πk
such that one of the following identities holds:

(Pk + ȷΠk)Ak + A∗k(Pk + ȷΠk)≺ 0
�

resp. A∗k(Pk + ȷΠk)Ak ≺ 0
�

,

or
�

Pk Πk
−Πk Pk

�

Ae,k + A⊤e,k

�

Pk Πk
−Πk Pk

�

≺ 0
�

resp. A⊤e,k

�

Pk Πk
−Πk Pk

�

Ae,k ≺ 0
�

.

(iv). [Lyapunov function] There exist positive constants c1, c2 and c3 and a strict quadratic Lyapunov function V
satisfying (12a) and V̇ (x)≤ −c3V (x) (resp. V (x+)≤ (1− c3)V (x)) for all x ∈ RNn.

(v). [UGES] The closed attractorA in (5) is uniformly globally exponentially stable.

(vi). [IVP] The closed loop (1), (2) is such that the sub-states x i uniformly globally exponentially synchronize to
the unique solution of the initial value problem (13).

Remark 4. In the continuous-time case, following (Hara et al., 2014, Lemma 1), comparing the dynamic matrix
A := (IN ⊗ A) − (L ⊗ BC) arising from (4) with (Hara et al., 2014, equation (4)), we may give an additional
frequency-domain condition, equivalent to the above items, expressed in terms of a coprime factorization n (s)

d (s)
=

C(sI − A)−1B of dynamics (1) as follows:

(vii). [Frequency domain] σ(L) ⊂ Λ := {λ ∈ C : d (s) +λn (s) is Hurwitz}. ⌟

3. Proof of the main theorem

3.1. A few technical lemmas

Before proving Theorem 1, we state some preliminary facts useful for the proof. We prove the following
standard result to highlight that no assumptions on the graph G are needed.

Lemma 1. Given any (directed) graph G and its Laplacian L = D −W , the eigenvalues of M := −L have non-
positive real part and the dominant eigenvalue of M is µ0 = 0. It is associated with a right eigenvector 1N and a left
eigenvector p ∈ RN that can be selected non-negative.
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Proof. Since W has non-negative elements by construction and D is diagonal, M = W − D is a Metzler matrix
(i.e., its off-diagonal entries are non-negative). Hence, as a consequence of Perron-Frobenius theory, the dom-
inant eigenvalue µ0 of M is real and associated with left and right eigenvectors having non-negative elements
(Luenberger, 1979, Chapter 6.5, Theorem 1). In view of Gershgorin’s Circle Theorem (Horn and Johnson, 2012,
Chapter 6.1), the eigenvalues of M lie in the union of the N disks centered at−Dii and with radius

∑N
j=1Wi j = Dii ,

i = 1, . . . , N , which are all included in the left half plane and tangent to the imaginary axis at zero. Therefore,
all the eigenvalues have non-positive real part and the only possible eigenvalue whose real part is not strictly
negative is zero. M is singular, because M1N = 0N . Then, µ0 = 0 is the dominant eigenvalue and we can select
1N as a right eigenvector and a vector with non-negative elements as a left eigenvector.

We will rely on the following lemma for the decomposition of the closed-loop dynamics.

Lemma 2. Consider the matrix Ld ∈ RN×N defined as Ld = (IN + d L)−1 L, where L ∈ RN×N is the Laplacian of a
directed graph G and d ∈ R is such that (IN + d L) is invertible. There exists an orthogonal matrix T , whose first
column is 1p

N
1N , that transforms Ld into a block upper triangular matrix:

L d := T⊤Ld T =





λ0 ⋆ ... ⋆
0 Λ1 ... ⋆

...
...

...
...

0 0 0 Λν



=





0 ⋆ ... ⋆
0 Λ1 ... ⋆

...
...

...
...

0 0 0 Λν



 , (14)

where blocks Λi , i = 1, . . . ,ν, are either scalar (corresponding to real eigenvalues of Ld) or 2-by-2 matrices (corre-
sponding to complex conjugate eigenvalue pairs of Ld).

Proof. First, from (Horn and Johnson, 2012, Theorem 2.3.4, item (b)) it follows that there exists an orthogonal
T such that Ld can be decomposed as in (14) with no particular structure for Λi . Second, L and Ld share the
same eigenspace associated with the zero eigenvalue. To show this, let us consider the eigenpair (0, w) for L,
such that Lw= 0. Then, since Ld = (IN +d L)−1 L, we have that Ld w= (IN +d L)−1 Lw= 0. This means that (0, w)
is also an eigenpair for Ld and therefore the zero eigenvalue has the same algebraic and geometric multiplicity
for both L and Ld . Third, from (Agaev and Chebotarev, 2005, Theorem 4) and (Caughman and Veerman, 2006,
Corollary 4.2), the zero eigenvalue of L is semisimple (i.e., its algebraic and geometric multiplicities coincide),
which holds also for Ld since they share the same eigenspace. Finally, in order to have the first entry of L d equal

to zero and T orthogonal, the first column of T must be equal to 1p
N

1N so that
�

1p
N

1N

�⊤ � 1p
N

1N

�

= 1.

We will also use the following results, which trivially follow from (Stykel, 2002) for the particular case E = I ,
that guarantee necessary and sufficient conditions for a complex matrix to be Hurwitz or Schur. In particular, for
the continuous-time case we consider (Stykel, 2002, Theorem 2.3).

Lemma 3. A matrix S ∈ Cn×n is Hurwitz if and only if, for each positive definite Q ∈ Cn×n, Q∗ = Q, there exists a
positive definite H ∈ Cn×n, with H∗ = H, such that S∗H +HS = −Q.

For the discrete-time case we consider (Stykel, 2002, Theorem 3.2), which is a generalization of the results
in (Wimmer, 1973, Theorem 7).

Lemma 4. A matrix S ∈ Cn×n is Schur if and only if, for each positive definite Q ∈ Cn×n, Q∗ = Q, there exists a
positive definite H ∈ Cn×n, with H∗ = H, such that S∗HS −H = −Q.

For the continuous-time case, the proof combines the stability results in (Fax and Murray, 2004) with the
output feedback coupling approach of (Scardovi and Sepulchre, 2009). Parts of the result can be found in the lit-
erature, possibly with different assumptions on the Laplacian L. For example, necessary and sufficient conditions
of the form (i) for formation stability were given in (Fax and Murray, 2004, Theorem 3); implication (i) =⇒ (v)
was established in an equivalent formulation in (Xia and Scardovi, 2014, Theorem 1) and (Seo et al., 2009, The-
orem 1) for the convergence part. In (Wieland et al., 2011), the equivalence (i) ⇐⇒ (vi) was proven. For the
discrete-time case, in (Dal Col et al., 2017, Theorem 1) a similar statement is given under an undirected graph
assumption.
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3.2. Proof of Theorem 1
The proof is structured as follows: we first prove the equivalence among items (i), (ii) and (iii). Then we

prove (iii) =⇒ (iv), followed by (iv) =⇒ (v), (v) =⇒ (vi), and finally (vi) =⇒ (ii).
Proof of (i) ⇐⇒ (ii). Given the complex-valued matrix Ak = Mk + ȷNk ∈ Cn×n, where Mk, Nk ∈ Rn×n, following
(Bernstein, 2005, Fact 2.17.3) we can write

Ae,k =
�

Mk Nk
−Nk Mk

�

=
�

In 0
ȷIn In

��

Mk + ȷNk Nk
0 Mk − ȷNk

��

In 0
− ȷIn In

�

, (15)

from which it follows that σ(Ae,k) = σ(Ak)∪σ(A∗k). The implication (i)⇐= (ii) directly follows from the fact that
(15) implies σ(Ak) ⊆ σ(Ae,k). To show (i) =⇒ (ii), note that σ(A∗k) = (σ(Ak))∗, which means that the spectral
abscissa (resp. the spectral radius) of Ak and A∗k are the same. As a consequence, also the union of their spectrum
preserves the same properties, i.e. Ae,k has the same spectral abscissa (resp. the same spectral radius) as Ak, thus
concluding the proof of (i)⇐⇒ (ii).
Proof of (i) ⇐⇒ (iii). Statement (i) is equivalent to imposing that Ak + α⋆ I is Hurwitz (resp. 1

α⋆Ak is Schur).
Therefore, for the continuous-time case, in view of Lemma 3, Hurwitz stability of Ak + α⋆ I is equivalent to
A∗kHk + HkAk ≺ −2α⋆Hk for a positive definite Hermitian matrix Hk = H∗k. By splitting real and imaginary part,
we write Ak = Mk + ȷNk and Hk = Pk + ȷΠk, where Pk = P⊤k and Πk = −Π⊤k because Hk is Hermitian. Then,
A∗kHk + HkAk + 2α⋆Hk = (Mk + ȷNk)∗(Pk + ȷΠk) + (Pk + ȷΠk)(Mk + ȷNk) + 2α⋆(Pk + ȷΠk) = F + ȷG ≺ 0, with
F := M⊤k Pk+ Pk Mk+N⊤k Πk−ΠkNk+2α⋆Pk and G := M⊤k Πk+Πk Mk−N⊤k Pk+ PkNk+2α⋆Πk. On the other hand,
it can be checked, after some computations, that A⊤e,k

� Pk Πk
−Πk Pk

�

+
� Pk Πk
−Πk Pk

�

Ae,k + 2α⋆
� Pk Πk
−Πk Pk

�

=
�

F G
−G F

�

, which is

negative definite, as to be proven, because σ
��

F −G
G F

��

= σ(F + ȷG)∪σ(F − ȷG), as shown in the proof of (i)⇐⇒
(ii).

For the discrete-time case, in view of Lemma 4, Schur stability of 1
α⋆Ak is equivalent to A∗kHkAk − (α⋆)2H ≺ 0

for a positive definite Hermitian matrix Hk = H∗k. By splitting real and imaginary part, we write Ak = Mk + ȷNk

and Hk = Pk + ȷΠk, where Pk = P⊤k and Πk = −Π⊤k because Hk is Hermitian. Then, A∗kHkAk − (α⋆)2Hk =
(Mk + ȷNk)∗(Pk + ȷΠk)(Mk + ȷNk) − (α⋆)2(Pk + ȷΠk) = F + ȷG ≺ 0, with F := M⊤k PM + N⊤k PN − M⊤k Πk Mk +
N⊤k Πk Mk − (α⋆)2Pk and G := M⊤k ΠkNk − N⊤k PM +M⊤k Πk Mk + N⊤k ΠkNk − (α⋆)2Πk. On the other hand, it can be
checked, after some computations, that A⊤e,k

� Pk Πk
−Πk Pk

�

Ae,k − (α⋆)2
� Pk Πk
−Πk Pk

�

=
�

F G
−G F

�

, which is negative definite,

as to be proven, because σ
��

F −G
G F

��

= σ(F + ȷG)∪σ(F − ȷG), as shown in the proof of (i)⇐⇒ (ii).

Proof of (iii)=⇒ (iv). According to Lemma 2, there exists an orthogonal matrix T ∈ RN×N (satisfying T⊤T = IN )
whose first column is 1p

N
1N , and such that L d = T⊤Ld T is as in (14). Let us now introduce the similarity

transformation z = (T⊤ ⊗ In)x . Then, using the associative property of the Kronecker product, the dynamics in
(4) can be rewritten as:

ż/z+ = Az :=
�

(IN ⊗ A)− (L d ⊗ BC)
�

z (16)

where the upper block triangular structure of L d carries over to matrix A , which can be written as

A =









A A12 . . . A1ν

0 F1 . . . A2ν
...

...
. . .

...
0 0 0 Fν









=

�

A M0

0 A1

�

=







A M0

0
F1 M1

0 A2






=













A M0

0

F1 M1

0
F2 M2

0 A3













, (17)

and so on. In (17) we introduced the following notation:

Ak :=









Fk Ak+1,k+2 . . . Ak+1,ν
0 Fk+1 . . . Ak+2,ν

0 0
...

...
0 0 0 Fν









,

Mk−1 :=
�

Ak,k+1 . . . Ak,ν

�

,
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for k = 1, . . . ,ν with Aν = Fν and where the matrices in the diagonal blocks are induced by the structure of L d
in (14). In particular, for each k = 1, . . . ,ν, if λk ∈ R, then Fk ∈ Rn×n is given by Fk = Ak = A− λkBC . Then we
may define P k := Pk and obtain,

F⊤k P k + P k Fk ≺ −2α⋆P k, if Im(λk) = 0 (18a)
�

resp. F⊤k P k Fk ≺ (α⋆)2P k, if Im(λk) = 0
�

. (18b)

Instead, if λk ∈ C, then Fk ∈ R2n×2n is given by Fk = (I2 ⊗ A) − (Λk ⊗ BC), with the spectrum of Λk being
σ(Λk) = {λk,λ∗k}= {αk ± ȷβk}, namely there exists an invertible Sk ∈ R2×2 such that Λk = S−1

k

�

αk −βk
βk αk

�

Sk. Now,
since Ae,k in (9) can be expressed as

Ae,k = (I2 ⊗ A)−
��

αk −βk
βk αk

�

⊗ BC
�

,

then Fk = (S−1
k ⊗ In)Ae,k(Sk ⊗ In). As a consequence, from item (iii), using matrices

� Pk Πk
−Πk Pk

�

and noting that
� Pk Πk
−Πk Pk

�

= (I2 ⊗ Pk) +
��

0 −1
1 O

�

⊗Πk

�

, we may construct P k := (S⊤k ⊗ In)
� Pk Πk
−Πk Pk

�

(Sk ⊗ In) ≻ 0, so that (11)
transforms into

F⊤k P k + P k Fk ≺ −2α⋆P k, if Im(λk) ̸= 0 (19a)
�

resp. F⊤k P k Fk ≺ (α⋆)2P k, if Im(λk) ̸= 0
�

. (19b)

Based on (18) and (19) and due to the block triangular structure of A1, there exist sufficiently small scalars
η 1, . . . ,η ν−1 such that, defining P̆ := diag(η 1P 1, . . . ,η ν−1P ν−1, P ν)we have A⊤1 P̆+P̆A1 ≺ −2α⋆ P̆ (resp. A⊤1 P̆A1 ≺
(α⋆)2 P̆). Additionally, we can always say that there exists α > α⋆ (resp. 0< α < α⋆) such that A⊤1 P̆+ P̆A1 ⪯ −2αP̆
(resp. A⊤1 P̆A1 ⪯ α2 P̆). As a consequence, we may partition z =

� z0
z̆

�

, with z0 ∈ Rn and z̆ ∈ R(N−1)n and define
function W (z) := z⊤P z := z⊤diag(0, P̆)z = z̆⊤ P̆ z̆, which satisfies, along the trajectories of system (16),

Ẇ (z) = z̆⊤
�

A⊤1 P̆ + P̆A1

�

z̆ ≤ −2αz̆⊤ P̆ z̆ = −2αW (z) (20a)
�

resp. W (z+) = z̆⊤
�

A⊤1 P̆A1

�

z̆ ≤ α2z̆⊤ P̆ z̆ = α2W (z)
�

. (20b)

Based on (20), we define V (x) :=W ((T⊤⊗ In)x) satisfying (12a),(12b) (resp. (12a),(12c)), which immediately
implies (12b) (resp. (12c)), because V corresponds to W in the equivalent coordinates x .

To prove (12a), let us first rewrite matrix P := diag(0, P̆) as follows, denoting by e1 the first element of the
Euclidean basis, and introducing P̂ := (T ⊗ In)diag(IN , P̆)

�

T⊤ ⊗ In

�

≻ 0, we have

P =
�

(IN − e1e⊤1 )⊗ In

�

diag(IN , P̆)
�

(IN − e1e⊤1 )⊗ In

�

=
�

(IN − e1e⊤1 )T
⊤ ⊗ In

�

P̂
�

T (IN − e1e⊤1 )⊗ In

�

. (21)

Since the attractor A in (5) is a linear subspace generated by vectors (1N ⊗ In), the distance |x |A can be
characterized in terms of a suitable projection matrix Ψ as follows:

|x |A = |Ψ x |=
�

�

�

�

��

IN −
1
N

1N 1⊤N

�

⊗ In

�

x

�

�

�

�

, (22)

where Ψ projects x in the directions that are orthogonal to the generator ofA .
Finally, using W (z) = z⊤P z, the identity in (21), and noting that the orthogonality of T and its first column

being 1p
N

1N implies Te1e⊤1 T⊤ = 1
N 1N 1⊤N , we may express V as

V (x) = x⊤(T ⊗ In)P (T
⊤ ⊗ In)x

= x⊤
�

(IN −
1N 1⊤N

N )⊗ In

�

P̂
�

(IN −
1N 1⊤N

N )⊗ In

�

x

= x⊤Ψ⊤ P̂Ψ x ,
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where Ψ is defined in (22). The positive definiteness of P̂ implies that c1 INn ⪯ P̂ ⪯ c2 INn for some positive scalars
c1, c2, which in turn implies

c1 |Ψ x |2 ≤ V (x)≤ c2 |Ψ x |2 ,

thus implying (12a) by virtue of (22).

Proof of (iv) =⇒ (v). For the continuous-time case, in view of the standard comparison lemma (Khalil, 2002,
Lemma 3.4), condition (12b) implies the existence of a uniform negative exponential bound on V (x(t)) ≤
e−2αt V (x(0)), along any solution x . This bound is easily extended to |x |2A using (12a) in the following stan-
dard way:

|x(t)|2A ≤
1
c1

V (x(t))≤
e−2αt

c1
V (x(0))≤

c2

c1
e−2αt |x(0)|2A .

For the discrete-time case, we can rewrite relation (12c) as V (x(t+1))≤ α2V (x(t)). Then, taking advantage
of the chain relation between consecutive time instant, we can state that V (x(t)) ≤ α2t V (x(0)). We can extend
this bound to |x |2A using (12a) in the following way:

|x(t)|2A ≤
1
c1

V (x(t))≤
α2t

c1
V (x(0))≤

c2

c1
α2t |x(0)|2A .

Proof of (v) =⇒ (vi). From Lemma 1, a zero eigenvalue of L has non-negative left and right eigenvectors
corresponding to p and 1N . Non-negativity implies that the sum of the components of p cannot be zero (otherwise
the components of p would all be zero and p would not be an admissible eigenvector). Hence, p⊤L = 0 and

p⊤1N ̸= 0. Consider then the dynamics of the state x̃◦(t) := 1
p⊤1N

N
∑

k=1
pk xk(t) and note that from (1):

˙̃x◦(t)/ x̃
+
◦ (t) = A

1
p⊤1N

N
∑

k=1

pk xk(t) + B
1

p⊤1N

N
∑

k=1

pkuk(t) = Ax̃◦(t)− B
1

p⊤1N
p⊤Ly = Ax̃◦(t).

Then x̃◦ evolves autonomously following (13), and corresponds to a linear combination of states xk weighted
by the (non-negative) components of the eigenvector p. Uniform global α–exponential stability of the attractor
A implies that all states xk converge globally and exponentially to a common trajectory x with convergence
rate at least α, i.e. limt→+∞ xk(t)− x (t) = 0 and |xk(t)− x (t)| ≤ M e−αt |xk(0)− x (0)| (resp. |xk(t)− x (t)| ≤
Mαt |xk(0) − x (0)|) for all k. This common trajectory asymptotically coincides with the solution to the initial
value problem (13), because, using p⊤1N =

∑N
k=1 pk, we obtain

lim
t→+∞

x̃◦(t)− x (t) = lim
t→+∞

1
p⊤1N

N
∑

k=1

pk xk(t)−

N
∑

k=1
pk

p⊤1N
x (t) =

1
p⊤1N

N
∑

k=1

pk lim
t→+∞

(xk(t)− x (t)) = 0.

Proof of (vi) =⇒ (ii). We prove this step by contradiction. Therefore, we will prove that given a matrix Ae,k+α⋆ I
not Hurwitz (resp. a matrix 1

α⋆Ae,k not Schur), the sub-states x i do not uniformly globally α⋆–exponentially
synchronize. In other words, we do not have synchronization to the unique solution of the following problem:

˙̃x◦ = (A+α
⋆ I) x̃◦ (23a)

�

resp. x̃+◦ =
1
α⋆

Ax̃◦

�

. (23b)

Assume that one of the matrices Ae,k in (9) has spectral abscissa greater than −α⋆ (resp. spectral radius grater
than α⋆), and assume without loss of generality that it is Ae,ν. Consider the coordinate system in (16) with (17).
Then, from the upper block triangular structure of A in (17), we obtain that Aν+α⋆ I is not Hurwitz (resp. 1

α⋆Aν
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not Schur) (Aν = Fν), and then there exists a vectorω∗ ∈ Rn (an eigenvector of one of the non-converging natural

modes) such that the solution to ż = (A + α⋆ I)z (resp. z+ = 1
α⋆Az) starting at z∗(0) =

�

0⊤n . . . 0⊤n ω∗⊤
�⊤

corresponds to z∗(t) =
�

0⊤n · · · 0⊤n z∗⊤ν (t)
�⊤

, where z∗ν(t) does not converge to zero. Define now a function
z 7→W (z) = z̆⊤ IN(n−1)z̆ as specified before (20) (that is, the same function W for the specific selection P̆ = IN(n−1)).
Evaluating W along solutions, we get that W (z) = |z∗ν(t)|

2 does not converge to zero. With x 7→ V (x) defined
after (20), we have that (12a) holds, and evaluating V along the solution x∗(t) = (T ⊗ In)z∗(t), we have that V
does not converge to zero, which implies that x∗ does not converge to the consensus setA . In other words, the
components of x∗(t) do not synchronize to the solution of (23) as to be proven.

4. Conclusions

We have provided necessary and sufficient conditions for the synchronization of identical linear SISO systems,
both in the continuous-time and in the discrete-time case, which do not require any assumption on the graph
(whose topology is just assumed to be time-invariant). Our conditions provide a guaranteed rate of convergence
to the synchronization set and apply also to systems where a direct input-to-output channel is present.
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