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Abstract—Place recognition is the ability to recognize previ-
ously seen places in the world. When the environment is known,
the robot may localise itself when it starts and whenever it needs
to verify where it is. We propose a solution to implement place
recognition capability using a geometric representation of the
environment build with a LiDAR. Nowadays, large Field Of View
LiDARs allows to get a dense and precise representation of the
environment. Assuming that a 3D map of the environment is
available, we propose to build a compressed codebook based
on FPFH descriptors. The codebook is then used to find the
robot localization with one LiDAR image. The system has been
tested on real and simulated measurements and shows promising
results. The pose estimation can be thoroughly enhanced with
point cloud registration methods.

Index Terms—LiDAR, place recognition, kidnapped robot,
humanoid robot, perception

I. INTRODUCTION

The context of this work is the capability for a robot to
localize itself in a large industrial environment such as an
aeronautic factory. In this context, few textures are present
and many unusual large objects are present in the environment.
Still it is possible to apply a LiDAR-based localization system
[1], implemented on a Talos robot [2], for allowing a precise
estimation of the robot localization in a known environment.
A limitation of this system is the need for an estimate of the
robot initial pose. When the visual-inertial odometry or the
base estimator is started, each makes an initial assumption
about their world origin.

Thus, the pose M p0 of the robot in the environment when the
localization system is started needs to be estimated in order
to initialize the SLAM system by providing the estimation
in the known world. In the experiment presented in [1], an
approximation of the Mocap estimate, that was used as ground
truth, was used as the initial pose.

This problem of knowing the initial pose of the robot in
the environment is called the kidnapped robot problem. This
problem is equivalent to the place recognition problem that
has attracted interest in the last years. The place recognition
tries to recognize a known part of the environment to help
the initialization of the system or correct the drift that can
be present in state estimation and odometry mechanisms,
performing loop closure.

Fig. 1: New experimental head of the TALOS robot, with the
D435i on the bottom, the T265i in the middle and the

OS1-64 LiDAR on the top.

A. TALOS and its sensors

TALOS is a humanoid robot of 1.75m weighting 100kg
with 32 degrees of freedom. It has been designed to perform
complex locomotion and bi-handed manipulation involving
high payload.

Initially, it was equipped with a single RGB-D camera on
the head. To enhance its sensing capabilities, the head was
replaced to integrate new sensors. Fig 1 shows the new head
installed with a RGB-D camera Intel®RealSenseTMD435i [3]
on the bottom, a tracking camera Intel®RealSenseTMT265 [4]
in the middle and an Ouster OS1-64 [5] LiDAR on top.

In this work, only the LiDAR on the top of the head is
used. This LiDAR has an horizontal field of view of 360◦

with a vertical one of 33.2◦ sampled by a total of 64 vertical
beams. It can produce up to 1310720 points per second, with
an accuracy of 3cm up to 60m and 10cm up to 120m.

B. Contributions

The contribution of this work are:
• Propose a solution the the place recognition problem

using FPFH descriptors and VLAD encoding, with a
RANSAC and ICP refinement



• Evaluate the system on simulated and real measurement
using a LiDAR with a horizontal Field of View of 360◦

II. RELATED WORK

As place recognition is an important problem it is widely
studied topic. Its formulation dependent on the environment
scale, the used sensors, the application, etc.

There are two common choices of visual sensors: camera
and LiDAR. Each sensor has its pros and cons as summarized
in [6]. For example, cameras have a limited Field of View
(FoV) whereas nowadays LiDAR can have a 360◦ FoV on
one axis. However, in terms of cost and energy consumption,
cameras are often cheaper and less energy-consuming than
LiDAR. The target environment needs to be taken into account
as cameras are dependent of textures whereas LiDAR mostly
relies on reflective materials. Other sensors overcome the
dependance to textures of monocular cameras by being able
to produce depth information, either with stereo-vision or
infrared projector and cameras. However, these depth infor-
mation are less precise than LiDAR’s. With the evolution of
technology and particularly MicroElectroMechanical Systems
(MEMS), cameras integrate LiDAR systems such as the Intel-
RealSense L515 LiDAR Camera [7], enhancing the range and
precision of the depth information.

Depending on the sensors used, different features are used.
In case of a camera, the system may be using SIFT [8] or
ORB [9] whereas Scan Context [10] or FPFH [11] and others
3D descriptors may be used in case of using a LiDAR.

Other method such as in [12] try to combine both worlds
instead of using only one of these visual sensors. In this work,
features are extracted from the LiDAR using MinkLoc3D [13],
presented on Section II-B, and from the monocular with a part
of ResNet18 [14]. These two features are lately aggregated in
a single one which is matched to a database.

The LiDAR-based methods may differ in the type of infor-
mation processed.

A. Segment-based methods
[15] presented the concept of segments or how to use the

segmentation of a point cloud to reduce its computational cost.
This concept is used by [16] and [17] to perform place

recognition and SLAM. In both works, the point cloud is
segmented and features are extracted for each segment. Then,
using these features, the segments are matched to known ones
from a map in a learning approach. These matches are then
given to a geometric verification system based on RANSAC
to evaluate the consistency of each match.

On this same principle, [18] applies a similar method but
the feature is learnt and the final pose is estimated with
PRObabilistic SAmple Consensus (PROSAC) [19] instead of
the usual RANSAC method. The main advantage of their
method is the design of the network that is able to run on
a single CPU whereas numerous network-based method needs
a GPU to be time-efficient. [20] presented an online LiDAR-
based SLAM system combining the Autotuned-ICP (AICP)
[21] for point cloud matching, and the Efficient Segment
Matching (ESM) [18] to detect loop-closure.

B. Geometry-based methods

The main characteristic of LiDAR is the ability to provide
a measure of the environment as a 3D point cloud, giving
strong geometric information. Whereas methods divide the
point cloud into segments, others take the complete point cloud
and use its geometric information to compute local and global
features.

[10] presented a new descriptor called Scan Context,
a 2D-shaped descriptor used to describe 3D LiDAR scans.
This descriptor divide the space into azimuthal and radial
bins, similarly to [22], with each bin being represented in
the descriptor by the maximum height of the points in the
space division. A way to compute the similarity between the
descriptors in order to be robust to the sensor’s orientation is
also presented in the paper. This descriptor is then used to
detect loop-closure.

[23] presented an algorithm for the registration between a
local point cloud and a large-scale point cloud. The system is
based on the selection of local subsets, called super-points,
which are described with unsupervised auto-encoders. The
super-points from the local measure are matched to the ones
of the large-scale point cloud acting as base. These matches
are then used to make a coarse registration, later refined by
an Iterative Closest Point (ICP) method.

[24] proposed PointNet, a deep neural network taking
raw 3D point clouds and learning local features. The initial
work focus on classification and segmentation tasks but it has
opened the door of deep neural network to point cloud based
systems.

[25] presented a place recognition solution based on
PointNet and NetVLAD [26]. The first one is used to extract
local descriptors, shortened of its maxpool aggregation layer
used for its original purpose. NetVLAD is then fed with these
descriptors in order to extract a global descriptor.

[13] presented an alternative approach called MinkLoc3D.
This approach uses a convolutional neural network to compute
local descriptors. A generalized-mean (GeM) pooling is then
used to produce global descriptors.

The global descriptors obtained are used in a base-query
manner. The measurement, called query, is described and
compared to the descriptors available in a database.

C. Intensity-based methods

The geometry-based method may lack the appearance in-
formation available in camera-based systems. Most LiDAR
provides, in addition to geometric information, intensity in-
formation that depends mostly on the texture and material of
the object. Fig. 2 shows an intensity image that can be acquired
with the Ouster OS1-64 set at 1024 samples per turn. Thus,
works were proposed combining this intensity information
with the geometric one.

[27] proposed a new descriptor, called ISHOT, combining
the geometric information, represented by a SHOT descriptor
[28], [29], to the intensity. This descriptor is then used in a
place recognition algorithm for local descriptor evaluation and
mapping.



Fig. 2: Intensity image reconstructed, the data is from an
experiment of [1], it has been divided in two parts for

visibility purposes.

[30] proposed to use the vision-based ORB descriptor of
[9] applied to the LiDAR intensity. The ORB features are then
converted into a bag-of-words vector using DBoW [31] and
compared to a database.

D. Attention-based methods

Point Contextual Attention Network (PCAN) [32] is a neu-
ral network adding an attention map in the process. The system
extract local features using PointNet. Then these features are
fed to PCAN that output a per-point attention map, used to
tune NetVLAD which is used to aggregate the local features
into a global descriptor.

[33] proposed a self-attention and orientation encoding
network (SOE-NET). They integrate an orientation-encoding
process into PointNet to extract local features. A self-attention
unit influencing the aggregation performed by NetVLAD is
applied on the set of features to extract a global descriptor of
the input point cloud.

III. VLAD-BASED SOLUTION TO THE KIDNAPPED ROBOT
PROBLEM

In this section, we discuss the solution proposed. We also
discuss the results obtained and some observations made
during this work. More details on what is presented can be
found in [34].

A. Pipeline

The proposed solution is based on the pipeline of Point-
NetVLAD [25]. During a first step, it creates a local descriptor
and during a second step it creates a global signature. In our
case, it was decided to use the FPFH at a point p as the local
signature L (p). Two signatures were tested for the global
signature G (Cs) of a cloud Cs. One based on the computation
of a normalised sum of the local descriptors, the second one
using the Vector of Locally Aggregated Descriptors (VLAD)
encoding over the FPFH.

B. Local Descriptor: the Fast Point Feature Histogram

Fast Point Feature Histograms (FPFH) [11] are features
proposed as an improvement of the Point Feature Histogram
(PFH) [35], [36] which reduces the computational complexity.

PFH has a theoretical computational complexity for a given
point cloud with n points of O(n ·k2) [11], with k the number
of neighbors for each point p in the point cloud. FPFH reduces

this computational complexity to O(n ·k) by reducing the pairs
computed.

Taking each pair (pi, p j) of the query point and a point in the
neighborhood (pi being the point in the pair with the shortest
angle between its normal and the vector linking the points), a
Darboux u× v×n frame is defined as:

u = ni,v = (p j − pi)×u,w = u× v (1)

Then, three features are computed with:

f1 = v ·n j

f2 = (u ·(p j − pi))/
∥∥p j − pi

∥∥
f3 = arctan(w ·n j,u ·n j)

(2)

Each pair considered is then stored in an histogram, with
the bin index defined as:

idx =
4

∑
i=1

[
fi ·d

fimax − fimin

]
·di−1 (3)

with []-operator being the integer part operation, d the number
of subdivision of the feature’s maximum theoretical value
range ( fimax − fimin). After being increased by 1, each bin’s
value is normalised with the total number of point pairs
(k ·(k+1)/2).

The histogram of these features are computed only on pairs
composed of a given point p and its direct neighbors. This
simplified histogram is called the Simplified Point Feature
Histogram (SPFH).

To compute the final Fast Point Feature Histogram, the
SPFH of a seek point is weighted by its neighboring SPFH
values:

FPFH(p) = SPFH(p)+
1
k

k

∑
i=1

1
ωi

·SPFH(pi) (4)

where ωi represents the distance between p and pi in a given
metric space.

Then the final histogram is normalized for each features for
comparison purposes. In our work, the FPFH is computed with
33 bins, 11 per feature, using the implementation available in
Open3D [37].

C. Global Descriptor

1) FPFH average signature: The first method defined was
to group the FPFH computed on each points of the scene in a
global one. We propose to define the signature in a bi-channel
way composed of:

1) the normalised sum of the descriptors
2) the standard deviation of this normalised sum
Given Cs a point cloud and a normalisation function

Normalize(), the formulations of the normalised sum and its
standard deviation are respectively presented in Eq. 5 and
Eq. 6.

S (Cs) = Normalize

(
∑

p∈Cs

L (p)

)
(5)



σS (Cs) =

√√√√Normalize

(
∑

p∈Cs

L (p)2

)
(6)

The global signature is then:

G (Cs) =

[
S (Cs)
σS (Cs)

]
(7)

2) VLAD encoded signature: The VLAD encoding is based
on a dictionary of words. To obtain this dictionary, it has been
decided to use a k-means algorithm.

Given k centroids, the k-means algorithm is performed over
the sets of local descriptors of the different views from the
data-base used to build the codebook. Once the dictionary
obtained, a view is classified by assigning each local descriptor
d to a word ci in our codebook using a Nearest Neighbor
search. Then, for each word of the dictionary, the distance
to its affiliated descriptors in the view is aggregated over
each dimension of the local descriptor. The distances for each
word are concatenated and used as the VLAD descriptor. This
complete encoding allows to reduce a point cloud of n points,
with n× 3 informations, to a descriptor of size k ×D, with
D the dimension of the local descriptor and k the number of
words in the dictionnary.

The word association is performed thanks to a Nearest
Neighbor algorithm applied on the codebook with the distance
defined as an Euclidean distance of FPFH.

The final complete pipeline is presented in Fig. 3. The
circled part correspond to the process of building the memory
of the system that can be made offline. The bottom part of
the figure correspond to the process made online for each new
request.

3) Defining the codebook: As stated in the previous section,
the VLAD mechanism needs a codebook. This codebook, ob-
tained with the k-means algorithm, presents a main parameter:
the number of “words”.

This number of words can be either arbitrarily defined
or optimised. We tested the two possibilities, with a first
codebook defined with 33 words after having tested various
values of codebook. A second evaluation was performed with
a codebook optimised with the “Elbow Method” [38]. This
method allows to define the optimal number of words to
represent a set.

For a set of data D to be clustered with k clusters and
Kk (Di) the function that provides the corresponding cluster of
the i-th data, the method computes the “Within-Cluster Sum of
Squared errors” (WCSS) defined in eq. 8, often called inertia
of the k-means fitting.

E (D ,k) = ∑
i
∥Di −Kk (Di)∥2 (8)

Repeating this computation for multiple values of k, we
obtain a convexe function of the error. Indeed, the closest the
number of words is to the number of data in the set, the
smallest the error is. The optimal number of words kopt to
represent the set is then defined as the inflection point of this
function E (D ,k).

The main drawback of such a method is the computation
time. To obtain the optimal number of words, the computation
needs to be performed over an interval [1;kmax] with a high
enough number kmax to find the inflection point. To reduce
this computation time, the process is performed iteratively.
First the inflection point is roughly estimated by computing the
WCSS at regular values over the interval [1;kmax]. Then this
computation is refined by computing WCSS for more precise
values around the previous estimate. This method allows to
avoid computing each value in the interval while still keeping
a global view of the shape of E (D ,k).

As an example, the first evaluation will be made on an
interval of [1;501] with values stepped by 25 to obtain the first
estimate krough. Then the same data is completed with WCSS
computed around krough stepped by 1 to refine the estimation
of kopt .

Fig. 4 shows the Elbow method computed for the “Real”
dataset. Firstly, E (D ,k) is computed with k ∈ [1 : 25 : 501]
and the method estimate the inflection point at kopt,1 = 26.
Secondly, the computation is refined by computing the WCSS
around kopt,1 with k ∈ [1 : 25 : 101]. In the second step, the
inflection point is evaluated at kopt,2 = 16. Lastly, the step is
repeated with k ∈ [1 : 1 : 31] and the method estimate the final
inflection point at kopt,3 = 31.

D. Refining the pose estimation

The process presented above provide the estimation of the
pose of the query cloud in the environment as one of the poses
of the dataset. However, as the dataset is sampled over the
environment, the nearest pose can be spaced from the real pose
of the robot. Moreover, as neither the FPFH nor the VLAD are
influenced by the rotation of the point cloud and because the
LiDAR has a 360◦ of horizontal field-of-view, the orientation
is not accurate. Therefore, we refined the pose estimated by
registering the point clouds from the query and the dataset
candidates.

This registration is performed with two steps: a coarse
estimation using RANdom SAmple Consensus [39] and a
refinement using a Point-to-Plane ICP [40] method. The
RANSAC method is applied using the FPFH computed for the
VLAD encoding to estimate correspondences. Then the coarse
estimation is used to initiate the locally convergent ICP.

This registration is successively performed on the n top
candidates from the VLAD-encoding recognition, n being
defined arbitrarily for the tests. Later, the finer alignment,
using the alignment scores defined in the original work for
each method, is used to give the estimated pose.

E. Datasets

There are 2 datasets that were produced. The first one was
produced using a simulated version of the Bauzil Room. A
second dataset has been built in a real setup. Fig. 5 shows
the real Bauzil Room in 2021 and a simulated version viewed
from opposed points of view.



Fig. 3: Architecture of the VLAD-encoding recognition system.

Fig. 4: Computation of the Elbow Method for the “Real”
dataset.

(a) Real (b) Simulation

Fig. 5: The Bauzil room and its simulated version in Gazebo.

1) Simulated sets: For the simulated experiments, the mid-
dle platforms with the stairs were removed from the reality and

the simulation. The simulation uses a modeled LiDAR on the
architecture and noise-model of the Ouster OS1-64. The data-
base has been generated with the robot placed along a (x,y)
grid. The query-base has been built with the robot randomly
placed in the room, covering the same (x,y) space as the data-
base. Both bases are generated with the sensor at a constant
height of 1.65m, the approximate heigh of the sensor on the
robot when in its half-sitting pose. Fig. 6 shows examples of
the distribution of the poses from the simulated dataset. In
the figure, the bases sizes have been reduced for visualization
purposes. Each smaller axis represent a pose present in the
database. The data-base shown is generated over a 8× 11m
grid graduated every meter. The query-base is generated with
50 random poses from the same 8×11m space.

In the generation of the simulated data-bases and query-
bases, the orientation is left aside. Indeed, the LiDAR has a
360◦ horizontal field of view. Moreover, when we start the
robot, it is assumed that the LiDAR (x,y) plane is parallel to
the world’s (x,y) plane.

In the case of a noiseless sensor, the data is really smooth
and the FPFH descriptors are highly discriminating as shown
in Fig. 7 by the clustering of the FPFH in 4 groups. In this
example, the FPFH were computed with a 50cm radius and a
limit of 4000 used neighbors.

2) Reality sets: The robot has been put in different places of
the Bauzil room with its poses estimated using the available
Motion Capture system. Thus, the zone measured has been
limited by the zone covered with the Mocap cameras. Again,
the measures for the data-base were taken with an approximate
1m grid on (x,y) axes. Whereas the query-base is taken with
random (x,y) positions. Moreover, the clouds were captured
on positions where the robot was standing still for 10s to avoid
noise from the robots movements.

IV. EXPERIMENTAL RESULTS

This solution has been evaluated on three VLAD codebook
created using the proposed method. Two were build using
the real and the simulated datasets, and are respectively



(a) Data-base (b) Query-base

Fig. 6: Visualization of the poses generated distribution. The
number of poses is reduced for visualization purposes.

Fig. 7: Visualization of a simulated cloud clustered in 4
groups.

called ”Real” and ”Simulated”. The third one was created
from merging the real and simulated dataset and is called
”Combined”. Each dataset consists of a data-base and a query-
base. The experiments are summarized in Table I.

Experiment Data-base Clusters Query-base Queries
Simulation Simulated 100 Simulated 500

Reality Real 31 Real 77
Combined Simulated+Real 136 Simulated +Real 577

TABLE I: Data-base and Query-base for the tests performed,
with their respective number of clusters in the codebook of

the data-base and queries in the query-base.

Both pose estimations steps are evaluated: the VLAD-
encoding recognition, the RANSAC coarse registration and
the ICP refinement.

A. VLAD-encoding registration

To define the results, it is proposed to compare 3 positions,
visible in Fig. 8: The Ground Truth (GT) position of the robot,
the Nearest position existing in the data-base, considered as
the must give from the system, and the Recognized position
given by the system. A test is then considered as correct if the
system has given the Nearest position as the Recognized one.

Table II summarize the percentage of correct matches in the
top candidates, according to the previous statement.

We can observe that the system succeed poorly on the top
candidate for the “Real” but the good recognition stays mainly

Fig. 8: Visualization of the 3 proposed positions: the Ground
Truth in red, the Nearest in orange and a potential

Recognized one in blue, other positions in the data-base in
black.

Top candidates considered “Simulated” “Real” “Combined”
1 81.60% 42.86% 76.26%
2 95.00% 68.83% 87.18%
3 97.60% 77.92% 91.16%
4 99.80% 84.42% 92.89%
5 100.00% 89.61% 93.24%

TABLE II: Percentage of correct recognitions with the
VLAD-encoding depending on the number of top candidates.
(FPFH radius: 0.5 meter, FPFH maximum neighbors: 4000)

in the 5 top candidates. For the “Simulated” and “Combined”
tests, we can observe that in 3 tests out of 4, the nearest pose
in the data-base is given as the top 1 candidate. Going down to
the 5-th candidate rise significantly the percentage of success.

The results for both cases are promising for the efficiency of
the RANSAC and ICP refinement as there are high probability
to register two close data.

B. RANSAC coarse estimation

For the RANSAC and ICP estimations, the error evaluated
is the final translation error and the rotation error, as a global
rotation and as Roll-Pitch-Yaw errors. A case is considered
successful if the error in translation is below 10cm and the
error in rotation is below 5◦. These thresholds have been
fixed relatively to the problematic: initializing the localization
system presented in [1]. We experimentaly determined that the
localization mechanism needs an initialization with 50cm of
translation tolerance and 30◦ of rotation in the z⃗-axis.

Table III present the percentage of queries for which the
system respects either one of our criteria or both, using only
the RANSAC refinement. The results shows that RANSAC has
a high level of success for the orientation estimation. However,
the translation criteria is respected in less than half the cases.

Table IV shows statistics of the translation error for each
cases. It is observable that for both tests, the mean translation
error is not far from the criteria. Table V presents the statistics
of the rotation error. We can see that the mean error is of 2◦,
below the threshold defined.



Test “Simulated” “Real” “Combined”
Success on translation error 36.20% 36.36% 41.94%

Success on rotation error 99.00% 96.10% 98.61%
Global success 36.20% 36.36% 41.94%

TABLE III: Percentage of successful estimations with the
RANSAC refinement only.

(FPFH radius: 0.5 meter, FPFH maximum neighbors: 4000)

Test Mean Median Min Max RMS STD
“Simulated” 12.69 11.37 1.53 58.69 14.44 6.89

“Real” 14.45 12.28 2.14 43.44 17.00 8.95
“Combined” 12.49 10.88 0.88 133.55 15.11 8.49

TABLE IV: Translation error of the pose estimation using
RANSAC, in cm.

(FPFH radius: 0.5 meter, FPFH maximum neighbors: 4000)

Test Mean Median Min Max RMS STD
“Simulated” 0.0214 0.0170 0.0005 0.2715 0.0295 0.0203

“Real” 0.0348 0.0306 0.0053 0.0843 0.0401 0.0199
“Combined” 0.0211 0.0154 0.0001 0.2720 0.0304 0.0219

TABLE V: Rotation error of the pose estimation using
RANSAC, in rad.

(FPFH radius: 0.5 meter, FPFH maximum neighbors: 4000)

C. ICP refinement

Table VI present the percentage of queries for which the
system respects either one of our criteria or both, using and
ICP refinement over a RANSAC coarse estimation. The results
show an improvement over the RANSAC algorithm. Whereas
the rotation criteria is less respected, the percentage of success
on the translation criteria is higher.

Test “Simulated” “Real” “Combined”
Success on translation criteria 95.20% 70.13% 96.53%

Success on rotation criteria 98.20% 97.40% 98.79%
Global success 95.20% 70.13% 96.53%

TABLE VI: Percentage of successful estimations with the
RANSAC+ICP refinement.

(FPFH radius: 0.5 meter, FPFH maximum neighbors: 4000)

Tables IV and V summarize respectively the translation and
rotation statistics on the RANSAC and ICP refinement. These
results shows that while the percentage of success is higher,
the failure errors are also higher, with a maximal translation
error at least multiplied by 6.

Test Mean Median Min Max RMS STD
“Simulated” 14.40 8.96 3.75 617.14 46.80 44.53

“Real” 14.17 8.71 6.51 303.66 37.76 35.00
“Combined” 12.43 8.92 0.46 696.54 43.42 41.60

TABLE VII: Translation error of the pose estimation using
RANSAC and ICP, in cm.

(FPFH radius: 0.5 meter, FPFH maximum neighbors: 4000)

1) Time consumption: The time consumption of the system
has been observed. The computation have been performed on

Test Mean Median Min Max RMS STD
“Simulated” 0.0219 0.0006 0.0000 4.3512 0.2758 0.2750

“Real” 0.0233 0.0186 0.0030 0.2891 0.0422 0.0352
“Combined” 0.0214 0.0006 0.0000 4.3721 0.2575 0.2566

TABLE VIII: Rotation error of the pose estimation using
RANSAC and ICP, in rad.

(FPFH radius: 0.5 meter, FPFH maximum neighbors: 4000)

a computer, using an Intel®CoreTMi5-8400H CPU at 2.50GHz
with 32GB of RAM.

The FPFH computation and VLAD encoding took a mean
time of 10s with 95% of the time allocated to the FPFH
computation.

The coarse estimation using the RANSAC algorithm took
a mean time of 40s, using the FPFH descriptors previously
computed. However, depending of the randomisation, the
range of time consummed in the RANSAC estimation goes
from 20s to 90s.

Lastly, the ICP refinment, took a mean time of 10s taking
as initialisation the RANSAC estimation.

Thus, a complete query took a mean time of 1min10s with
longer computations rising up to 2min for a single query.

This time consumption is high but acceptable in the case
of a single computation when the robot is started or of sparse
computation over the time to relocalise the robot in long runs.

V. CONCLUSION

We presented a pipeline to recognize the place from where
a LiDAR measurement is taken in a known environment. It is
supposed that a quantity of data from the environment taken
with the sensor is available to create a database to refer to. The
system uses the FPFH descriptor to describe locally the data
and a VLAD-encoding to describe the complete measurement.
This FPFH+VLAD-encoding is used to compare a new query
to the known database, allowing to propose candidates from
the database that are close to the request. These candidates
are then used to perform a point cloud registration using a
Point-to-Plane ICP initialized by a RANSAC estimation.

The systems has been tests with simulated data and mea-
surements taken with a LiDAR in the real environment. The
VLAD-encoding recognition shows a percentage of success
close to 90% in the 5 best candidates. Using these candidates,
the RANSAC and ICP refinement allows to localize the mea-
surement with a mean error of less than 15cm in translation
and less than 2◦ in rotation.

The results shown are of the order of magnitude of those
obtained with deep neural network-based methods such as
PointNETVLAD [25] with 80% of success. However, deep
networks are runned on GPU with really fast estimations, in
range of 5−10ms, whereas our solution has only been tested
on CPU with a slower computation time. In future works, this
system will be deployed on the robot and verified on new
environments and databases from the state of the art such as
[41] or [42] to be compared to other solutions.
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[17] R. Dubé, A. Cramariuc, D. Dugas, J. Nieto, R. Siegwart, and C. Cadena,
“Segmap: 3d segment mapping using data-driven descriptors,” Robotics:
Science and Systems (RSS), June 2018. arXiv: 1804.09557.

[18] G. Tinchev, A. Penate-Sanchez, and M. Fallon, “Learning to see
the wood for the trees: Deep laser localization in urban and natural
environments on a cpu,” IEEE Robotics and Automation Letters (RAL),
vol. 4, pp. 1327–1334, Apr. 2019.

[19] O. Chum and J. Matas, “Matching with prosac - progressive sample con-
sensus,” in IEEE Int. Conf. on Computer Vision and Pattern Recognition
(CVPR), vol. 1, pp. 220–226 vol. 1, 2005.

[20] M. Ramezani, G. Tinchev, E. Iuganov, and M. Fallon, “Online lidar-
slam for legged robots with robust registration and deep-learned loop
closure,” in Int. Conf. on Robotics and Automation (ICRA), pp. 4158–
4164, 2020.

[21] S. Nobili, R. Scona, M. Caravagna, and M. Fallon, “Overlap-based icp
tuning for robust localization of a humanoid robot,” in Int. Conf. on
Robotics and Automation (ICRA), pp. 4721–4728, 2017.

[22] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recog-
nition using shape contexts,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), vol. 24, no. 4, pp. 509–522, 2002.

[23] G. Elbaz, T. Avraham, and A. Fischer, “3d point cloud registration for
localization using a deep neural network auto-encoder,” in IEEE Int.
Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 2472–
2481, IEEE, July 2017.

[24] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in IEEE Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), pp. 652–660, 2017.

[25] M. A. Uy and G. H. Lee, “Pointnetvlad: Deep point cloud based retrieval
for large-scale place recognition,” in IEEE Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), May 2018. arXiv: 1804.03492.

[26] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “Netvlad:
Cnn architecture for weakly supervised place recognition,” in IEEE Int.
Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 5297–
5307, 2016.

[27] J. Guo, P. V. K. Borges, C. Park, and A. Gawel, “Local descriptor for
robust place recognition using lidar intensity,” arXiv:1811.12646 [cs],
Nov. 2018. arXiv: 1811.12646.

[28] F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of histograms
for local surface description,” in European Conference on Computer
Vision (ECCV), pp. 356–369, Springer, 2010.

[29] F. Tombari, S. Salti, and L. Di Stefano, “A combined texture-shape
descriptor for enhanced 3d feature matching,” in 2011 18th IEEE
international conference on image processing, pp. 809–812, IEEE, 2011.

[30] T. Shan, B. Englot, F. Duarte, C. Ratti, and D. Rus, “Robust place
recognition using an imaging lidar,” arXiv:2103.02111 [cs], Mar. 2021.
arXiv: 2103.02111.
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