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A HIERARCHY OF CONVEX RELAXATIONS FOR THE TOTAL

VARIATION DISTANCE

JEAN B. LASSERRE

Abstract. Given two measures µ, ν on R
d that satisfy Carleman’s condi-

tion, we provide a numerical scheme to approximate as closely as desired the
total variation distance between µ and ν. It consists of solving a sequence
(hierarchy) of convex relaxations whose associated sequence of optimal val-
ues converges to the total variation distance, an additional illustration of the
versatility of the Moment-SOS hierarchy. Indeed each relaxation in the hi-
erarchy is a semidefinite program whose size increases with the number of
involved moments. It has an optimal solution which is a couple of degree-2n
pseudo-moments which converge, as n grows, to moments of the Hahn-Jordan
decomposition of µ− ν.

1. Introduction

Evaluating a “distance” between measures has become an important topic with
many applications, especially in Data Science and Machine Learning in particular.
Among possible choices, the Wasserstein distance has become popular and one rea-
son is that its optimal transport formulation allows to define efficient specialized
procedures (e.g. the Sinkhorn algorithm) for its computation [10].

Contribution. In this paper we show that the total variation distance is also
amenable to practical computation under fairly weak assumptions and so could
provide an alternative to other distances when needed; see e.g. [9] for a discussion
on relative merits of several distances. The total variation distance being the same
as the Wasserstein distance with (nasty) cost function c(x, y) = 1x 6=y(x, y), is an
indication that its effective computation is a computational challenge.

An important application of the total variation is in computer vision where it
was introduced in [11] as a regularization criterion in some inverse problems (e.g.
denoising of images), followed by [3]. Next, [2] inspired by [3], has proposed an
algorithm to minimize the (discrete) total variation of functions u ∈ L1(Ω) for a
compact set Ω ⊂ R

2 (which in principle can be adapted to higher dimensions). (A
discretized image is seen a N × N matrix.)

Our focus is different from the above cited works [2, 3, 11]. Independently of
a particular application, and in a rather general context, we provide a numerical
scheme to approximate as closely as desired the total variation distance between two
measures µ and ν. We assume that all moments of µ and ν are finite, and that both
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µ and ν satisfy Carleman’ condition. In particular we do not assume that µ or ν has
compact support. We can formulate the problem as an instance of the Generalized
Moment Problem and show that it is amenable to practical computation via the
Moment-SOS hierarchy [7, 4]. As a result, one may approximate as closely as desired
‖µ − ν‖TV as more and more moments of µ and ν are taken into account. Our
contribution is to provide an additional tool in the arsenal of algorithms available
in applied probability, for approximating as closely as desired, the total variation
distance ‖µ− ν‖TV based on moment information.

(i) This numerical scheme consists of solving a sequence (hierarchy) of convex
relaxations. Each convex relaxation of the hierarchy is a semidefinite program1

whose size increases with the number of moments of µ and ν involved.
(ii) The associated sequence of optimal values is monotone non decreasing and

converges from below to ‖µ− ν‖TV .
(iii) At last but not least, the associated sequence of optimal solutions of relax-

ations (a couple of vectors whose size increases), converges to the couple of infinite
moment-vectors of the Hahn-Jordan decomposition (φ∗+, φ

∗
−) of the signed measure

µ− ν.
We wish to emphasize the weak assumption on the measures µ, ν, namely that

they satisfy Carleman’s condition (no compact support is required). It is a feature
of the total variation distance to not discriminate between mutually singular prob-
ability measures (their distance is constant to 1). Relatively surprisingly, and as a
good sign of the numerical scheme’s behavior, it is shown in Example 1 that the
exact distance ‖δ0 − δε‖TV between the two (mutually singular) Dirac measures at
0 and ε > 0, is obtained at the first semidefinite relaxation of the hierarchy, irre-
spective of the value of ε > 0 (whereas one might have expected that convergence
of the relaxations would depend on ε).

Interestingly, and as an alternative to algorithms based on a discretization (like
e.g. Sinkhorn algorithm), the Wasserstein distance W2(µ, ν) (with polynomial cost
c(x, y)) can also be approximated as closely as desired by a mesh-free practical
computation by (i) applying the Moment-SOS hierarchy [4, 8] for solving the asso-
ciated optimal transport problem (OT), and (ii) extract the transport map from the
moment vector solution of the OT, by a non-standard application of the Christoffel-
Darboux kernel [5]. However, crucial is the fact that the cost function is a polyno-
mial (which of course excludes the nasty cost function 1x 6=y(x, y)).

2. Main result

2.1. Notation and definitions. Let R[x] denote the ring of real polynomials in
the variables (x1, . . . , xd) and R[x]n ⊂ R[x] be its subset of polynomials of total

degree at most n. Let N
d
n := {α ∈ N

d :
∑

i αi ≤ n} with cardinal s(n) =
(

n+d
n

)

.
Let vn(x) = (xα)α∈Nd

n
be the vector of monomials up to degree n, and let Σ[x]n ⊂

R[x]2n be the convex cone of polynomials of total degree at most 2n which are
sum-of-squares (in short SOS). A polynomial p ∈ R[x]n can be identified with its
vector of coefficients p = (pα) ∈ R

s(n) in the monomial basis, and reads

x 7→ p(x) := 〈p,vn(x)〉 , ∀p ∈ R[x] .

1A semidefinite program is a convex conic optimization problem that can be solved efficiently,
up to arbitrary precision fixed in advance; see e.g. [1]
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Denote by M (Rd) (resp. M (Rd)+) the space of signed (resp. positive) Borel mea-
sures on R

d. For two Borel measures µ, ν ∈ M (Rd)+, the notation µ ≤ ν stands
for µ(B) ≤ ν(B) for all Borel sets B ∈ B(Rd). The support of a Borel measure µ on
R

d is the smallest closed set A such that µ(Rd \A) = 0, and such a set A is unique.
A Borel measure whose all moments are finite is said to be (moment) determinate
if there is no other measure with same moments.

For a real symmetric matrix A = AT , the notation A � 0 (resp. A ≻ 0) stands
for A is positive semidefinite (p.s.d.) (resp. positive definite (p.d.)).

Hahn-Jordan decomposition. Given two finite Borel measures µ, ν ∈ M (Rd)+,
the signed measure µ− ν has a unique Hahn-Jordan decomposition (φ∗+, φ

∗
−) such

that φ∗+−φ∗− = µ−ν. That is, there exists a Borel set A ∈ B(Rd) and two mutually

singular positive measures φ∗+, φ
∗
− such that φ∗+(R

d) = φ∗+(A) while φ
∗
−(A) = 0, and

(2.1) φ∗+(B) = (µ−ν)(B∩A) ; φ∗−(B) = (ν−µ)(B∩(Rd \A)) , ∀B ∈ B(Rd) .

In addition, and obviously, ‖µ−ν‖TV ≤ µ(1)+ν(1). Moreover, observe that φ∗+ ≤ µ
and φ∗− ≤ ν.

Riesz linear functional and moment matrix. With a real sequence φ =
(φα)α∈Nd (in bold) is associated the Riesz linear functional φ ∈ R[x]∗ (not in bold)
defined by

p (=
∑

α

pαx
α) 7→ φ(p) = 〈φ,p〉 =

∑

α

pα φα , ∀p ∈ R[x] ,

and the moment matrix Mn(φ) with rows and columns indexed by N
d
n (hence of

size s(n)), and with entries

Mn(φ)(α,β) := φ(xα+β) = φα+β , α,β ∈ N
d
n .

Notice that one may write indifferently Mn(φ) or Mn(φ), i.e., referring to the
sequence φ truncated to degree-2n moments or to the Riesz linear functional φ
associated with φ.

A real sequence φ = (φα)α∈Nd has a representing mesure if its associated linear
functional φ is a Borel measure on R

d. In this case Mn(φ) � 0 for all n; the
converse is not true in general.

Carleman’s condition. A sequence µ = (µα)α∈Nd satisfies Carleman’s condition
if

(2.2) ∀i = 1, . . . , d :

∞
∑

j=1

µ(x2ji )−1/2j = +∞ .

The following theorem is due to Nussbaum:

Theorem 2.1. ([8, Theorem 3.5]) Let a sequence µ = (µα)α∈Nd be such that
Mn(µ) � 0, for all n ∈ N. If µ satisfies Carleman’s condition (2.2) then µ has a
representing measure µ on R

d and µ is determinate.
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A sufficient condition to ensure that a measure µ satisfies the multivariate Car-
leman’s condition is that

(2.3)

∫

exp(c|xi|) dµ < ∞ , i = 1, . . . , d ,

if for some scalar c > 0.

2.2. A preliminary result.

Lemma 2.2. Let µ, ϕ ∈ M (Rd)+ have finite moments and assume that µ satisfies
Carleman’s condition (2.2). Then

(2.4) ϕ ≤ µ ⇔ Mn(ϕ) � Mn(µ) , ∀n ∈ N .

Proof. ⇒ is straightforward. Indeed:

µ ≥ ϕ⇒

[
∫

p2 dµ ≥

∫

p2 dϕ , ∀p ∈ R[x]

]

⇒ Mn(µ) � Mn(ϕ) , ∀n ∈ N .

⇐ Assume that Mn(ϕ) � Mn(µ) for all n ∈ N, and consider the sequence γ =
(γα)α∈Nd , with γα = µα − ϕα, for all α ∈ N

d. Then
∫

x2ni dϕ ≤
∫

x2ni dµ for all
n, and as Carleman’s condition (2.2) holds for µ, we infer γ(x2ni ) ≤ µ(x2ni ) for all
n, and all i = 1 . . . , d. This implies that γ satisfies Carleman’s condition (2.2) and
therefore, as Mn(γ) = Mn(µ) − Mn(ϕ) � 0 for all n, we deduce that γ has a
determinate representing measure γ on R

d. In particular:
∫

xα d(γ + ϕ) = γα + ϕα = µα =

∫

xα dµ , ∀α ∈ N
d ⇒ γ + ϕ = µ ,

where the last statement follows from determinateness of µ. Hence ϕ ≤ µ. �

2.3. Main result. Given two finite Borel measures µ and ν on R
d, introduce the

infinite-dimensional LP:

(2.5) τ = inf
φ+,φ−∈M (Rd)+

{φ+(1) + φ−(1) : φ+ − φ− = µ− ν } .

Proposition 2.3. The LP (2.5) has a unique optimal solution (φ∗+, φ
∗
−) which is

the Hahn-Jordan decomposition of the signed measure µ − ν, and therefore τ =
φ∗+(1) + φ∗−(1) = ‖µ− ν‖TV .

Proof. Let (φ+, φ−) be an arbitrary feasible solution of (2.5). Then as φ+ − φ− =
µ− ν one obtains φ+(1)+φ−(1) ≥ ‖φ+−φ−‖TV = ‖µ− ν‖TV . On the other hand,
the Hahn-Jordan decomposition (φ∗+, φ

∗
−) of µ − ν is feasible for (2.5), with value

‖µ− ν‖TV , whence the result. �

Unfortunately the LP (2.5) is not very useful as its stands. It is just a particular
rephrasing of the total variation distance between µ and ν. However we next see
the a slight reinforcement of (2.5) will turn out to be very useful when passing to
some hierarchy of convex relaxations. Indeed:

Proposition 2.4. The linear program

(2.6) inf
φ+,φ−∈M (Rd)+

{φ+(1) + φ−(1) : φ+ − φ− = µ− ν ; φ+ ≤ µ ; φ− ≤ ν }

has same optimal value τ = ‖µ− ν‖TV , and optimal solution (φ∗+, φ
∗
−) as (2.5).
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Proof. By construction, the optimal value ρ of (2.6) satisfies ρ ≥ τ = ‖µ − ν‖TV .
On the other hand, with (φ∗+, φ

∗
−) being the Hahn-Jordan decomposition of µ− ν,

observe that φ∗+ ≤ µ, and φ∗− ≤ ν. Therefore (φ∗+, φ
∗
−) is an optimal solution of

(2.6). Equivalently, the constraints φ+ ≤ µ and φ− ≤ ν are automatically satisfied
at the optimal solution (φ∗+, φ

∗
−) of (2.5) and therefore (2.5) and (2.6) have same

optimal value and same optimal solution. �

Next, from now on we make the following assumption:

Assumption 2.5. (i) All moments of µ and ν are finite, and
(ii) µ and ν satisfy (2.3) (hence satisfy Carleman’s condition (2.2)) for some

scalar c > 0.

Consider the optimization problem
(2.7)

τ̂ = min
φ+,φ−∈M (Rd)+

{φ+(1) + φ−(1) : φ+ − φ− = µ− ν ;

Mn(φ
+) � Mn(µ) ; Mn(φ

−) � Mn(ν) , ∀n ∈ N }.

Corollary 2.6. Let Assumption 2.5 hold. Then the Hahn-Jordan decomposition
(φ∗+, φ

∗
−) of the signed measure µ− ν, is the unique optimal solution of (2.7), and

τ̂ = τ = ‖µ− ν‖TV .

Proof. By Lemma 2.2, (2.6) and (2.7) are equivalent. �

The nice feature of the LP (2.7) when compared to its equivalent formulation
(2.6), is that the cost as well as the constraints of (2.7) can next be formulated in
terms of moments of (µ, ν, φ+, φ−), so as to yield the optimization problem:

(2.8)

ρ = min
φ+,φ−∈M (Rd)+

{φ+(1) + φ−(1) :
∫

xαd(φ+ − φ−) =

∫

xα d(µ− ν) , ∀α ∈ N
d

Mn(φ
+) � Mn(µ) ; Mn(φ

−) � Mn(ν) , ∀n ∈ N } ,

which is an instance of the Generalized Moment Problem (GMP); see e.g. [8].

Corollary 2.7. Let Assumption 2.5 hold. Then the Hahn-Jordan decomposition
(φ∗+, φ

∗
−) of the signed measure µ− ν, is the unique optimal solution of (2.8), and

ρ = ‖µ− ν‖TV .

Proof. Let (φ+, φ−) be an arbitrary feasible solution of (2.8). By Lemma 2.2,
φ+ ≤ µ and φ− ≤ ν. Hence φ+ + ν ≤ µ+ ν, and φ− + µ ≤ µ+ ν. As Assumption
2.5(ii) holds,

∫

exp(c |xi|) d(φ
+ + ν) <

∫

exp(c|xi|) d(µ+ ν) < ∞

∫

exp(c |xi|) d(φ
− + µ) <

∫

exp(c|xi|) d(µ+ ν) < ∞ ,

and therefore the measure φ+ + ν (resp. φ− + µ) is determinate. But then the
constraint

∫

xαd(φ+ − φ−) =
∫

xαd(µ− ν) for all α ∈ N
d reads:

∫

xα d(φ+ + ν) =

∫

xα d(φ− + µ) , ∀α ∈ N
d ,

which implies φ++ν = φ−+µ by determinacy of the measures. Therefore (φ+, φ−)
is a feasible solution of (2.7) with same value. In other words, (2.8) is equivalent
to (2.7), whence the result. �
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2.4. A convergent hierarchy of semidefinite relaxations. As (2.8) is an in-
stance of the GMP, it is natural to apply the Moment-SOS hierarchy [4, 7]. With
each fixed n ∈ N, consider the optimization problem

(2.9)
ρn = min

φ,ψ
{φ(1) + ψ(1) : φα − ψα = µα − να , ∀α ∈ N

d
2n ;

0 � Mn(φ) � Mn(µ) ; 0 � Mn(ψ) � Mn(ν) } ,

where now the optimization is over degree-2n pseudo-moment vectorsφ = (φα)α∈Nd

2n

and ψ = (ψα)α∈Nd

2n
(hence not necessarily coming from measures φ and ψ on R

d).

Of course (2.9) is an obvious relaxation of (2.8) and therefore ρn ≤ ρ = ‖µ− ν‖TV

for all n ∈ N.
Observe that for each fixed n ∈ N, (2.9) is a semidefinite program that can be

solved by off-the-shelf solvers like GloptiPoly [6] or Jump [12] (package of the Julia
programming language).

Theorem 2.8. Let Assumption 2.5 hold.
(i) For every fixed n ∈ N, the optimization problem (2.9) has an optimal solution

denoted (φ(n),ψ(n)).
(ii) In addition, ρn ↑ ‖µ− ν‖TV as n→ ∞, and moreover,

(2.10) lim
n→∞

φ(n)α =

∫

xα dφ∗+ ; lim
n→∞

ψ(n)
α =

∫

xα dφ∗− , ∀α ∈ N
d ,

where (φ∗+, φ
∗
−) is the Hahn-Jordan decomposition of the signed measure µ− ν.

Proof. (i) Let (φ,ψ) be an arbitrary feasible solution of (2.9). As Mn(φ) � Mn(µ)
one obtains

φ(1) ≤ µ(1) ; φ(x2ni ) ≤ µ(x2ni ) , ∀i = 1, . . . , d ,

and therefore, as Mn(φ
+) � 0, by [8, Proposition 3.6],

(2.11) |φα| ≤ max[µ(1) , max
i
µ(x2di )] , ∀α ∈ N

d
2n .

Similarly, as 0 � Mn(ψ) � Mn(ν),

(2.12) |ψα| ≤ max[ν(1) , max
i
ν(x2di )] , ∀α ∈ N

d
2n .

Therefore the feasible set of (2.9) is compact. Hence (2.9) has an optimal solution.

(ii) For each fixed n ∈ N, and since Mk(φ
(n)) is a submatrix of Mn(φ

(n)) for all
k = 1, . . . , n, again by [8, ],

∀α : 2k−1 ≤ |α| ≤ 2k : |φ(n)α | ≤ max[µ(1) , max
i
µ(x2ki )] =: ak, ; k = 1, . . . , n ,

and similarly

|ψ(n)
α | ≤ max[ν(1) , max

i
ν(x2ki )] =: bk, ∀α : 2k − 1 ≤ |α| ≤ 2k ; k = 1, . . . , n .

Next, introduce the new infinite peudo-moment sequences:

(2.13) φ̂(n)α := φ(n)α /ak , ∀α : 2k − 1 ≤ |α| ≤ 2k ; k = 1, . . . , n ,

and φ̂
(n)
α = 0 for all α ∈ N

d with |α| > 2n. Similarly,

(2.14) ψ̂(n)
α := ψ(n)

α /bk , ∀α : 2k − 1 ≤ |α| ≤ 2k ; k = 1, . . . , n ,

and ψ̂
(n)
α = 0 for all α ∈ N

d with |α| > 2n.
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Both sequences φ̂
(n)

and ψ̂
(n)

are considered as elements of the unity ball B(0, 1)
of the Banach space ℓ∞ of uniformly bounded sequences, which is sequentially

compact in the σ(ℓ∞, ℓ1) weak topology. Therefore there exist φ̂, ψ̂ ∈ B(0, 1) and
a subsequence (nk)k∈N such that

(2.15) lim
k→∞

φ̂(nk)
α = φ̂α ; lim

k→∞
ψ̂(nk)
α = ψ̂α , ∀α ∈ N

d .

By doing the reverse scaling of (2.13)-(2.14), one obtains:

(2.16) ∀α ∈ N
d : lim

k→∞
φ(nk)
α = φα ; lim

k→∞
ψ(nk)
α = ψα ,

where

φα := ak · φ̂α ; ψα := bk · ψ̂α ; ∀α : 2k − 1 ≤ |α| ≤ 2k ; k ∈ N .

Fix t ∈ N arbitrary. As Mt(φ
(n)) � 0 for all n ≥ t, then by (2.16), 0 � Mt(φ) �

Mt(µ), and as t was arbitrary, 0 � Mn(φ) � Mn(µ) for all n, and similarly
0 � Mn(ψ) � Mn(ν) for all n.

Next, as Mn(φ) � Mn(µ), and µ satisfies Carleman’s condition, then so does
φ, and as Mn(φ) � 0 for all n, it follows that φ = (φα)α∈Nd has a representing
measure φ on R

d. Similarly, for same reasons, ψ has a representing measure ψ on
R

d.
In addition , by (2.16),

‖µ− ν‖TV ≥ lim
k→∞

ρnk
= lim

k→∞
φ(nk)(1) + ψ(nk)(1) = φ(1) + ψ(1) ,

and

∀α ∈ N
d : µα − να = lim

k→∞
φ(nk)
α − ψ(nk)

α = φα − ψα .

Hence (φ, ψ) is an optimal solution of (2.7) (hence of (2.5) as well), and by Corollary
2.6, (φ, ψ) = (φ∗+, φ

∗
−), the Hahn-Jordan decomposition of µ− ν.

Finally, as the (nk)k∈N was an arbitrary converging subsequence and the limit is
independent of the subsequence, the whole sequence converges. �

If µ and ν are two probability measures, mutually singular, then ‖µ−ν‖TV =2. A
perfect case to check whether (2.9) is efficient, is to test (2.9) with the toy univariate
example where µ = δ0 and ν = δε for small value of ε > 0. Indeed, one might expect
that the convergence ρn ↑ ‖µ − ν‖TV as n grows, could depend on ε (the smaller
ε, the slower the convergence), or suffer from some numerical difficulties for small
ε > 0.

Example 1. Let d = 1 and µ = δ0, ν = δε, ε 6= 0. For this toy example we know
that ‖µ− ν‖TV = 2 and (φ∗+, φ

∗
−) = (µ, ν). The semidefinite relaxation (2.9) with

n = 1 reads:

min
φ,ψ

{φ0 + ψ0 : φ0 = ψ0 ; φ1 − ψ1 = −ε ; φ2 − ψ2 = −ε2

0 �

[

φ0 φ1
φ1 φ2

]

�

[

1 0
0 0

]

; 0 �

[

ψ0 ψ1

ψ1 −ψ2

]

�

[

1 ε
ε ε2

]

} .

The constraint 0 � M1(φ) � Mn(δ0) yields 1 ≥ φ0, and φ2 = 0, which in turn
yields φ1 = 0. Hence ψ1 = a and ψ2 = a2. That is, the first semidefinite relaxation
(2.9) provides the optimal solution (φ∗+, φ

∗
−), no matter how close is ε to 0. We can

see that crucial for the relaxations (2.9) are the domination constraints Mn(φ) �
Mn(µ) and Mn(ψ) � Mn(ν) (whereas they are not needed in the LP (2.5)).
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3. Conclusion

We have provided a numerical scheme to approximate as closely as desired the
total variation distance between two measures µ and ν on R

d. To the best of the
author’s knowledge, this is the first systematic algorithmic procedure to address this
problem under fairly general assumptions on µ and ν, as both to satisfy Carleman’s
condition or the easier to check sufficient condition (2.3). On the other hand, this
procedure is still “ideal” as for convergence it requires to have access to all moments
of µ and ν exactly, or at least a sufficiently large finite number of them to obtain a
good approximation, which can be questionable in real applications .
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