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A HIERARCHY OF CONVEX RELAXATIONS FOR THE TOTAL

VARIATION DISTANCE

JEAN B. LASSERRE

Abstract. Given two measures µ, ν on Rd that satisfy Carleman’s condi-
tion, we provide a numerical scheme to approximate as closely as desired the
total variation distance between µ and ν. It consists of solving a sequence
(hierarchy) of convex relaxations whose associated sequence of optimal val-
ues converges to the total variation distance, an additional illustration of the
versatility of the Moment-SOS hierarchy. Indeed each relaxation in the hi-
erarchy is a semidefinite program whose size increases with the number of
involved moments. It has an optimal solution which is a couple of degree-2n
pseudo-moments which converge, as n grows, to moments of the Hahn-Jordan
decomposition of µ− ν.

Abstract. Given two measures µ, ν on Rd that satisfy Carleman’s condi-
tion, we provide a numerical scheme to approximate as closely as desired the
total variation distance between µ and ν. It consists of solving a sequence
(hierarchy) of convex relaxations whose associated sequence of optimal values
converges to the total variation distance, an additional illustration of the versa-
tility of the Moment-SOS hierarchy. Each relaxation in the hierarchy is a semi-
definite program whose size increases with the number of involved moments. It
has an optimal solution which is a couple of degree-2n pseudo-moments which
converge, as n grows, to moments of the Hahn-Jordan decomposition of µ− ν.
Illustrative examples are provided.
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1. Introduction

Evaluating a “distance” between measures is an important topic with many ap-
plications, e.g. for homogeneity testing and independence testing as advocated in
[16], and has also become increasingly important in Data Science and Machine
Learning in particular. Among possible choices, the family of integral probability
metrics (IPM) which includes the Kantorovich, Dudley, Kolmogorov and total vari-
ation (TV) metrics, is discussed in [16] where the authors provide several empirical
estimators of the associated distances between two distributions, based on random
i.i.d. samples. See also [13] for a discussion on relative merits of several distances.

In particular, the Kantorovich metric (dual to Wasserstein distance) has become
popular and one reason is that its optimal transport formulation allows to define
efficient specialized procedures (e.g. the Sinkhorn algorithm) for its computation
[15]. On the other hand, as the TV distance is the same as the Wasserstein distance
with (nasty) cost function c(x, y) = 1x 6=y(x, y), it is an indication that its effective
computation is a computational challenge. For instance, in [16] where the authors
provide several empirical estimators of integral probability metrics (IPMs), when
specializing to TV distance the resulting estimator is not consistent, and for this
reason the authors provide Lower bounds [16, Proposition 5.1]. The reason is
that the set of bounded measurable functions of norm 1 is too large for efficient
evaluation of evaluate TV (P,Q) = supf{

∣
∣
∫
f dP−

∫
f dQ

∣
∣ : ‖f‖∞ ≤ 1 } for two

distributions P and Q. In view of such difficulties, recent contributions have focused
on providing analytical upper and/or lower bounds on TV (P,Q) for P,Q in some
classes of distributions, e.g. two high-dimensional gaussians with same mean in [6],
or mixture of two Gaussians with same covariance matrix in [4], or two arbitrary
measures with given means and variance in [14]; recently in [2] the authors provide a
tight (up to a constant factor) lower bound on the TV distance for high-dimensional
gaussians.

In another direction, in [3] the authors consider estimators of an unknown dis-
tribution µ and, in view of [5], advocate that some à priori information on µ is
required if the estimators are required to be consistent in total variation. Then
under the assumption that the non-atomic part of µ is absolutely continuous with
respect to some à priori known σ-finite measure, they provide estimators which are
consistent in total variation (a.s. and in expectation).

Contribution. In this paper we show that the total variation distance is
amenable to practical computation under relatively weak assumptions and so could
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provide an alternative to other distances when needed. In a rather general con-
text, we provide a numerical scheme to approximate as closely as desired the total
variation distance between two measures µ and ν. We do not assume that µ or ν
has compact support, but we assume that all moments of µ and ν are finite, and
that both µ and ν satisfy Carleman’ condition. We formulate the problem as an
infinite-dimensional linear program (LP) on a space of measures, with an important
constraint of domination inherited from the Hahn-Jordan decomposition of µ− ν.
This LP-formulation is then viewed as an instance of the Generalized Moment
Problem (GMP) with polynomial data, so that the resulting GMP is amenable to
practical computation via the Moment-SOS hierarchy [11, 7]. As a result, one may
approximate as closely as desired ‖µ− ν‖TV as more and more moments of µ and
ν are taken into account. More precisely:

(i) Our numerical scheme consists of solving a sequence (hierarchy) of convex
relaxations. Each convex relaxation of the hierarchy is a semidefinite program1

whose size increases with the number of moments of µ and ν involved.
(ii) The associated sequence of optimal values is monotone non decreasing and

converges from below to ‖µ− ν‖TV . Crucial for convergence is a domination con-
straint coming from a property of the Hahn-Jordan decomposition of µ− ν.

(iii) At last but not least, the associated sequence of optimal solutions of re-
laxations (a couple of pseudo-moment vectors whose size increases), converges to
the unique couple of infinite moment vectors of the Hahn-Jordan decomposition
(φ∗+, φ

∗
−) of the signed measure µ− ν.

(iv) Each semidefinite relaxation of the hierarchy has a dual semidefinite pro-
gram, very much in the spirit of the classical TV-distance dual formulation

(1.1) ‖µ− ν‖TV = sup
f

{

∫

f d̂µ−

∫

f d̂ν : ‖f‖∞ ≤ 1 }

where the “sup” is over bounded measurable functions. Our hierarchy of duals
shows how the above classical formulation can be strengthened by (i) restricting to
polynomials and (ii), including an additional penalized integral term (w.r.t. µ and
ν) in the criterion. This term penalizes the unavoidable violation of the constraint
‖f‖∞ ≤ 1 when f is a polynomial, and corresponds to the domination constraint
in the primal formulation.

(v) It turns out that when µ and ν are measures on the real line, our first lower
bound with n = 1 in the hierarchy (i.e. when one uses moments up to degree 2n = 2
only) coincides with the analytical lower bound provided in [14] and based solely on
the means and variances of µ and ν. As shown on some examples, the improvement
is already significant with n = 2 (i.e. by now taking into account moments up to
degree 4) and even better with n = 3, 4.

Moreover, and as a nice feature of our numerical scheme, we prove that for
two atomic probability measures respectively supported on m1 and m2 atoms of
the real line, the exact distance ‖µ − ν‖TV is obtained as soon as the degree n
of the semidefinite relaxation in the hierarchy, matches max[m1,m2], i.e., when
the minimal information required is used. Hence, for instance, mutual singularity
(if any) (i.e., ‖µ − ν‖TV = 2) is detected at n = max[m1,m2]. In addition, in
principle no geometric condition on a separation of the respective atoms of µ and

1A semidefinite program is a convex conic optimization problem that can be solved efficiently,
up to arbitrary precision fixed in advance; see e.g. [1]
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ν is required and this nice feature is illustrated on a toy example with µ the Dirac
δ0 at x = 0 and ν the Dirac δε at x = ε (with arbitrary small ε > 0). (However
as in practice one uses a numerical semidefinite solver, this issue becomes relevant
due to unavoidable potential numerical inaccuracies.)

(vi) We also provide a set of illustrative numerical experiments to illustrate
(a) our result on discrete measures on the real line, and (b) the behavior of the
algorithm when µ and ν are two univariate Gaussian N (m1, σ1) and N (m2, σ2).

(vii) Finally, it is worth emphasizing that the optimal value of each relaxation
provides a guaranteed lower bound on the TV distance which increases with the
degree of the relaxation. This information already provided at early steps of the
hierarchy should be useful because in view of the current status of semidefinite
solver software packages, one cannot expect to solve high degree relaxations, even
for relatively modest dimensions.

At last but not least, the input data required at the n-th semidefinite relaxation
of the hierarchy is the finite set of degree-2n moments of µ and ν, assumed to be
known2 or estimated from random i.i.d. samples drawn from µ and ν. In the latter
case, by the SLLN, such a finite set of degree-2n moments can be estimated as
closely as desired and almost surely, provided that the sample size is sufficiently
large. Then the true moment matrices Mn(µ) and Mn(ν) of µ and ν needed in
the n-th semidefinite relaxation of our numerical scheme, can be safely replaced
with their analogues Mn(µ

N ) and Mn(ν
N ) obtained from the empirical measures

µN and νN associated with a sample of size N . Of course, when n increases, the
sample size N needs to be adjusted with the number of degree-2n moments con-
sidered. This issues was also analyzed in [12] to analyze the respective behavior of
the Christoffel functions respectively associated with a measure µ and its empirical
version µN from a sample.

Hence in summary, our contribution is to provide an additional tool in the ar-
senal of algorithms available in applied probability, for approximating as closely as
desired, the total variation distance ‖µ−ν‖TV based on moment information. This
tool can thus be applied

– not only in applications where moments of µ and ν are available inclosed form
(e.g. for µ and ν Gaussian or exponentials (and their mixtures)), but also

– even in applications where only random i.i.d. samples from µ and ν are avail-
able. Indeed as already mentioned, with fixed n, the finite set of 2n-degree empirical
moments obtained from a sample, can approximate as closely as desired the same
set of true degree-2n moments, provided the sample size is sufficiently large (hence
adapted to the degree n considered).

As a technical comment, we wish to also emphasize the relatively weak assump-
tion on the measures µ, ν, namely that they satisfy Carleman’s condition (no com-
pact support is required). Crucial in our numerical scheme are the two domination
constraints φ+ ≤ µ and φ− ≤ ν where (φ+, φ−) is the Hahn-Jordan decomposition
of the signed measure µ − ν. While redundant in the infinite-dimensional GMP

2For instance if µ and ν are two Gaussians N (m,Σ) and N (m′
,Σ′) respectively, their moments

are known explicitly in terms of m,m′ and the entries of Σ and Σ′. The same is true e.g. for
pairs of exponential measures, or gaussian mixtures.
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formulation, they become extremely useful (as a compactification tool) in the re-
laxation scheme. Interestingly, the effect of such domination constraints is also
revealed in the dual problem at step n of the hierarchy when this dual is compared
with the classical dual formulation (1.1) of the TV distance.

In a final remark, as an alternative to algorithms based on discretizations (like
e.g. Sinkhorn algorithm), the Wasserstein distance W2(µ, ν) (with polynomial cost
c(x, y)) can also be approximated as closely as desired in a mesh-free practical
computation by (i) applying the Moment-SOS hierarchy [7, 10] for solving the
associated optimal transport problem (OT), and (ii) extract the transport map
from the moment vector solution of the OT, by a non-standard application of the
Christoffel-Darboux kernel [8]. However, crucial in [7, 10] is the fact that the cost
function is a polynomial (which of course excludes the nasty cost function 1x 6=y(x, y)
in the TV distance formulation).

2. Main result

2.1. Notation and definitions. Let R[x] denote the ring of real polynomials in
the variables (x1, . . . , xd) and R[x]n ⊂ R[x] be its subset of polynomials of total

degree at most n. Let Ndn := {α ∈ Nd :
∑

i αi ≤ n} with cardinal s(n) =
(
n+d
n

)
.

Let vn(x) = (xα)α∈Nd
n
be the vector of monomials up to degree n, and let Σ[x]n ⊂

R[x]2n be the convex cone of polynomials of total degree at most 2n which are
sum-of-squares (in short SOS). A polynomial p ∈ R[x]n can be identified with its
vector of coefficients p = (pα) ∈ Rs(n) in the monomial basis, and reads

x 7→ p(x) := 〈p,vn(x)〉 , ∀p ∈ R[x] .

Denote by M (Rd) (resp. M (Rd)+) the space of signed (resp. positive) Borel mea-
sures on Rd. For two Borel measures µ, ν ∈ M (Rd)+, the notation µ ≤ ν stands
for µ(B) ≤ ν(B) for all Borel sets B ∈ B(Rd). The support of a Borel measure µ on
Rd is the smallest closed set A such that µ(Rd \A) = 0, and such a set A is unique.
A Borel measure whose all moments are finite is said to be (moment) determinate
if there is no other measure with same moments.

For a real symmetric matrix A = AT , the notation A � 0 (resp. A ≻ 0) stands
for A is positive semidefinite (p.s.d.) (resp. positive definite (p.d.)).

Hahn-Jordan decomposition. Given two finite Borel measures µ, ν ∈ M (Rd)+,
the signed measure µ− ν has a unique Hahn-Jordan decomposition (φ∗+, φ

∗
−) such

that φ∗+−φ∗− = µ−ν. That is, there exists a Borel set A ∈ B(Rd) and two mutually

singular positive measure φ∗+, φ
∗
− such that φ∗+(R

d) = φ∗+(A) while φ
∗
−(A) = 0, and

(2.1) φ∗+(B) = (µ−ν)(B∩A) ; φ∗−(B) = (ν−µ)(B∩(Rd \A)) , ∀B ∈ B(Rd) .

In addition, and obviously, ‖µ − ν‖TV ≤ µ(1) + ν(1). Moreover, observe that
φ∗+ ≤ µ and φ∗− ≤ ν. This property will turn out to be crucial for convergence of
our numerical scheme.

Riesz linear functional and moment matrix. With a real sequence φ =
(φα)α∈Nd (in bold) is associated the Riesz linear functional φ ∈ R[x]∗ (not in bold)
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defined by

p (=
∑

α

pαx
α) 7→ φ(p) = 〈φ,p〉 =

∑

α

pα φα , ∀p ∈ R[x] ,

and the moment matrix Mn(φ) with rows and columns indexed by Ndn (hence of
size s(n)), and with entries

Mn(φ)(α,β) := φ(xα+β) = φα+β , α,β ∈ Ndn .

Notice that one may write indifferently Mn(φ) or Mn(φ), i.e., referring to the
sequence φ truncated to degree-2n moments or to the Riesz linear functional φ
associated with φ.

A real sequence φ = (φα)α∈Nd has a representing mesure if its associated linear
functional φ is a Borel measure on Rd. In this case Mn(φ) � 0 for all n; the
converse is not true in general.

Carleman’s condition. A sequence µ = (µα)α∈Nd satisfies Carleman’s condition
if

(2.2) ∀i = 1, . . . , d :

∞∑

j=1

µ(x2ji )−1/2j = +∞ .

The following theorem is due to Nussbaum:

Theorem 2.1. ([10, Theorem 3.5]) Let a sequence µ = (µα)α∈Nd be such that
Mn(µ) � 0, for all n ∈ N. If µ satisfies Carleman’s condition (2.2) then µ has a
representing measure µ on Rd and µ is determinate.

A sufficient condition to ensure that a measure µ satisfies the multivariate Car-
leman’s condition is that

(2.3)

∫

exp(c|xi|) dµ < ∞ , i = 1, . . . , d ,

if for some scalar c > 0.

2.2. A preliminary result.

Lemma 2.2. Let µ, ϕ ∈ M (Rd)+ have finite moments and assume that µ satisfies
Carleman’s condition (2.2). Then

(2.4) ϕ ≤ µ ⇔ Mn(ϕ) � Mn(µ) , ∀n ∈ N .

Proof. ⇒ is straightforward. Indeed:

µ ≥ ϕ⇒

[∫

p2 dµ ≥

∫

p2 dϕ , ∀p ∈ R[x]

]

⇒ Mn(µ) � Mn(ϕ) , ∀n ∈ N .

⇐ Assume that Mn(ϕ) � Mn(µ) for all n ∈ N, and consider the sequence γ =
(γα)α∈Nd , with γα = µα − ϕα, for all α ∈ Nd. Then

∫
x2ni dϕ ≤

∫
x2ni dµ for all

n, and as Carleman’s condition (2.2) holds for µ, we infer γ(x2ni ) ≤ µ(x2ni ) for all
n, and all i = 1 . . . , d. This implies that γ satisfies Carleman’s condition (2.2) and
therefore, as Mn(γ) = Mn(µ) − Mn(ϕ) � 0 for all n, we deduce that γ has a
determinate representing measure γ on Rd. In particular:

∫

xα d(γ + ϕ) = γα + ϕα = µα =

∫

xα dµ , ∀α ∈ Nd ⇒ γ + ϕ = µ ,

where the last statement follows from determinateness of µ. Hence ϕ ≤ µ. �
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2.3. Main result. Given two finite Borel measures µ and ν on Rd, introduce the
infinite-dimensional LP:

(2.5) τ = inf
φ+,φ−∈M (Rd)+

{φ+(1) + φ−(1) : φ+ − φ− = µ− ν } .

Proposition 2.3. The LP (2.5) has a unique optimal solution (φ∗+, φ
∗
−) which is

the Hahn-Jordan decomposition of the signed measure µ − ν, and therefore τ =
φ∗+(1) + φ∗−(1) = ‖µ− ν‖TV .

Proof. Let (φ+, φ−) be an arbitrary feasible solution of (2.5). Then as φ+ − φ− =
µ− ν one obtains φ+(1)+φ−(1) ≥ ‖φ+−φ−‖TV = ‖µ− ν‖TV . On the other hand,
the Hahn-Jordan decomposition (φ∗+, φ

∗
−) of µ − ν is feasible for (2.5), with value

‖µ− ν‖TV , whence the result. �

Unfortunately the LP (2.5) is not very useful as its stands. It is just a particular
rephrasing of the total variation distance between µ and ν. However we next see
the a slight reinforcement of (2.5) will turn out to be very useful when passing to
some hierarchy of convex relaxations. Indeed:

Proposition 2.4. The infinite-dimensional linear program

(2.6) inf
φ+,φ−∈M (Rd)+

{φ+(1) + φ−(1) : φ+ − φ− = µ− ν ; φ+ ≤ µ ; φ− ≤ ν }

has same optimal value τ = ‖µ− ν‖TV , and optimal solution (φ∗+, φ
∗
−) as (2.5).

Proof. By construction, the optimal value ρ of (2.6) satisfies ρ ≥ τ = ‖µ − ν‖TV .
On the other hand, with (φ∗+, φ

∗
−) being the Hahn-Jordan decomposition of µ− ν,

observe that φ∗+ ≤ µ, and φ∗− ≤ ν. Therefore (φ∗+, φ
∗
−) is an optimal solution of

(2.6). Equivalently, the constraints φ+ ≤ µ and φ− ≤ ν are automatically satisfied
at the optimal solution (φ∗+, φ

∗
−) of (2.5) and therefore (2.5) and (2.6) have same

optimal value and same optimal solution. �

Next, from now on we make the following assumption:

Assumption 2.5. (i) All moments of µ and ν are finite, and
(ii) µ and ν satisfy (2.3) (hence satisfy Carleman’s condition (2.2)) for some

scalar c > 0.

Consider the optimization problem
(2.7)

τ̂ = min
φ+,φ−∈M (Rd)+

{φ+(1) + φ−(1) : φ+ − φ− = µ− ν ;

Mn(φ
+) � Mn(µ) ; Mn(φ

−) � Mn(ν) , ∀n ∈ N }.

Corollary 2.6. Let Assumption 2.5 hold. Then the Hahn-Jordan decomposition
(φ∗+, φ

∗
−) of the signed measure µ− ν, is the unique optimal solution of (2.7), and

τ̂ = τ = ‖µ− ν‖TV .

Proof. By Lemma 2.2, (2.6) and (2.7) are equivalent. �

The nice feature of the LP (2.7) when compared to its equivalent formulation
(2.6), is that the cost as well as the constraints of (2.7) can next be formulated in
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terms of moments of (µ, ν, φ+, φ−), so as to yield the optimization problem:

(2.8)

ρ = min
φ+,φ−∈M (Rd)+

{φ+(1) + φ−(1) :
∫

xαd(φ+ − φ−) =

∫

xα d(µ− ν) , ∀α ∈ Nd ;

Mn(φ
+) � Mn(µ) ; Mn(φ

−) � Mn(ν) , ∀n ∈ N } ,

which is an instance of the Generalized Moment Problem (GMP); see e.g. [10].

Corollary 2.7. Let Assumption 2.5 hold. Then the Hahn-Jordan decomposition
(φ∗+, φ

∗
−) of the signed measure µ− ν, is the unique optimal solution of (2.8), and

ρ = ‖µ− ν‖TV .

Proof. Let (φ+, φ−) be an arbitrary feasible solution of (2.8). By Lemma 2.2,
φ+ ≤ µ and φ− ≤ ν. Hence φ+ + ν ≤ µ+ ν, and φ− + µ ≤ µ+ ν. As Assumption
2.5(ii) holds,

∫

exp(c |xi|) d(φ
+ + ν) <

∫

exp(c|xi|) d(µ+ ν) < ∞
∫

exp(c |xi|) d(φ
− + µ) <

∫

exp(c|xi|) d(µ+ ν) < ∞ ,

and therefore the measure φ+ + ν (resp. φ− + µ) is determinate. But then the
constraint

∫
xαd(φ+ − φ−) =

∫
xαd(µ− ν) for all α ∈ Nd reads:

∫

xα d(φ+ + ν) =

∫

xα d(φ− + µ) , ∀α ∈ Nd ,

which implies φ++ν = φ−+µ by determinacy of the measures. Therefore (φ+, φ−)
is a feasible solution of (2.7) with same value. In other words, (2.8) is equivalent
to (2.7), whence the result. �

3. A convergent hierarchy of semidefinite relaxations

As (2.8) is an instance of the GMP, it is natural to apply the Moment-SOS
hierarchy [7, 11]. With each fixed n ∈ N, consider the optimization problem

(3.1)
ρn = min

φ,ψ
{φ(1) + ψ(1) : φα − ψα = µα − να , ∀α ∈ Nd2n ;

0 � Mn(φ) � Mn(µ) ; 0 � Mn(ψ) � Mn(ν) } ,

where now the optimization is over degree-2n pseudo-moment vectorsφ = (φα)α∈Nd
2n

and ψ = (ψα)α∈Nd
2n

(hence not necessarily coming from measures φ and ψ on Rd).

Of course (3.1) is an obvious relaxation of (2.8) and therefore ρn ≤ ρ = ‖µ− ν‖TV
for all n ∈ N.

Observe that for each fixed n ∈ N, (3.1) is a semidefinite program that can be
solved by off-the-shelf solvers like GloptiPoly [9] or Jump [17] (package of the Julia
programming language).

Theorem 3.1. Let Assumption 2.5 hold.
(i) For every fixed n ∈ N, the optimization problem (3.1) has an optimal solution

denoted (φ(n),ψ(n)).
(ii) In addition, ρn ↑ ‖µ− ν‖TV as n→ ∞, and moreover,

(3.2) lim
n→∞

φ(n)α =

∫

xα dφ∗+ ; lim
n→∞

ψ(n)
α =

∫

xα dφ∗− , ∀α ∈ Nd ,

where (φ∗+, φ
∗
−) is the Hahn-Jordan decomposition of the signed measure µ− ν.
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Proof. (i) Let (φ,ψ) be an arbitrary feasible solution of (3.1). As Mn(φ) � Mn(µ)
one obtains

φ(1) ≤ µ(1) ; φ(x2ni ) ≤ µ(x2ni ) , ∀i = 1, . . . , d ,

and therefore, as Mn(φ
+) � 0, by [10, Proposition 3.6],

(3.3) |φα| ≤ max[µ(1) , max
i
µ(x2di )] , ∀α ∈ Nd2n .

Similarly, as 0 � Mn(ψ) � Mn(ν),

(3.4) |ψα| ≤ max[ν(1) , max
i
ν(x2di )] , ∀α ∈ Nd2n .

Therefore the feasible set of (3.1) is compact. Hence (3.1) has an optimal solution.

(ii) For each fixed n ∈ N, and since Mk(φ
(n)) is a submatrix of Mn(φ

(n)) for all
k = 1, . . . , n, again by [10, ],

∀α : 2k−1 ≤ |α| ≤ 2k : |φ(n)α | ≤ max[µ(1) , max
i
µ(x2ki )] =: ak, ; k = 1, . . . , n ,

and similarly

|ψ(n)
α | ≤ max[ν(1) , max

i
ν(x2ki )] =: bk, ∀α : 2k − 1 ≤ |α| ≤ 2k ; k = 1, . . . , n .

Next, introduce the new infinite peudo-moment sequences:

(3.5) φ̂(n)α := φ(n)α /ak , ∀α : 2k − 1 ≤ |α| ≤ 2k ; k = 1, . . . , n ,

and φ̂
(n)
α = 0 for all α ∈ Nd with |α| > 2n. Similarly,

(3.6) ψ̂(n)
α := ψ(n)

α /bk , ∀α : 2k − 1 ≤ |α| ≤ 2k ; k = 1, . . . , n ,

and ψ̂
(n)
α = 0 for all α ∈ Nd with |α| > 2n.

Both sequences φ̂
(n)

and ψ̂
(n)

are considered as elements of the unity ball B(0, 1)
of the Banach space ℓ∞ of uniformly bounded sequences, which is sequentially

compact in the σ(ℓ∞, ℓ1) weak topology. Therefore there exist φ̂, ψ̂ ∈ B(0, 1) and
a subsequence (nk)k∈N such that

(3.7) lim
k→∞

φ̂(nk)
α = φ̂α ; lim

k→∞
ψ̂(nk)
α = ψ̂α , ∀α ∈ Nd .

By doing the reverse scaling of (3.5)-(3.6), one obtains:

(3.8) ∀α ∈ Nd : lim
k→∞

φ(nk)
α = φα ; lim

k→∞
ψ(nk)
α = ψα ,

where

φα := ak · φ̂α ; ψα := bk · ψ̂α ; ∀α : 2k − 1 ≤ |α| ≤ 2k ; k ∈ N .

Fix t ∈ N arbitrary. As Mt(φ
(n)) � 0 for all n ≥ t, then by (3.8), 0 � Mt(φ) �

Mt(µ), and as t was arbitrary, 0 � Mn(φ) � Mn(µ) for all n, and similarly
0 � Mn(ψ) � Mn(ν) for all n.

Next, as Mn(φ) � Mn(µ), and µ satisfies Carleman’s condition, then so does
φ, and as Mn(φ) � 0 for all n, it follows that φ = (φα)α∈Nd has a representing
measure φ on Rd. Similarly, for same reasons, ψ has a representing measure ψ on
Rd.

In addition , by (3.8),

‖µ− ν‖TV ≥ lim
k→∞

ρnk
= lim

k→∞
φ(nk)(1) + ψ(nk)(1) = φ(1) + ψ(1) ,



10 JEAN B. LASSERRE

and

∀α ∈ Nd : µα − να = lim
k→∞

φ(nk)
α − ψ(nk)

α = φα − ψα .

Hence (φ, ψ) is an optimal solution of (2.7) (hence of (2.5) as well), and by Corollary
2.6, (φ, ψ) = (φ∗+, φ

∗
−), the Hahn-Jordan decomposition of µ− ν.

Finally, as the (nk)k∈N was an arbitrary converging subsequence and the limit is
independent of the subsequence, the whole sequence converges. �

3.1. A dual of (3.1). In this section we describe a dual of (3.1) and compare this
dual to the standard dual formulation

(3.9) ‖µ− ν‖TV = sup
f∈B(Rd)

∫

f d(µ− ν) : ‖f‖∞ ≤ 1 } ,

of the TV distance. Problem (3.9) is very difficult to solve, especially if at least
supp(µ) and/or supp(ν) is unbounded. In fact we are not aware of any convergent
sequence of semidefinite relaxations to approach the optimal value of (3.9).

On the other hand, with n ∈ N fixed, consider the optimization problem

(3.10)

ρ∗n := sup
p,σi,ψj

{

∫

p d(µ− ν)−

∫

σ1 dµ−

∫

ψ1 dν :

1− p = σ0 − σ1 ; 1 + p = ψ0 − ψ1 ;
p ∈ R[x]2n ; σi , ψi ∈ Σ[x]n , i = 1, 2 } .

As σi, ψi are all SOS polynomials, the constraints of (3.10)

(3.11) p ≤ 1 + σ1 and − p ≤ 1 + ψ1 , ∀x ∈ Rd ,

imply

(3.12) | p(x) | ≤ 1 + max[σ1(x), ψ1(x)] , ∀x ∈ Rd .

and in (3.10),
∫
σ1 dµ +

∫
ψ1 dν is penalized in the criterion which maximizes

∫
pd(µ − ν). So as the constraint ‖p‖∞ < 1 cannot be satisfied by a polynomial

p ∈ R[x]n, one may see (3.11) as a polynomial relaxation of the restrictive constraint
‖f‖∞ ≤ 1, f ∈ B(Rd). However

Proposition 3.2. (3.10) is a dual of (3.1), i.e., ρn ≥ ρ∗n for every n.

Proof. Let (φ,ψ) and p ∈ R[x]2n) be arbitrary feasible solutions of (3.1) and (3.10)
respectively. As

∫
σ1 dµ ≥ φ+(σ1) and

∫
ψ1 dν ≥ φ−(ψ1),

∫

p d(µ− ν)−

∫

σ1 dµ−

∫

ψ1 dν ≤ φ+(p)− φ+(σ1)− φ−(p)− φ−(ψ1)

≤ φ+(1− σ0) + φ−(1− ψ0) ≤ φ+(1) + φ−(1) ,

where we have used that φ+(σ0) ≥ 0 (as Mn(φ
+) � 0 and σ0 ∈ Σ[x]n). This proves

weak duality, i.e., ρn ≥ ρ∗n. �

We next prove that strong duality holds, i.e., there is no duality gain between
(3.1) and its dual (3.10). Recall that if (φ+, φ−) is the Hahn-Jordan decomposition
of µ− ν, then φ+ ≤ µ and φ− ≤ ν. Therefore

(3.13) φ+ = f+ dµ and φ− = f− dν ,

for some nonnegative measurable functions f+, f− with f+ ≤ 1, µ-a.e., and f− ≤ 1,
ν-a.e.
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Lemma 3.3. Let (φ+, φ−) be the Hahn-Jordan decomposition of µ−ν and suppose
that with f+, f− as in (3.13), f+ < 1 (resp. f− < 1) on some open set O+ (resp.
O−). Then there is no duality gap between (3.1) and its dual (3.10), i.e., ρn = ρ∗n
for all n and in addition, (3.10) has an optimal solution (p∗, σ∗

i , ψ
∗
i ).

Proof. Let φ+ = (φ+α)α∈Nd
2n

and φ− = (φ−α)α∈Nd
2n

be the respective moment vectors

of φ+ and φ− up to degree 2n. Then (φ+,φ−) is an obvious feasible solution of
(3.1), and we next prove it is a strictly feasible solution. Then by our assumption
Mn(φ

+) ≺ Mn(µ); indeed otherwise suppose that Ker(Mn(µ)−Mn(φ
+)) 6= ∅, i.e.,

there exists p ∈ R[x]n such that

0 =

∫

p2 d(µ− φ+) =

∫

p2 (1− f+) dµ ,

But then one obtains the contradiction

0 =

∫

p2 d(µ− φ+) ≥

∫

O+

p2 (1− f+) dµ > 0 ,

as p 6= 0 cannot vanish on an open set. For the same reasons, Mn(φ
+) ≻ 0,

and similarly 0 ≺ Mn(φ
−) ≺ Mn(ν). But this strict feasibility of (φ+,φ−) in

(3.1) implies that Slater’s condition holds for (3.1). Hence by a standard results of
duality for conic convex programs, ρ∗n = ρn and since 2 ≥ ρn ≥ 0, (3.10) is solvable,
i.e., it has an optimal solution (p∗, σ∗

i , ψ
∗
i ).

�

3.2. Computational remarks.

Moment information. To implement the semidefinite relaxation (3.1) with fixed
degree n, knowledge of the two moment sequences (µα)α∈Nd

2n
and (να)α∈Nd

2n
, that

is, all moments of µ and ν up to degree 2n. In some cases, all moments of µ and ν
can be obtained exactly in explicit form. This is the case if µ and ν are Gaussian,
or a mixture of Gaussians, or an exponential (or a mixture of exponentials). On
the other hand, if the only information available is some sample of i.i.d. random
vectors (Xi)i≤N and (Yi)i≤N drawn according to µ and ν respectively, then for any
fixed degree n, we may invoke the strong law of large numbers, and consider the
moment matrices Mn(µ

N ) and Mn(ν
N ) associated with the corresponding empir-

ical measures µN and νN . By continuity of the eigenvalues, ‖Mn(µ) −Mn(µ
N )‖

can be made as small a desired provided that N is sufficiently large. Of course
when n increases the sample size N needs to be adjusted accordingly.

If µ and ν are two probability measures, mutually singular, then ‖µ−ν‖TV=2. A
perfect case to check whether (3.1) is efficient, is to test (3.1) with the toy univariate
example where µ = δ0 and ν = δε for small value of ε > 0. Indeed, one might expect
that the convergence ρn ↑ ‖µ − ν‖TV as n grows, could depend on ε (the smaller
ε, the slower the convergence), or suffer from some numerical difficulties for small
ε > 0.

3.3. Discrete (univariate) measures. If the optimal value of (3.1) satisfies ρn =
2 then obviously µ and ν are mutually singular. Indeed since (3.1) has an optimal
solution (φ∗,ψ∗) with ρn = φ∗(1) + ψ∗(1) = 2, and since Mn(φ

∗) ≤ Mn(µ)
(resp. Mn(ψ

∗) � Mn(ν)), then necessarily 1 = φ∗(1) = ψ∗(1). This implies that
the vector φ∗ (resp. ψ∗) of pseudo-moments up to degree 2n, is identical to µ
(i.e. that of µ) (resp. ν, i.e., that of ν). However one may ask whether such a
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situation happens for a finite degree n. We show that this is indeed the case for
atomic probability measures on the real line with finite supports, in which case
n = max[m1,m2] where m1 = #supp(µ), and m2 = #supp(ν).

Theorem 3.4. Let µ and ν be two probability measures on the real line, supported
on X := (x(i))i=1,...,m1

and Y := (y(j))j=1,...,m2
respectively. Then with ρn as in

(3.1), ρn = ‖µ− ν‖TV for all n ≥ max[m1,m2]. In particular if X ∩ Y = ∅ (i.e.,
if µ and ν are mutually singular) then ρn = 2 for all n ≥ max[m1,m2].

For clarity of exposition, the proof is postponed to Section 5.

Notice that in Theorem 3.4, there is no assumption on the “distance” between
points of the respective supports X and Y of the discrete measures µ and ν. How-
ever in practice, the behavior of (numerical) semidefinite software packages needed
to solve (3.1) is sensitive to this parameter for numerical reasons.

Example 1. To illustrate Theorem 3.4 for two mutually singular measures, con-
sider the toy example with d = 1, µ = δ0, ν = δε, ε 6= 0, so that ‖µ− ν‖TV = 2 and
(φ∗+, φ

∗
−) = (µ, ν). The semidefinite relaxation (3.1) with n = 1 reads:

ρ1 = min
φ,ψ

{φ0 + ψ0 : φ0 = ψ0 ; φ1 − ψ1 = −ε ; φ2 − ψ2 = −ε2

0 �

[
φ0 φ1
φ1 φ2

]

�

[
1 0
0 0

]

; 0 �

[
ψ0 ψ1

ψ1 ψ2

]

�

[
1 ε
ε ε2

]

} .

The constraint 0 � M1(φ) � Mn(δ0) combined with (0, 1) ∈ Ker(M1(µ)) implies
(0, 1) ∈ Ker(M1(φ)), which in turn implies φ1 = φ2 = 0. Hence ψ1 = ε and
ψ2 = ε2. But then M1(ψ) � 0 implies ε2ψ0 ≥ ε2, which with ψ0 ≤ 1, implies
ψ0 = 1 and so φ0 = ψ0 = 1, and ρ1 = 2.

This toy example illustrates that in principle the first semidefinite relaxation (3.1)
provides the optimal solution (φ∗+, φ

∗
−), no matter how close is ε to 0 (see Theorem

3.4). One can see here (and also in the proof of Theorem 3.4) how crucial for the
relaxations (3.1) are the domination constraints Mn(φ) � Mn(µ) and Mn(ψ) �
Mn(ν), whereas they are not needed in the infinite-dimensional LP (2.5).

Theorem 3.4 shows that (at least in the univariate case) the semidefinite relax-
ations (3.1) obtain the exact value ‖µ− ν‖TV as soon as n ≥ max[m1,m2], that is,
as soon as the minimal required moment information is used. Moreover, nowhere
in the proof was a condition on some minimum distance between atoms of µ and
ν. In fact Theorem 3.4 and the toy illustrative example of Example 1 above, show
that the atoms can be as close as desired without affecting the result. Of course
this assertion is only theoretical in nature and must be mitigated by the numeri-
cal behavior of the semidefinite solver in charge of solving the semidefinite program
(3.1). Indeed if some atoms are too close one should reasonably expect to encounter
some numerical issues.

3.4. Numerical examples. In this section we provide some illustrative examples
that give a first idea of the behavior of the moment-relaxations (3.1).

Discrete measures. To illustrate Theorem 3.4, we first consider the simple case
of two discrete measures

µ =
1

m1

m1∑

i=1

δx(i) , ν =
1

m2

m2∑

i=1

δy(i) .
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Example 2. With no point in common, i.e., X := {x(i)} ∩ {y(j)} =: Y = ∅ so
that ‖µ−ν‖TV = 2 as µ and ν are mutually singular. Let X = {−1.0, 0.0, 1.0, 2.0};
Y = {−0.7, 0.3, 1.3, 2.3}. Then in solving (3.1) with n = 4 (i.e. with 8 moments of
µ and ν), we obtain ρ4 = 1.9999 which up to machine precision is considered to be
2, as predicted by Theorem 3.4.

Example 3. With one point in common. If we now consider X = {−1.0, 0.0, 1.0, 2.0}
and Y = {−2.0,−1.0, 0.1, 1.5} so that X ∩ Y = {−1.0} and as the weights are all
equal, one obtains ‖µ− ν‖TV = 1.5. Then with n = 4 we obtain ρ4 = 1.499, which
again up to machine precision can be considered as 1.5.

Example 4. In this example, X = {−1.0, 0.0, 1.0, 2.0} and Y = {−0.7, 0.3, 1.3, 2.3}
(so that the points of Y are “closer” to those of X. From results displayed in

Table 1. ‖µ− ν‖TV for two discrete measures; X ∩ Y = ∅
X = {−1.0, 0.0, 1.0, 2.0}; Y = {−0.7, 0.3, 1.3, 2.3}

n 4 5
ρn 1.9999 1.9999

Table 1, one can see that even if some points are relatively close to each other,
the semidefinite relaxation (3.1) still provide a value ρn very close to 2, as soon as
n ≥ 4 (i.e., with 2n = 8 moments), as predicted by Theorem 3.4. But now due to
numerical inaccuracies of the semidefinite solver, the resulting value is less precise
(but one can still extract a solution (φ+, φ−) very close to (µ, ν).

Example 5. With one point in common, i.e., #(X∩Y ) = 1. Let X = {0.0, 0.3, 0.4, 0.9}
and Y = {0.3, 0.6, 0.7, 1.2} and let the weights be equal so that one must find
‖µ − ν‖TV = 1.5. From results displayed in Table 2, again one can see that even

Table 2. ‖µ− ν‖TV for two discrete measures; X ∩ Y = {0.3}.

n 4 5 6
ρn 1.4879 1.4993 1.4997

if some points are relatively close to each other (and with 1 point in common), the
semidefinite relaxation (3.1) still provide a value ρn close to 1.5, as soon as n ≥ 5
(i.e., with 2n = 10 moments).

Two Gaussian measures. We next consider the case where µ = N (m1, σ1) and
ν = N (m2, σ2), and we fix the number of moments that we consider to be 2n =
4, 6, 8. From results in Table 3 we can see the influence of a small variance, which
tends to provide ρ4 with a value close to 2, as expected since µ and ν behave almost
like the two Dirac measures δm1

and δm2
, which are mutually singular whenever

m1 6= m2. It also turns out that ρ1 coincide with the analytical lower bound
provided in [14] on two arbitrary measures with given means and variances (m1, σ1)
and (m2, σ2), namely

‖µ− ν‖TV ≥ 2
(m1 −m2)

2

(σ1 + σ2)2 + (m1 −m2)2
.

(See [14].) Notice that already with n = 2, i.e., with moments up to degree 4, ρn
provides with a significant improvement in all cases.
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Table 3. ‖µ − ν‖TV for Gaussian measures N (m1, σ1) and
N (m2, σ2)

(m1 , s1) (m2 , s2) ρ1 ρ2 ρ3 ρ4

(0 , 0.1) (1 , 0.1) 1.9231 1.9936 1.9991 1.9997
(0 , 0.2) (1 , 0.2) 1.7241 1.9049 1.9376 1.939
(0 , 0.1) (1 , 0.5) 1.4706 1.6267 1.6283 1.7032
(0 , 0.5) (1 , 0.5) 1.0000 1.0000 1.1653 1.1897
(0.5 , 0.1) (1 , 0.1) 1.7241 1.9049 1.9375 1.9378
(0.5 , 0.1) (1 , 0.5) 0.8197 0.8497 1.1249 1.1294
(0.8 , 0.1) (1 , 0.1) 1.000 1.0000 1.1645 1.1709
(0.8 , 0.05) (1 , 0.1) 1.2800 1.3507 1.4123 1.4290
(0.8 , 0.05) (1 , 0.01) 1.8349 1.9616 1.9785 1.9852

4. Conclusion

We have provided a numerical scheme to approximate as closely as desired the
total variation distance between two measures µ and ν on Rd. We have addressed
this problem under fairly general assumptions on µ and ν (Carleman’s condition
or the easier to check sufficient condition (2.3)). Moreover, in case where µ and
ν are only accessible via i.i.d. samples, and for a fixed value of the degree n, the
SLLN ensures that empirical moments obtained from a sufficiently large sample,
are enough for the step-n semidefinite relaxation to provide accurate results. Fi-
nally, even before convergence takes place, the optimal value of each semidefinite
relaxation provides a useful guaranteed lower bound on the TV-distance, the larger
n, the better. Of course this numerical scheme is sensitive to the dimension and
so far is restricted to small dimension problems if good quality lower bounds are
expected. (On the other hand, even crude lower bounds might be interesting in
higher dimensional problems.) Therefore a topic of further investigation is to pro-
vide alternative and computationally cheaper lower bounds, possibly at the price
of loosing convergence.

5. Appendix

Proof of Theorem 3.4.

Proof. Define the (monic) polynomials

(5.1) x 7→ p(x) :=

m1∏

i=1

(x − x(i)) ; x 7→ q(x) :=

m2∏

j=1

(x− y(j)) ,

with respective vector of coefficients p ∈ Rm1+1 and q ∈ Rm2+1 in the usual
monomial basis. Observe that q(x(i)) 6= 0 for all i = 1, . . . ,m1, and p(y(j)) 6= 0 for
all j = 1, . . . ,m2.

Let (φ∗,ψ∗) be an optimal solution of (3.1) with n = n0 := max[m1,m2], and

w.l.o.g. suppose that n0 = m1. Then from
∫
p2d̂µ one deduce that Mm1

(µ)p = 0
and combining with 0 � Mm1

(φ∗) � Mm1
(µ), one also obtains Mm1

(φ∗)p = 0.
Hence rank(Mm1

(φ∗)) = rank(Mm1−1(φ
∗)) because
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– to every zero-eigenvector h ∈ Rm1 of Mm1−1(φ
∗) (if any exists) corresponds a

zero-eigenvector (h, 0) ∈ Rm1+1 of Mm1
(φ∗). Indeed

0 = hTMm1−1(φ
∗)h =

(
h
0

)T

Mm1
(φ∗)

(
h
0

)

⇒ Mm1
(φ∗)

(
h
0

)

= 0 ,

– the vector p ∈ Rm1+1 of the polynomial p ∈ R[x]m1
(and p 6∈ R[x]m1−1) is in

the kernel of Mm1
(φ∗) and not in the kernel of Mm1−1(φ

∗).
Then by Curto and Fialkow’s flat extension theorem [10, Theorem 3.7, p. 62],

φ∗ has a an atomic representing measure φ∗ supported on at most rank(Mm1
(φ∗))

points. In addition supp(φ∗) ⊂ X as
∫
p2dφ∗ = 0.

Next, with m2 ≤ n = m1, and considering the sub-matrices Mm2−1(ψ
∗) and

Mm2
(ψ∗) as principal submatrices of Mn(ψ

∗), a similar argument as above (but
with q instead of p) yields rank(Mm2

(ψ∗)) = rank(Mm2−1(ψ
∗)). In addition, if

m2 < n then consider the polynomials xkq ∈ R[x]m2+k, with respective vectors
qk ∈ Rm2+k+1, 1 ≤ k ≤ n − m2. Observe that for every k, Mm2+k(ψ

∗)qk = 0
because Mm2+k(ψ

∗) � Mm2+k(ν), and
∫
q2kdν = 0).

Hence qk ∈ Ker(Mm2+k(ψ
∗)), for every 1 ≤ k ≤ n − m2, and repeating the

arguments that we have used for φ∗ and µ, one obtains rank(Mm2+k(ψ
∗)) =

rank(Mm2
(ψ∗)) for every k ≤ n − m2. Therefore invoking again Curto and Fi-

alkow’s flat extension theorem, ψ∗ has an atomic representing measure ψ∗ sup-
ported on at most rank(Mm2

(ψ∗)) points with supp(ψ∗) ⊂ Y . Next, write

µ =

m1∑

i=1

αi δx(i) ; ν =

m2∑

j=1

βj δy(j) , with αi, βj > 0, ∀i, j ;
∑

i

αi =
∑

j

βj = 1 ,

and from supp(φ∗) ⊂ X and supp(ψ∗) ⊂ Y , we can also write

φ∗ =

m1∑

i=1

α′
i δx(i) ; ψ∗ =

m2∑

j=1

β′
j δy(j) , with α′

i, β
′
j ≥ 0, ∀i, j.

Next, consider the interpolation polynomials

pi(x) :=

∏

ℓ 6=i(x− x(ℓ))
∏

ℓ 6=i(x(i)− x(ℓ))
, qj(x) :=

∏

ℓ 6=j(x− y(ℓ))
∏

ℓ 6=j(y(j)− y(ℓ))
,

so that pi ∈ R[x]m1−1 and qj ∈ R[x]m2−1 for all i = 1, . . . ,m1, j = 1, . . . ,m2. With
n ≥ max[m1,m2], and using 0 � Mn(φ

∗) � Mn(µ), observe that

αi =

∫

p2i dµ ≥

∫

p2i dφ
∗ (= 〈pi,Mn(φ

∗)pi〉) = α′
i , ∀i = 1, . . . ,m1 .

Similarly, using Mn(ψ
∗) � Mn(ν),

βj =

∫

q2j dν ≥

∫

q2j dψ
∗ (= 〈qj ,Mn(ψ

∗)qj〉) = β′
j , ∀j = 1, . . . ,m2 .

Hence we may deduce that φ∗ ≤ µ and ψ∗ ≤ ν. In addition, since 2m1 ≤ 2n, and
as φ∗j − ψ∗

j = µj − νj for all j ≤ 2n,

0 =

∫

p2 d(µ− φ∗) =

∫

p2 d(ν − ψ∗) ⇒ supp(ν − ψ∗) ⊂ X .

In particular this implies

(5.2)

∫

xk p d(ν − ψ∗) = 0 , ∀k ∈ N .
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We want to prove that µ − φ∗ = ν − ψ∗. Indeed if true then (φ∗, ψ∗) is a feasible
solution of (2.6) with value ρn ≤ ‖µ − ν‖TV , which implies that (φ∗, ψ∗) is an
optimal solution of (2.6) hence with ρn = ‖µ− ν‖TV , the desired result.

To prove that µ− φ∗ = ν − ψ∗ we first prove that given j ∈ N,

µk − φ∗k = νk − ψ∗
k , ∀k ≤ m1 + j(5.3)

⇒ µk − φ∗k = νk − ψ∗
k , ∀k ≤ m1 + j + 1 .

This is already true for all k ≤ 2n, i.e., k ≤ m1 + j with j = 2n−m1. With p as
in (5.1), write p(x) = xm1 −

∑m1−1
k=0 pk x

k, so that

(5.4) xm1+j+1 = xj+1 p(x) +

m1−1∑

k=0

pk x
k+j+1 ,

and therefore, integrating with respect to µ− φ∗, yields

µm1+j+1 − φ∗m1+j+1 =

∫

xj+1 p(x) d(µ− φ∗)

︸ ︷︷ ︸

[= 0 as supp(µ), supp(φ∗) ⊂ X ]

+

m1−1∑

k=0

pk (µk+j+1 − φ∗k+j+1)

=

m1−1∑

k=0

pk (µk+j+1 − φ∗k+j+1)

=

m1−1∑

k=0

pk (νk+j+1 − ψ∗
k+j+1) [by induction hypothesis]

=

∫

xm1+j+1 d(ν − ψ∗)−

∫

xj+1p(x) d(ν − ψ∗)

︸ ︷︷ ︸

=0 by (5.2)

[ using (5.4) ]

=

∫

xm1+j+1 d(ν − ψ∗) = νm1+j+1 − ψ∗
m1+j+1 ,

which proves that (5.3) is true. As j ∈ N was arbitrary, we have proved that

µk − φ∗k = νk − ψ∗
k , ∀k ∈ N ,

and as µ−φ∗ ≥ 0, ν −ψ∗ ≥ 0, and their respective support are compact, one must
have µ− φ∗ = ν − ψ∗, which implies the desired result. �
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