
HAL Id: hal-04375443
https://laas.hal.science/hal-04375443

Submitted on 5 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Project and Conquer: Fast Quantifier Elimination for
Checking Petri Net Reachability

Nicolas Amat, Silvano Dal Zilio, Didier Le Botlan

To cite this version:
Nicolas Amat, Silvano Dal Zilio, Didier Le Botlan. Project and Conquer: Fast Quantifier Elimination
for Checking Petri Net Reachability. Verification, Model Checking, and Abstract Interpretation.
VMCAI 2024, Jan 2024, London, United Kingdom. pp.101-123, �10.1007/978-3-031-50524-9_5�. �hal-
04375443�

https://laas.hal.science/hal-04375443
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Project and Conquer: Fast Quantifier
Elimination for Checking Petri Net Reachability

Nicolas Amat1, Silvano Dal Zilio1, and Didier Le Botlan1

1LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Abstract

We propose a method for checking generalized reachability properties
in Petri nets that takes advantage of structural reductions and that can be
used, transparently, as a pre-processing step of existing model-checkers.
Our approach is based on a new procedure that can project a property,
about an initial Petri net, into an equivalent formula that only refers to
the reduced version of this net. Our projection is defined as a variable
elimination procedure for linear integer arithmetic tailored to the specific
kind of constraints we handle. It has linear complexity, is guaranteed to
return a sound property, and makes use of a simple condition to detect
when the result is exact. Experimental results show that our approach
works well in practice and that it can be useful even when there is only a
limited amount of reductions.
Keywords— Petri nets; Quantifier elimination; Reachability problems.

1 Introduction
We describe a method to accelerate the verification of reachability properties in
Petri nets by taking advantage of structural reductions [Ber87]. We focus on
the verification of generalized properties, that can be expressed using a Boolean
combination of linear constraints between places, such as (2 p0+p1 = 5)∧ (p1 ⩾
p2) for example. This class of formulas corresponds to the reachability queries
used in the Model Checking Contest (MCC) [ABC+19], a competition of Petri
net verification tools that we use as a benchmark.

In essence, net reductions are a class of transformations that can simplify
an initial net, (N1,m1), into another, residual net (N2,m2), while preserving a
given class of properties. This technique has become a conventional optimiza-
tion integrated into several model-checking tools [BLBDZ18, BDJ+19, TM21].
A contribution of our paper is a procedure to transform a property F1, about
the net N1, into a property F2 about the reduced net N2, while preserving
the verdict. We have implemented this procedure into a new tool, called Oc-
tant [Ama23], that can act as a pre-processor allowing any model-checker to
transparently benefit from our optimization. Something that was not possible
in our previous works. In practice, it means that we can use our approach
as a front-end to accelerate any model-checking tool that supports generalized
reachability properties, without modifying them.

1

Our approach relies on a notion, called polyhedral reduction [ABD21, ABD22,
ADZLB21, BLBDZ19], that describes a linear dependence relation, E, between
the reachable markings of a net and those of its reduced version. This equiv-
alence, denoted (N1,m1)≡E (N2,m2), preserves enough information in E so
that we can rebuild the state space of N1 knowing only the one of N2. An
interesting application of this relation is the following reachability conservation
theorem [ABD21]: assume we have (N1,m1)≡E (N2,m2), then property F is
reachable in N1 if and only if E ∧ F is reachable in N2. This property is inter-
esting since it means that we can apply more aggressive reduction techniques
than, say, slicing [Rak12, LOST17, KKG18], cone of influence [CJGK+18], or
other methods [GRVB08, KBJ21] that seek to remove or gather together places
that are not relevant to the property we want to check. We do not share this
restriction in our approach, since we reduce nets beforehand and can therefore
reduce places that occur in the initial property. We could argue that approaches
similar to slicing only simplify a model with respect to a formula, whereas, with
our method, we simplify the model as much as possible and then simplify for-
mulas as needed. This is more efficient when we need to check several properties
on the same model and, in any case, nothing prevents us from applying slicing
techniques on the result of our projection.

However, there is a complication, arising from the fact that the formula
E ∧ F may include variables (places) that no longer occur in the reduced net
N2, and therefore act as existentially quantified variables. This can complicate
some symbolic verification techniques, such as k-induction [SSS00], and impede
the use of explicit, enumerative approaches. Indeed, in the latter case, it means
that we need to solve an integer linear problem for each new state, instead
of just evaluating a closed formula. To overcome this problem, we propose
a new method for projecting the formula E ∧ F into an equivalent one, F ′,
that only refers to the places of N2. We define our projection as a procedure
for quantifier elimination in Presburger Arithmetic (PA) that is tailored to the
specific kind of constraints we handle in E. Whereas quantifier elimination has
an exponential complexity in general for existential formulas, our construction
has linear complexity and can only decrease the size of a formula. It also always
terminates and returns a result that is guaranteed to be sound; meaning it
under-approximates the set of reachable models and, therefore, a witness of
F ′ in N2 necessarily corresponds to a witness of F in N1. Additionally, our
approach includes a simple condition on F that is enough to detect when our
result is exact, meaning that if F ′ is unreachable in N2, then F is unreachable in
N1. We show in Sect. 6 that our projection is complete for 80% of the formulas
used in the MCC.

Outline and Contributions. We start by giving some technical background
about Petri nets and the notion of polyhedral abstraction in Sect. 2, then de-
scribe how to use this equivalence to accelerate the verification of reachability
properties (Th. 3.1 in Sect. 3). We also use this section to motivate our need
to find methods to eliminate (or project) variables in a linear integer system.
We define our fast projection method in Sect. 4, which is based on a dedicated
graph structure, called Token Flow Graph (TFG), capturing the particular form
of constraints occurring with polyhedral reductions. We prove the correctness
of this method in Sect. 5. Our method has been implemented, and we report
on the results of our experiments in Sect. 6. We give quantitative evidence

2

about several natural questions raised by our approach. We start by proving
the effectiveness of our optimization on both k-induction and random walk.
Then, we show that our method can be transparently added as a preprocessing
step to off-the-shelf verification tools. This is achieved by testing our approach
with the three best-performing tools that participated in the reachability cat-
egory of the MCC—ITS-Tools [TM15] (or ITS for short); LoLA [Wol18]; and
TAPAAL [DJJ+12]—which are already optimized for the type of models and
formulas used in our benchmark. Our results show that reductions are effective
on a large set of queries and that their benefits do not overlap with other existing
optimizations, an observation that was already made in [ABD22, BDJ+19]. We
also prove that our procedure often computes an exact projection and compares
favorably well with the variable elimination methods implemented in isl [Ver10]
and Redlog [DS97]. This supports our claim that we are able to solve non-trivial
quantifier elimination problems.

2 Petri Nets and Polyhedral Abstraction
Most of our results involve non-negative integer solutions to constraints ex-
pressed in Presburger Arithmetic, the first-order theory of the integers with
addition [Haa18]. We focus on the quantifier-free fragment of PA, meaning
Boolean combinations (using ∧, ∨ and ¬) of atomic propositions of the form
α ∼ β, where ∼ is one of =,⩽ or ⩾, and α, β are linear expressions with coeffi-
cients in Z. Without loss of generality, we can consider only formulas in disjunc-
tive normal form (DNF), with linear predicates of the form (

∑
ki xi)+b ⩾ 0. We

deliberately do not add a divisibility operator k | α, which requires that k evenly
divides α, since it can already be expressed with linear predicates, though at
the cost of an extra existentially quantified variable. This fragment corresponds
to the set of reachability formulas supported by many model-checkers for Petri
nets, such as [ABB+16, BRV04, DJJ+12, TM15, Wol18].

We use NV to denote the space of mappings over V = {x1, . . . , xn}, meaning
total mappings from V to N. We say that a mapping m in NV is a model of a
quantifier-free formula F if the variables of F , denoted fv(F), are included in V
and the closed formula F{m} (the substitution of m in F) is true. We denote
this relation m |= F .

F{m} ≜ F{x1 ← m(x1)} . . . {xn ← m(xn)} (1)

We say that a Presburger formula is consistent when it has at least one model.
We can use this notion to extend the definition of models in the case where F is
over-specified; i.e. it has a larger support than m. If m′ ∈ NU with U ⊆ fv(F),
we write m′ |= F when F{m′} is consistent.

Petri Nets and Reachability Formulas. A Petri net N is a tuple (P, T,Pre,
Post) where P = {p1, . . . , pn} is an ordered set of places, T = {t1, . . . , tk} is a
finite set of transitions (disjoint from P), and Pre : T → NP and Post : T → NP

are the pre- and post-condition functions (also called the flow functions of N).
A state m of a net, also called a marking, is a mapping of NP . A marked net
(N,m0) is a pair composed of a net and its initial marking m0.

We extend the comparison (=,⩾) and arithmetic operations (−,+) to their
point-wise equivalent. With our notations, a transition t ∈ T is said enabled

3

8192

p0

p2

t2

p5

t4

4096

p4

8192

p1

t1

p3

t3

t6

t5 p78192

p6

p8
t7

t0

≡E t2

p2

a2

t3

t1t0

t4

8192

p0

p3

4096

p4

1

Figure 1: An example of Petri net, M1 (left), and one of its polyhedral abstrac-
tions, M2 (right), with E ≜ (p1 = p4+4096)∧(p6 = p0+p2+p3+p5+p7)∧(a1 =
p7 + p8) ∧ (a2 = a1 + p5). Colors are used to emphasize places that are either
removed or added.

at marking m when m ⩾ Pre(t). A marking m′ is reachable from a marking
m by firing transition t, denoted m

t−→ m′, if: (1) transition t is enabled at
m; and (2) m′ = m − Pre(t) + Post(t). When the identity of the transition is
unimportant, we simply write this relation m−→m′. More generally, a marking
m′ is reachable from m in N , denoted m −→⋆ m′ if there is a (possibly empty)
sequence of transitions such that m −→ · · · −→m′. We denote R(N,m0) the set
of markings reachable from m0 in N .

We are interested in the verification of properties over the reachable markings
of a marked net (N,m0), with a set of places P . Given a formula F with
variables in P , we say that F is reachable if there exists at least one reachable
marking, m ∈ R(N,m0), such that m |= F . We call such marking a witness of F .
Likewise, F is said to be an invariant when all the reachable markings of (N,m0)
are models of F . This corresponds to the two classes of queries found in our
benchmark: EFF , which is true only if F is reachable; and AGF , which is true
when F is an invariant, with the classic relationship that AGF ≡ ¬ (EF¬F).
Examples of properties we can express in this way include: checking if some
transition can possibly be enabled, checking if there is a deadlock, checking
whether some linear invariant between places is always true, etc.

We use a standard graphical notation for nets where places are depicted
with circles and transitions with squares. We give an example in Fig. 1, where
net M1 depicts the SmallOperatingSystem model, borrowed from the MCC
benchmark [Kor15]. This net abstracts the lifecycle of a task in a simplified
operating system handling several memory segments (place p0), disk controller
units (p4), and cores (p6). The initial marking of the net gives the number
of resources available (e.g., there are 8 192 available memory segments in our
example).

We chose this model since it is one of the few examples in our benchmark
that fits on one page. This is not to say that the example is simple. Net M1 has
about 1017 reachable states, which means that it is out of reach of enumerative

4

methods, and only one symbolic tool in the MCC is able to generate its whole
state space1 [KBG+22]. For comparison, the reduced net M2 has about 1010

states.

Polyhedral Abstraction. We recently defined an equivalence relation that
describes linear dependencies between the markings of two different nets, N1

and N2 [ABD22]. In the following, we reserve F for formulas about a single
net and use E to refer to relations. Assume m is a mapping of NV . We can
associate m to the linear predicate m, which is a formula with a unique model
m.

m ≜
∧
{x = m(x) | x ∈ V } (2)

By extension, we say that m is a (partial) solution of E if the system E ∧ m
is consistent. In some sense, we use m as a substitution, since the formulas
E{m} and E ∧m have the same models. Given two mappings m1 ∈ NV1 and
m2 ∈ NV2 , we say that m1 and m2 are compatible when they have equal values
on their shared domain: m1(x) = m2(x) for all x in V1 ∩V2. This is a necessary
and sufficient condition for the system m1∧m2 to be consistent. Finally, we say
that m1 and m2 are related up-to E, denoted m1≡E m2, when E ∧m1 ∧m2 is
consistent.

m1≡E m2 ⇔ ∃m ∈ NV . m |= E ∧m1 ∧m2 (3)

This relation defines an equivalence between markings of two different nets
(≡E ⊆ NP1 × NP2) and, by extension, can be used to define an equivalence
between nets themselves, that we call polyhedral equivalence.

Definition 2.1 (E-equivalence). We say that (N1,m1) is E-equivalent to
(N2,m2), denoted (N1,m1) ≡E (N2,m2), if and only if:

(A1) E ∧m is consistent for all markings m in R(N1,m1) or R(N2,m2);

(A2) initial markings are compatible: m1≡E m2;

(A3) assume m′
1,m

′
2 are markings of N1, N2, such that m′

1≡E m′
2, then m′

1 is
reachable iff m′

2 is reachable: m′
1 ∈ R(N1,m1) ⇐⇒ m′

2 ∈ R(N2,m2).

By definition, given the equivalence (N1,m1) ≡E (N2,m2), every marking
m′

2 reachable in N2 can be associated to a subset of markings in N1, defined
from the solutions to E ∧m′

2 (by condition (A1) and (A3)). In practice, this
gives a partition of the reachable markings of (N1,m1) into “convex sets”—hence
the name polyhedral abstraction—each associated with a reachable marking in
N2. This approach is particularly useful when the state space of N2 is very
small compared to the one of N1.

We can prove that the two marked nets in our running example satisfy
M1≡E M2, for the relation E defined in Fig. 1. Net M2 is obtained au-
tomatically from M1 by applying a set of reduction rules, iteratively, and
in a compositional way. This process relies on the reduction system de-
fined in [BLBDZ19, ABD22]. As a result, we manage to remove five places:
p1, p5, p6, p7, p8, and only add a new one, a2. The “reduction system” (E) also
contains an extra variable, a1, that does not occur in any of the nets. It corre-
sponds to a place that was introduced and then removed in different reduction
steps.

1It is Tedd, part of the Tina toolbox, which also uses polyhedral reductions.

5

Polyhedral abstractions are not necessarily derived from reductions, but re-
ductions provide a way to automatically find interesting instances of abstrac-
tions. Also, the equation systems obtained using structural reductions exhibit
a specific structure, that we exploit in Sect. 4.

3 Combining Polyhedral Abstraction with
Reachability

We can define a counterpart to our notion of polyhedral abstraction which relates
to reachability formulas. We show that this equivalence can be used to speed
up the verification of properties by checking formulas on a reduced net instead
of the initial one (see Th. 3.1 and its corollary, below). In the following, we
assume that we have two marked nets such that (N1,m1) ≡E (N2,m2). Our
goal is to define a relation F1≡E F2, between reachability formulas, such that
F1 and F2 have the same truth values on equivalent models, with respect to E.

Definition 3.1 (Equivalence between formulas). Assume F1, F2 are reachable
formulas with respective sets of variables, V1 and V2, in the support of E. We
say that formula F2 implies F1 up-to E, denoted F2⊑E F1, if for every marking
m′

2 ∈ NV2 such that m′
2 |= E ∧ F2 there exists at least one marking m′

1 ∈ NV1

such that m′
1≡E m′

2 and m′
1 |= E ∧ F1.

F2⊑E F1 iff ∀m′
2. (m

′
2 |= E ∧ F2) ⇒ ∃m′

1. (m
′
1≡E m′

2 ∧m′
1 |= E ∧ F1)

(4)
We say that F1 and F2 are equivalent, denoted F1 ≡E F2, when both F1⊑E F2

and F2⊑E F1.

This notion is interesting when F1, F2 are reachability formulas on the nets
N1, respectively N2. Indeed, we prove that when F2⊑E F1, it is enough to find
a witness of F2 in N2 to prove that F1 is reachable in N1.

Theorem 3.1 (Finding Witnesses). Assume (N1,m1) ≡E (N2,m2) and
F2⊑E F1, and take a marking m′

2 reachable in (N2,m2) such that m′
2 |= F2.

Then there exists m′
1 ∈ R(N1,m1) such that m′

1≡E m′
2 and m′

1 |= F1.

Proof. Assume we have m′
2 reachable in N2 such that m′

2 |= F2. By property
(A1) of E-equivalence (Def. 2.1), formula E ∧ m′

2 is consistent, which gives
m′

2 |= E ∧ F2. By definition of the E-implication F2⊑E F1, we get a marking
m′

1 such that m′
1 |= F1 and m′

1≡E m′
2. We conclude that m′

1 is reachable in
N1 thanks to property (A3).

Hence, when F2⊑E F1 holds, F2 reachable in N2 implies that F1 is reachable
in N1. We can derive stronger results when F1 and F2 are equivalent.

Corollary 3.1.1. Assume (N1,m1) ≡E (N2,m2) and F1 ≡E F2, with fv(Fi) ⊆
Pi for all i ∈ 1..2, then: (CEX) property F1 is reachable in N1 if and only if F2

is reachable in N2 ; and (INV) F1 is an invariant on N1 if and only if F2 is an
invariant on N2.

Theorem 3.1 means that we can check the reachability (or invariance) of a
formula on the net N1 by checking instead the reachability of another formula

6

(F2) on N2. But it does not indicate how to compute a good candidate for F2.
By Definition 3.1, a natural choice is to select F2 ≜ E∧F1. We can actually do a
bit better. It is enough to choose a formula F2 that has the same (integer points)
solution as E ∧ F1 over the places of N2. More formally, let A ≜ fv(E) \ P2 be
the set of “additional variables” from E; variables occurring in E which are not
places of the reduced net N2. Then if F2 has the same integer solutions over
NP2 than the Presburger formula ∃A. (E ∧ F1), we have F1≡E F2. We say in
this case that F2 is the projection of E ∧ F1 on the set P2, by eliminating the
variables in A.

In the next section, we show how to compute a candidate projection formula
without resorting to a classical, complete variable elimination procedure on
E ∧ F1. This eliminates a potential source of complexity blow-up.

We can use Fourier-Motzkin elimination (FM) as a point of reference. Given
a system of linear inequalities S, with variables in V , we denote FMA(S) the
system obtained by FM elimination of variables in A from S. (We do not
describe the construction of FMA(S) here, since there exists many good refer-
ences [Imb93, Mon10] on the subject.) Borrowing an intuition popularized by
Pugh in its Omega test [Pug91], we can define two distinct notions of “shadows”
cast by the projection of S. On the one hand, we have the real shadow, relative
to A, which are the integer points (in NV \A) solutions of FMA(S). On the other
hand, the integer shadow of S is the set of markings m′ with an integer point
antecedent in S. We need the latter to check a query on N1. A main source of
complexity is that the (real) shadow is only exact on rational points and may
contain strictly more models than the integer shadow. Moreover, while the real
shadow of a convex region will always be convex, it may not be the case with the
integer shadow. Like with the real shadow, the set of equations computed with
our fast projection will always be convex. Unlike FM, our procedure will com-
pute an under-approximation of the integer shadow, not an over-approximation.
Also, we never rearrange or create more inequalities than the one contained in
S; but instead rely on variable substitution.

We illustrate the concepts introduced in this section on our running ex-
ample, with the reduction system from Fig. 1. With our notations, we try
to eliminate variables in A ≜ {a1, p1, p5, p6, p7, p8} and keep only those in
P2 ≜ {a2, p0, p2, p3, p4}.

Take the formula G1 ≜ (p5 + p6 ⩽ p8). Using substitutions from constraints
in E, namely the fact that (a2 = p7+ p8+ p5) and (p6 = p0+ p2+ p3+ p5+ p7),
we can remove occurrences of a1, p1, p6, p8 from E ∧ G1, leaving the resulting
equation (3 p5 + 2 p7 + p0 + p2 + p3 ⩽ a2) ∧ (a2 = p5 + p7 + p8), that still refers
to p5 and p7. We observe that non-trivial coefficients (like 3 p5) can naturally
occur during this process, even though all the coefficients are either 1 or −1
in the initial constraints. We can remove the remaining variables to obtain an
exact projection of G1 using our fast projection method, described below. The
result is the formula G2 ≜ (p0 + p2 + p3 ⩽ a2).

Another example is H1 ≜ (p6 = p8). We can prove that the integer shadow
of E∧H1, after projecting the variables in A, are the solutions to the PA formula
(a2−p0−p2−p3 ≡ 0 mod 2)∧ (a2 ⩾ p0+p2+p3). This set is not convex, since
(a2 = 0 ∧ p0 = p1 = p2 = p3 = 0) and (a2 = 2 ∧ p0 = p1 = p2 = p3 = 0) are in
the integer shadow, but not (a2 = 1∧ p0 = p1 = p2 = p3 = 0) for instance. Our
fast projection method will compute the formula H2 ≜ (a2 + p0 + p2 + p3 = 0)
and flag it as an under-approximation.

7

R |- p1 = p4 + 4096
R |- p6 = p0 + p2 + p3 + p5 + p7
A |- a1 = p7 + p8
A |- a2 = a1 + p5

a2

p5 a1

p7 p8

p0 p2 p3

p6

p4 4096

p1

Figure 2: Equations from our example in Fig. 1 and the associated TFG.

4 Projecting Formulas Using Token Flow Graphs
We describe a formula projection procedure that is tailored to the specific kind
of constraints occurring in polyhedral reductions. The example in Fig. 1 is
representative of the “shape” of reduction systems: it mostly contains equalities
of the form x =

∑
xi, over a sparse set of variables, but may also include some

inequalities; and it can have a very large number of literals (often proportional
to the size of the initial net). Another interesting feature is the absence of cyclic
dependencies, which underlines a hierarchical relationship between variables.

We can find a more precise and formal description of these constraints
in [ADZLB21], with the definition of a Token Flow Graph (TFG). Basically,
a TFG for a reduction system E is a directed acyclic graph (DAG) with one
vertex for each variable occurring in E. We consider two kinds of arcs, redun-
dancy (→•) and agglomeration (◦→), that correspond to two main classes of
reduction rules.

Arcs for redundancy equations, q→• p, correspond to equations of the form
p = q + r + . . . , expressing that the marking of place p can be reconstructed
from the marking of q, r, . . . In this case, we say that place p is removed by
arc q→• p, because the marking of q may influence the marking of p, but not
necessarily the other way round.

Arcs for agglomeration equations, a ◦→ p, represent equations of the form
a = p+ q + . . . , generated when we agglomerate several places into a new one.
In this case, we expect that if we can reach a marking with k tokens in a, then
we can certainly reach a marking with k1 tokens in p, and k2 tokens in q, . . .
such that k = k1 + k2 + Hence, the possible markings of p and q can
be reconstructed from the markings of a. In this case, it is p, q, . . . which are
removed. We also say that node a is inserted ; it does not exist in N1 but may
appear as a new place in N2 unless it is removed by a subsequent reduction. We
can have more than two places in an agglomeration, see the rules in [BLBDZ19].

A TFG can also include nodes for constants, used to express invariant state-
ments on the markings of the form p+ q = k. To this end, we assume that we
have a family of disjoint sets K(n) for each n in N, such that the “valuation” of
a node v ∈ K(n) is always n. We use K to denote the set of all constants.

Definition 4.1 (Token Flow Graph). A TFG with set of places P is a directed
graph (P, S,R•, A◦) such that:

• V = P ∪ S is a set of vertices (or nodes) with S ⊂ K a finite set of
constants,

8

• R• ∈ V × V is a set of redundancy arcs, v→• v′,

• A◦ ∈ V × V is a set of agglomeration arcs, v ◦→ v′, disjoint from R.

The main source of complexity in this approach arises from the need to
manage interdependencies between A◦ and R• arcs, that is situations where
redundancies and agglomerations are combined. This is not something that can
be easily achieved by looking only at the equations in E and thus motivates the
need for a specific data structure.

We define several notations that will be useful in the following. We use the
notation v → v′ when we have (v→• v′) or (v ◦→ v′). We say that a node v is a
root if it is not the target of an arc. A sequence of nodes (v1, . . . , vn) in V n is a
path if for all 1 ⩽ i < n we have vi → vi+1. We use the notation v →⋆ v′ when
there is a path from v to v′ in the graph, or when v = v′. We write v ◦→ X
when X is the largest subset {v1, . . . , vk} of V such that X ̸= ∅ and v ◦→ vi for
all i ∈ 1..k. And similarly with reductions, X →• v. Finally, the notation ↓v
denotes the set of successors of v, that is: ↓v ≜ {v′ ∈ V \ {v} | v →⋆ v′}. We
extend it to a set of variables X with ↓X =

⋃
x∈X ↓x.

We display an example of TFG in Fig. 2 (right), which corresponds to the
reduction equations generated on our running example, where annotations R
and A indicate if an equation is a redundancy or an agglomeration. TFGs
were initially defined in [ADZLB21, ADLB22] to efficiently compute the set
of concurrent places in a net, that is all pairs of places that can be marked
simultaneously in some reachable marking. We reuse this concept here to project
reachability formulas.

High Literal Factor. The projection procedure, described next, applies to
cubes only, meaning a conjunction of literals

∧
i∈1..n αi. Given a formula F1,

assumed in DNF, we can apply the projection procedure to each of its cubes,
separately. Then the projection of F1 is the disjunction of the projected cubes.
We assume from now on that F1 is a cube formula.

We assume that every literal is in normal form, αi ≜ (
∑

pj∈B kij pj)+bi ⩾ 0,
where the kij ’s and bi are in Z. In the following, we denote αi(q) the coefficient
associated with variable q in αi. We also use maxX αi and minX αi for the
maximal (resp. minimal) coefficient associated with variables in X ⊆ B .

αi =
∑
p∈B

αi(p) p+ bi and maxX αi = max {αi(p) | p ∈ X}

We define the Highest Literal Factor (HLF) of a set of variables X with
respect to a set of normalized literals (αi)i∈I . In the simplest case, the HLF of
X with respect to a single literal, α, is the subset of variables in X with the
highest coefficients in α. Then, the HLF of X with respect to a set of literals is
the (possibly empty) intersection of the HLFs of X with respect to each literal.
When non-empty, it means that at least one variable in X always has the highest
coefficient, and we say then that the whole set X is polarized with respect to
the literals (αi).

HLFX(αi) = {p ∈ X | αi(p) = maxX αi}
HLFX(αi)i∈I =

⋂
i∈I

HLFX(αi)

9

Definition 4.2 (Polarized Set of Constraints). A set of variables X ⊆
fv(C) is said polarized with respect to a set of normalized literals C when
HLFX(C) ̸= ∅.

We prove in the next section that our procedure is exact when the variables
we eliminate are polarized. While this condition seems very restrictive, we
observe that it is often true with the queries used in our experiments.

Example. Let us illustrate our approach with two examples. Assume we want
to eliminate an agglomeration a ◦→ {q, r}, meaning that we have the condition
a = q + r and that both q and r must disappear. We consider two examples of
systems, each with only two literals, and with free variables {p, q}.

3 p + 2 q − 1 r > 0
2 p + 1 q + 1 r − 5 > 0

3 p + 2 q − r > 0
− p + q + 2 r − 5 > 0

3 p + 2 a > 0
2 p + 1 a − 5 > 0

3 p − a > 0
− p + a − 5 > 0

In the left example, the set {q, r} is polarized with respect to the initial
system (top), with the highest literal factor being q. So we replace q with a
in both literals and eliminate r. Uninvolved variables (the singleton {p} in
this case) are left unchanged. We can prove that both systems, before and after
substitution, are equivalent. For instance, every solution in the resulting system
can be associated with a solution of the initial one by taking q = a and r = 0.

The initial system on the right (top) is non-polarized: the HLF relative to
{q, r} is {q} for the first literal (+2 q versus −r) and {r} in the second (+q
versus 2 r). So we substitute a to the variable with the lowest literal factor, in
each literal, and remove the other variable (r in the first literal and q in the
second). This is sound because we take into account the worst case in each case.
But this is not complete, because we may be too pessimistic. For instance, the
resulting system has no solution for p = 2; because it entails a ⩽ 6 and a ⩾ 7.
But p = 2, q = 3, r = 2 is a model of the initial system.

Next, we give a formal description of our projection procedure as a sequence
of formula rewriting steps and prove that the result is exact (we have F2≡E F1)
when all the reduction steps corresponding to an agglomeration are on polarized
variables.

5 Formal Procedure and Proof of Correctness
In all the results of this section, we assume that N1 and N2 are two nets,
with respective sets of places P1, P2 and initial markings m1,m2, such that
(N1,m1) ≡E (N2,m2). Given a formula F1 with support on N1, we describe a
procedure to project formula E ∧ F1 into a new formula, F2, with support on
N2. Our projection will always lead to a sound formula, meaning F2⊑E F1. It
is also able in many cases (see some statistics in Sect. 6) to result in an exact
formula, such that F2≡E F1.

Constraints on TFGs. To ensure that a TFG preserves the semantics of the
system E we must introduce a set of constraints on it. A well-formed TFG G

10

built from E is a graph with one node for every variable and constant occurring
in E, such that we can find one set of arcs, either X →• v or v ◦→X, for every
equation of the form v =

∑
vi∈X vi in E. We deal with inequalities by adding

slack variables. We also impose additional constraints which reflect that the
same place cannot be removed more than once. Note that the places of N2 are
exactly the root of G (if we forget about constants).

Definition 5.1 (Well-formed TFG). A TFG G = (P, S,R•, A◦) for the equiv-
alence statement (N1,m1)≡E (N2,m2) is well-formed when the following con-
straints are met, with P1, P2 the set of places in N1, N2:

(T1) nodes in S are roots: if v ∈ S then v is a root of G;

(T2) nodes can be removed only once: it is not possible to have v ◦→ w and
v′ → w with v ̸= v′, or to have both v→• w and v ◦→ w;

(T3) G contains all and only the equations in E: we have v ◦→X or X →• v
if and only if the equation v =

∑
vi∈X vi is in E;

(T4) G is acyclic and roots in P \ S are exactly the set P2.

Given a relation (N1,m1)≡E (N2,m2), the well-formedness conditions are
enough to ensure the unicity of a TFG (up-to the choice of constant nodes)
when we set each equation to be either in A or in R. In this case, we denote
the graph T(E). In practice, we use the tool Reduce [LC23] to generate the
reduction system E.

Formula Rewriting. We assume given a relation (N1,m1) ≡E (N2,m2), and
its associated well-formed TFG written T(E). We consider that F1 is a cube of n
literals, F1 ≜

∧
i∈1..n α

0
i . Our algorithm rewrites each α0

i by applying iteratively
an elimination step, described next, according to the constraints expressed in
T(E). The final result is a conjunction F2 =

∧
i∈1..n βi, where each literal βi

has support in N2. Rewriting can only replace a variable with a group of other
variables that are its predecessors in the TFG, which ensures termination in
polynomial time (in the size of E). Although the result has the same number of
literals, it usually contains many redundancies and trivial constant comparisons,
so that, after simplification, F2 can actually be much smaller than F1.

A reduction step (to be applied repeatedly) takes as input the current set of
literals, C = (αi)i∈1..n, and modifies it. To ease the presentation, we also keep
track of a set of variables, B such that

⋃
i∈1..n fv(αi) ⊆ B .

An elimination step is a reduction written (B ,C) 7→ (B ′,C ′) where C =
(αi)i∈1..n and B ′ ⊊ B , defined as one of the three cases below (one for redun-
dancy, and two for agglomerations, depending on whether the removed variables
are polarized or not). We assume that literals are in normal form and that X
is a set of variables {x1, . . . , xk}. Note the precondition ↓X ∩ B = ∅ on all
rules, which forces them to be applied bottom-up on the TFG (remember it is
a DAG). We gave a short example of how to apply rules (AGP) and (AGD) at
the end of the previous section.

(RED) If X →• p and ↓p ∩ B = ∅ then (B ,C) 7→ (B ′,C ′) holds, where
B ′ = B \ {p} and C ′ is the set of literals α′

i obtained by normalizing
the linear constraint αi{p ← x1 + · · · + xk}. That is, we substitute p

11

with
∑

xi∈X xi in C , which is the meaning of the redundancy equation
(constraint (T3) in Def. 5.1).

(AGP) If a ◦→ X with ↓X ∩ B = ∅, a ∈ B , and X polarized with respect
to C . Then (B ,C) 7→ (B ′,C ′) holds, where B ′ = B \ X, and, by
taking xj ∈ HLFX(C), we define C ′ as the set of literals α′

i obtained by
normalizing the linear constraint αi{xl ← 0}l ̸=j{xj ← a}. That is, we
eliminate the variables xl, different from xj , from C and replace xj with
a; where xj is a variable of X that always have the highest coefficient in
each literal (among the ones of X).

(AGD) If a◦→X with ↓X ∩B = ∅, a ∈ B , and X is not polarized with respect
to C . Then (B ,C) 7→ (B ′,C ′) holds, where B ′ = B \ X and C ′ is the
set of literals α′

i obtained by normalizing the linear constraint αi{xl ←
0}l ̸=j{xj ← a} such that αi(xj) = minX αi. Meaning we eliminate the
variables xl different from xj from αi and replace xj with a, where xj is
a variable with the smallest coefficient in αi (among the ones of X). Note
that the chosen variable xj is not necessarily the same in every literal of
C .

Our goal is to preserve the semantics of formulas at each reduction step, in
the sense of the relations ⊑E and ≡E . In the following, we use C to represent
both a set of literals (αi)i∈I and the cube formula

∧
i∈I αi. We can prove that

the elimination steps corresponding to the redundancy (RED) and polarized
agglomeration (AGP) cases preserve the semantics of the formula C . On the
other hand, a non-polarized agglomeration step (AGD) may lose some markings.

Proof of the Algorithm. We prove the main result of the paper, namely
that fast quantifier elimination preserves the integer solutions of a system when
we only have polarized agglomerations. To this end, we need to prove two
theorems. First, Theorem 5.1, which entails the soundness of one step of elim-
ination. It also entails completeness for rules (RED) and (AGP). Second, we
prove a progress property (Th. 5.4 below), which guarantees that we can apply
elimination steps until we reach a set of literals C ′ with support on the reduced
net N2.

Theorem 5.1 (Projection Equivalence). If (B ,C) 7→ (B ′,C ′) is a (RED) or
(AGP) reduction then C ′≡E C ; otherwise C ′⊑E C .

We prove Th. 5.1 in two steps. We start by proving that elimination steps
are sound, meaning that the integer solutions of C ′ are also solutions of C (up-
to E). Then we prove that elimination is also complete for rules (RED) and
(AGP). In the following, we use C to represent both a set of literals (αi)i∈I and
the cube formula

∧
i∈I αi.

Lemma 5.2 (Soundness). If (B ,C) 7→ (B ′,C ′) then C ′⊑E C .

Proof. Take a valuation m′ of NB ′
such that m′ |= E ∧ C ′. We want to show

that there exists a marking m of NB such that m≡E m′ satisfying E ∧ C .
We have three possible cases, corresponding to rule (RED), (AGP) or

(AGD). In each case, we provide a marking m built from m′. Since m≡E m′

12

is enough to prove m |= E, we only need to check two properties: first that
m≡E m′ (∗), then that m |= α for every literal α in C (∗∗).

(RED) In this case we have X→• p and B ′ = B \ {p}, with X = {x1, . . . , xk}.
We can extend m′ into the unique valuation m of NB such that m(p) =
m′(x1) + · · ·+m′(xk) and m(v) = m′(v) for all other nodes v in B \ {p}.
Since p = x1 + · · · + xk is an equation of E (condition (T3)) we obtain
that m′≡E m and therefore also m |= E (∗).
We now prove that m |= C . The literals in C ′ are of the form ασ with σ
the substitution {p ← x1 + · · · + xk} and α in C . Remember that, with
our notations (e.g. Equation (1) in page 3), we have m |= α if and only if
α{m} SAT (is satisfiable). By hypothesis, m′ |= ασ. Hence, ασ{m′} SAT,
which is equivalent to α{m} SAT, and therefore m |= α (∗∗), as required.

(AGP) In this case we have a ◦→X with X = {x1, . . . , xk}, polarized relative
to C , and B′ = B\X. We consider xj in X the variable in HLFX(C) that
was chosen in the reduction; meaning that C ′ is a conjunction of literals of
the form α{xl ← 0}l ̸=j{xj ← a}, with α a literal of C . Given m′ a model
of C ′, we define m the unique marking on NB such that m(xj) = m(a),
m(xl) = 0 for all l ̸= j, and m(v) = m′(v) for all other variables v in
B \X.

From Lemma 2 of [ADZLB21] (the “token propagation” property of TFGs),
we know that any distribution of m(a) tokens, in place a, over the
(xi)i∈1..k, is also a model of E. Which means that m |= E (∗). Note
that the token propagation Lemma does not imply that the value of m(v),
for the nodes “below X” (v in ↓X), is unchanged. This is not problematic,
since the side condition ↓X ∩ B = ∅ ensures that these nodes are not in
B , and therefore cannot influence the value of α{m}.
Consider a literal α in C . Since m′ |= C ′, we have that α{xl ←
0}l ̸=j{xj ← a}{m′} SAT, which is exactly α{m}, since ↓X ∩ B = ∅,
as needed (∗∗).

(AGD) In this case we have a ◦→ X with X = {x1, . . . , xk}, non-polarized
relative to C , and B′ = B \X. We know that m′ |= E, therefore there is
a marking m of NB that extends m′ such that m≡E m′ (∗).
Consider a literal α in C . By definition of (AGD), we have an associated
literal α′ ≜ α{xl ← 0}l ̸=j{xj ← a} in C ′ such that α(xj) = minX αi.
Since the coefficient of xj is minimal, we have that

∑
i∈1..k α(xi)m(xi) ⩾

α(xj)
∑

i∈1..k m(xi) = α(xj)m
′(a), and therefore

∑
v∈B α(v)m(v) ⩾∑

v∈B ′ α′(v)m′(v). The result follows from the fact that α{m} SAT (∗∗).

Now we prove that our quantifier elimination step, for the (RED) and (AGP)
cases, leads to a complete projection, that is any solution of the initial formula
corresponds to a projected solution in the projected formula.

Lemma 5.3 (Completeness). If (B ,C) 7→ (B ′,C ′) is a (RED) or (AGP) re-
duction then C ⊑E C ′.

13

Proof. Take a marking m of NB such that m |= E ∧ C . We want to show that
there exists a valuation m′ of NB ′

such that m≡E m′ (∗) and m′ |= C ′ (∗∗).
This is enough to prove m′ |= E∧C ′. We have two different cases, corresponding
to the rules (RED) and (AGP).

(RED) In this case we have X→• p with X = {x1, . . . , xk} and B′ = B \ {p}.
We define m′ as the (unique) projection of m on B ′. Since m |= E we
have that m′≡E m (∗).
Also, literals in C ′ are of the form α′ ≜ α{p← x1+ · · ·+xk} where α is a
literal of C . Since m(p) =

∑
i∈1..k m(xi) and m is a model of α, it is also

the case that m′ is a model of α′ (∗∗).

(AGP) In this case we have a ◦→X with X = {x1, . . . , xk} and B ′ = B \X.
We define m′ as the (unique) projection of m on B ′, by taking m′(a) =∑

i∈1..k m(xi). Since m |= E we have that m′≡E m (∗).
We consider xj in X the variable in HLFX(C) that was chosen in
the reduction; meaning that C ′ is a conjunction of literals of the form
α{xl ← 0}l ̸=j{xj ← a}, with α a literal of C . Since

∑
i∈1..k α(xi)m(xi) ⩽

α(xj)
∑

i∈1..k m(xi) = α(xj)m
′(a), we have m′ is a model of α′ (∗∗).

The final step of our proof relies on a progress property, meaning there is
always a reduction step to apply except when all the literals have their support
on the reduced net, N2. This property relies on relation 7→∗, which is the
transitive closure of 7→. Together with Th. 5.1, the progress theorem ensures
the existence of a sequence (P,C) 7→∗ (P2,C

′), such that C ≡E C ′ (or C ′⊑E C
if we have at least one non-polarized agglomeration). In this context, P is the
set of all variables occurring in the TFG of E, and therefore it contains P1∪P2.

Theorem 5.4 (Progress). Assume (P, F1) 7→∗ (B ,C) then either B ⊆ P2, the
set of places of N2, or there is an elimination step (B ,C) 7→ (B ′,C ′) such that
fv(C ′) ⊆ B ′ and the places removed from B have no successors in B ′: for all
places p in B \ B ′, we have ↓p ∩ B = ∅.

Proof. Assume we have (P, F1) 7→∗ (B ,C) and B ⊈ P2.
By condition (T4) in Def. 5.1, we know that P2 are roots in the TFG T(E).

We consider the set of nodes in B \ P2, which corresponds to nodes in B with
at least one parent. Also, by condition (T4), we know that T(E) is acyclic,
then there are nodes in B \P2 that have no successors in B . We call this set L.
Hence, L ≜ {v | v ∈ B \ P2 ∧ ↓v ∩B = ∅}.

Take a node p in L. We have two possible cases. If there is a set X such
that X→• p, we can apply the (RED) elimination rule. Otherwise, there exists
a node a and a set X ⊆ L (by condition (T2)) such that a ◦→X with p ∈ X. In
this case, apply rule (AGP) or (AGD), depending on whether the agglomeration
is polarized or not.

Remark. We have designed the rule (AGD) to obtain at least F2⊑E F1 when
the procedure is not complete (instead of F2≡E F1), which is useful for finding
witnesses (see Th. 3.1). Alternatively, we could propose a variant rule, say

14

(AGD’), which chooses the variable xj having the highest coefficient in αi, that
is αi(xj) = maxX αi. This variant guarantees a dual result, that is F1⊑E F2.
In this case, if F2 is not reachable then F1 is not reachable, which is useful to
prove invariants.

6 Experimental Results
Data-Availability Statement. We have implemented our fast quantifier
elimination procedure in a new, open-source tool called Octant [Ama23], avail-
able on GitHub. All the tools, scripts and benchmarks used in our experiments
are part of our artifact [ADZLB23a].

We use an extensive, and independently managed, set of models and
formulas collected from the 2022 edition of the Model Checking Contest
(MCC) [KBG+22]. The benchmark is built from a collection of 128 models.
Most models are parametrized and can have several instances. This amounts
to about 1 400 different instances of Petri nets whose size varies widely, from 9
to 50 000 places, and from 7 to 200 000 transitions. This collection provides a
large number of examples with various structural and behavioral characteristics,
covering a large variety of use cases. Each year, the MCC organizers randomly
generate 16 reachability formulas for each instance. The pair of a Petri instance
and a formula is a query ; which means we have more than 22 000 queries overall.

We do not compute reductions ourselves but rely on the tool Reduce, part
of the latest public release of Tina [LC23]. We define the reduction ratio (rp) of
an instance as the ratio (pinit− pred)/pinit between the number of places before
(pinit) and after (pred) reduction. We only consider instances with a ratio, rp,
between 1% and 100% (meaning the net is fully reduced), which still leaves about
17 000 queries, so about 77% of the whole benchmark. More information about
the distribution of reductions can be found in [ABD22, BLBDZ19], where we
show that almost half the instances (48%) can be reduced by a factor of 25% or
more.

The size of the reduction system, E, is proportional to the number of places
that can be removed. To give a rough idea, the mean number of variables in
E is 1 375, with a median value of 114 and a maximum of about 62 000. The
number of literals is also rather substantial: a mean of 869 literals (62% of
agglomerations and 38% of redundancies), with a median of 27 and a maximum
of about 38 000.

We report on the results obtained on two main categories of experiments:
first with model-checking, to evaluate if our approach is effective in practice, us-
ing real tools; then to assess the precision and performance of our fast quantifier
elimination procedure.

Model-Checking. We start by showing the effectiveness of our approach on
both k-induction and random walk. This is achieved by comparing the compu-
tation time, with and without reductions, on a model-checker that provides a
“reference” implementation of these techniques. (Without any other optimiza-
tions that could interfere with our experiments.) It is interesting to test the
results of our optimization separately on these two techniques. Indeed, each
technique is adapted to a different category of queries: properties that can be
decided by finding a witness, meaning true EF formulas or false AG ones, can

15

Figure 3: Random walk w/wo reduc-
tions. Figure 4: k-induction w/wo reductions.

often be checked more efficiently using a random exploration of the state space.
On the other hand, symbolic verification methods are required when we want
to check invariants.

We display our results using the two “cactus plots” in Figs. 3 and 4. We
distinguish between two categories of instances, depending on their reduction
ratio. We use dashed lines for models with a low or moderate reduction ratio
(value of rp less than 50%) and solid lines for models that can be reduced by
more than half. The first category amounts to roughly 10 700 queries (62% of
our benchmark), while the second category contains about 6 000 queries. The
most interesting conclusion we can draw from these results is the fact that our
approach is beneficial even when there is only a limited amount of reductions.

Our experiments were performed with a maximal timeout of 180 s and inte-
grated the projection time into the total execution time. The “vertical asymp-
tote” that we observe in these plots is a good indication that we cannot expect
further gains, without projection, for timeout values above 60s. Hence, our
choice of timeout value does not have an overriding effect. We observe mod-
erate performance gains with random exploration (with ×1.06 more computed
queries on low-reduction instances and ×1.19 otherwise) and good results with
k-induction (respectively ×1.94 and ×2.33).

We obtain better results if we focus on queries that take more than 1 s
on the original formula, which indicates that reductions are most effective on
“difficult problems” (there is not much to gain on instances that are already
easy to solve). With random walk, for instance, the gain becomes ×1.48 for
low-reduction instances and ×1.93 otherwise. The same observation is true
with k-induction, with performance gains of ×3.78 and ×3.51 respectively.

Model-Checking under Real Conditions. We also tested our approach
by transparently adding polyhedral reductions as a front-end to three different
model-checkers: TAPAAL [DJJ+12], ITS [TM15], and LoLA [Wol18], that imple-
ment portfolios of verification techniques. All three tools regularly compete in
the MCC (on the same set of queries that we use for our benchmark), TAPAAL
and ITS share the top two places in the reachability category of the 2022 and
2023 editions.

16

Tool # Queries Speed-up # Excl.
QueriesOriginal Projected Mean Median

ITS 302 352 1.42 1.00 78
LoLA 143 205 14.97 1.44 76
TAPAAL 134 216 1.87 1.17 99

Figure 5: Impact of projections on the challenging queries.

We ran each tool on our set of complete projections, which amounts to
almost 100 000 runs (one run for each tool, once on both the original and the
projected query). We obtained a 100% reliability result, meaning that all tools
gave compatible results on all the queries; and therefore also compatible results
on the original and the projected formulas.

A large part of the queries can be computed by all the tools in less than
100ms and can be considered as easy. These queries are useful for testing relia-
bility but can skew the interpretation of results when comparing performances.
This is why we decided to focus our results on a set of 809 challenging queries,
that we define as queries for which either TAPAAL or ITS, or both, are not
able to compute a result before projection. The 809 challenging queries (4% of
queries) are well distributed, since they cover 209 different instances (14% of all
instances), themselves covering 43 different models (33% of the models).

We display the results obtained on the challenging queries, for a timeout of
180 s, in Table 5. We provide the number of computed queries before and after
projection, together with the mean and median speed-up (the ratio between
the computation time with and without projection). The “Exclusive” column
reports, for each tool, the number of queries that can only be computed using
the projected formula. Note that we may sometimes time out with the projected
query, but obtain a result without. This can be explained by cases where the
size of the formula blows up during the transformation into DNF.

We observe substantial performance gains with our approach and can solve
about half of the challenging queries. For instance, we are able to compute ×1.6
more challenging queries with TAPAAL using projections than without. (We
display more precise results on TAPAAL, the winner of the MCC 2022 edition,
in Fig. 6.) We were also able to compute 62 queries, using projections, that no
tool was able to solve during the last MCC (where each tool has 3600 s to answer
16 queries on a given model instance). All these results show that polyhedral
reductions are effective on a large set of queries and that their benefits do not
significantly overlap with other existing optimizations, an observation that was
already made, independently, in [ABD22] and [BDJ+19].

The approach implemented in Octant was partially included in the version
of our model-checker, called SMPT [AZ23], that participated in the MCC 2023
edition. We mainly left aside the handling of under-approximated queries, when
the formula projection is not complete. While SMPT placed third in the reach-
ability category, the proportion of queries it was able to solve raised by 5.5%
between 2022 (without the use of Octant) and 2023, to reach a ratio of 93.6% of
all queries solved with our tool. A 5% gain is a substantial result, taking into
account that the best-performing tools are within 1% of each other; the ratios

17

Figure 6: TAPAAL w/wo polyhedral re-
ductions.

Figure 7: Redlog vs isl vs Fast elimina-
tion.

for ITS and TAPAAL in 2023 are respectively 94.6% and 94.3%.

Performance of Fast Elimination. Our last set of experiments is concerned
with the accuracy and performance of our quantifier elimination procedure. We
decided to compare our approach with Redlog [DS97] and isl [Ver10] (we give
more details on these two tools in Sect. 7).

We display our results in the cactus plot of Fig. 7, where we compare the
number of projections we can compute given a fixed timeout. We observe a
significant performance gap. For instance, with a timeout of 60 s, we are able
to compute 16 653 projections, out of 16 976 queries (98%), compared to 9 407
(55%) with isl or 4 915 (29%) with Redlog. So an increase of ×1.77 over the
better of the two tools. This provides more empirical evidence that the class
of linear systems we manage is not trivial, or at least does not correspond to
an easy case for the classical procedure implemented in Redlog and isl. We also
have good results concerning the precision of our approach, since we observe
that about 80% of the projections are complete. Furthermore, projections are
inexpensive. For instance, the computation time is less than 1 s for 96% of
the formulas. We also obtained a median reduction ratio (computed as for the
number of places) of 0.2 for the number of cubes and their respective number
of literals.

7 Discussion and Related Works
We proposed a quantifier elimination procedure that can take benefit of poly-
hedral reductions and can be used, transparently, as a pre-processing step of
existing model-checkers. The main characteristic of our approach is to rely on
a graph structure, called Token Flow Graph, that encodes the specific shape of
our reduction equations.

The idea of using linear equations to keep track of the effects of structural
reductions originates from [BLBDZ18, BLBDZ19], as a method for counting
the number of reachable markings. We extended this approach to Bounded

18

Model Checking (BMC) in [ABD22] where we defined our polyhedral abstrac-
tion equivalence, ≡E , and in [ADZLB23b] where we proposed a procedure to
automatically prove when such abstractions are correct. The idea to extend
this relation to formulas is new (see Def. 3.1). In this paper, we broaden our
approach to a larger set of verification methods; most particularly k-induction,
which is useful to prove invariants, and simulation (or random walk), which
is useful for finding counter-examples. We introduced the notion of a Token
Flow Graph (TFG) in [ADZLB21], as a new method to compute the concurrent
places of a net; meaning all pairs of places that can be marked simultaneously.
We find a new use for TFGs here, as the backbone of our variable elimination
algorithm, and show that we can efficiently eliminate variables in systems of the
form E ∧ F , for an arbitrary F .

We formulated our method as a variable elimination procedure for a re-
stricted class of linear systems. There exist some well-known classes of lin-
ear systems where variable elimination has a low complexity. A celebrated
example is given by the link between unimodular matrices and integral poly-
hedra [HK10], which is related to many examples found in abstract domains
used in program verification, such as systems of differences [AS80] or oc-
tagon [Min06, JM09]. To the best of our knowledge, none of the known
classes correspond to what we define using TFGs. There is also a rich liter-
ature about quantifier elimination in Presburger arithmetic, such as Cooper’s
algorithm [Coo72, Haa18] or the Omega test [Pug91] for instance, and how to
implement it efficiently [HLL92, LS07, Mon10]. These algorithms have been im-
plemented in several tools, using many different approaches: automata-based,
e.g. TaPAS [LP09]; inside computer algebra systems, like with Redlog [DS97];
or in program analysis tools, like isl [Ver10], part of the Barvinok toolbox. An-
other solution would have been to retrieve “projected formulas” directly from
SMT solvers for linear arithmetic, which often use quantifier elimination inter-
nally. Unfortunately, this feature is not available, even though some partial
solutions have been proposed recently [BDHP]. All the exact methods that we
tested have proved impractical in our case. This was to be expected. Quan-
tifier elimination can be very complex, with an exponential time complexity
in the worst case (for existential formulas as we target); it can generate very
large formulas; and it is highly sensitive to the number of variables, when our
problem often involves several hundreds and sometimes thousands of variables.
Also, quantifier elimination often requires the use of a divisibility operator (also
called stride format in [Pug91]), which is not part of the logic fragment that we
target.

Another set of related works is concerned with polyhedral techniques [FL11],
used in program analysis. For instance, our approach obviously shares similar-
ities with works that try to derive linear equalities between variables of a pro-
gram [CH78], and polyhedral abstractions are very close in spirit to the notion of
linear dependence between vectors of integers (markings in our case) computed
in compiler optimizations. Another indication of this close relationship is the
fact that isl, the numerical library that we use to compare our performances, was
developed to support polyhedral compilation. We need to investigate this rela-
tionship further and see if our approach could find an application with program
verification. From a more theoretical viewpoint, we are also looking into ways to
improve the precision of our projection in the cases where we find non-polarized
sets of constraints.

19

References
[ABB+16] Elvio Gilberto Amparore, Gianfranco Balbo, Marco Beccuti, Su-

sanna Donatelli, and Giuliana Franceschinis. 30 years of Great-
SPN. In Principles of Performance and Reliability Modeling and
Evaluation. Springer, 2016. doi:10.1007/978-3-319-30599-8_
9.

[ABC+19] Elvio Amparore, Bernard Berthomieu, Gianfranco Ciardo, Silvano
Dal Zilio, Francesco Gallà, Lom Messan Hillah, Francis Hulin-
Hubard, Peter Gjøl Jensen, Loïg Jezequel, Fabrice Kordon, Didier
Le Botlan, Torsten Liebke, Jeroen Meijer, Andrew Miner, Em-
manuel Paviot-Adet, Jiří Srba, Yann Thierry-Mieg, Tom van Dijk,
and Karsten Wolf. Presentation of the 9th Edition of the Model
Checking Contest. In Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), LNCS. Springer, 2019.
doi:10.1007/978-3-662-58381-4_9.

[ABD21] Nicolas Amat, Bernard Berthomieu, and Silvano Dal Zilio. On the
Combination of Polyhedral Abstraction and SMT-based Model
Checking for Petri nets. In Application and Theory of Petri Nets
and Concurrency (Petri Nets), LNCS. Springer, 2021. doi:10.
1007/978-3-030-76983-3_9.

[ABD22] Nicolas Amat, Bernard Berthomieu, and Silvano Dal Zilio. A
Polyhedral Abstraction for Petri Nets and its Application to SMT-
Based Model Checking. Fundamenta Informaticae, 187(2-4), 2022.
doi:10.3233/FI-222134.

[ADLB22] Nicolas Amat, Silvano Dal Zilio, and Didier Le Botlan. Leveraging
polyhedral reductions for solving Petri net reachability problems.
International Journal on Software Tools for Technology Transfer,
25, 2022. doi:10.1007/s10009-022-00694-8.

[ADZLB21] Nicolas Amat, Silvano Dal Zilio, and Didier Le Botlan. Acceler-
ating the Computation of Dead and Concurrent Places using Re-
ductions. In Model Checking Software (SPIN), LNCS. Springer,
2021. doi:10.1007/978-3-030-84629-9_3.

[ADZLB23a] Nicolas Amat, Silvano Dal Zilio, and Didier Le Botlan. Artifact
for VMCAI 2024 Paper "Project and Conquer: Fast Quantifier
Elimination for Checking Petri Net Reachability", 2023. doi:
10.5281/zenodo.7935153.

[ADZLB23b] Nicolas Amat, Silvano Dal Zilio, and Didier Le Botlan. Automated
Polyhedral Abstraction Proving. In Application and Theory of
Petri Nets and Concurrency (Petri Nets), LNCS. Springer, 2023.
doi:10.1007/978-3-031-33620-1_18.

[Ama23] Nicolas Amat. Octant (version 1.0): projection of Petri net reach-
ability properties, 2023. URL: https://github.com/nicolasAmat/
Octant.

20

https://doi.org/10.1007/978-3-319-30599-8_9
https://doi.org/10.1007/978-3-319-30599-8_9
https://doi.org/10.1007/978-3-662-58381-4_9
https://doi.org/10.1007/978-3-030-76983-3_9
https://doi.org/10.1007/978-3-030-76983-3_9
https://doi.org/10.3233/FI-222134
https://doi.org/10.1007/s10009-022-00694-8
https://doi.org/10.1007/978-3-030-84629-9_3
https://doi.org/10.5281/zenodo.7935153
https://doi.org/10.5281/zenodo.7935153
https://doi.org/10.1007/978-3-031-33620-1_18
https://github.com/nicolasAmat/Octant
https://github.com/nicolasAmat/Octant

[AS80] Bengt Aspvall and Yossi Shiloach. A polynomial time algorithm
for solving systems of linear inequalities with two variables per
inequality. SIAM Journal on computing, 9(4), 1980. doi:10.
1137/0209063.

[AZ23] Nicolas Amat and Silvano Dal Zilio. SMPT: A Testbed for
Reachability Methods in Generalized Petri Nets. In For-
mal Methods (FM), LNCS. Springer, 2023. doi:10.1007/
978-3-031-27481-7_25.

[BDHP] Max Barth, Daniel Dietsch, Matthias Heizmann, and Andreas
Podelski. Ultimate Eliminator at SMT-COMP 2022.

[BDJ+19] Frederik M Bønneland, Jakob Dyhr, Peter G Jensen, Mads Jo-
hannsen, and Jiří Srba. Stubborn versus structural reductions for
Petri nets. Journal of Logical and Algebraic Methods in Program-
ming, 102, 2019. doi:10.1016/j.jlamp.2018.09.002.

[Ber87] G. Berthelot. Transformations and Decompositions of Nets. In
Petri Nets: Central Models and Their Properties (ACPN), LNCS.
Springer, 1987. doi:10.1007/978-3-540-47919-2_13.

[BLBDZ18] Bernard Berthomieu, Didier Le Botlan, and Silvano Dal Zilio.
Petri net reductions for counting markings. In Model Check-
ing Software (SPIN), LNCS. Springer, 2018. doi:10.1007/
978-3-319-94111-0_4.

[BLBDZ19] Bernard Berthomieu, Didier Le Botlan, and Silvano Dal Zilio.
Counting Petri net markings from reduction equations. Inter-
national Journal on Software Tools for Technology Transfer, 22,
2019. doi:10.1007/s10009-019-00519-1.

[BRV04] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool TINA –
Construction of abstract state spaces for Petri nets and time Petri
nets. International Journal of Production Research, 42(14), 2004.
doi:10.1080/00207540412331312688.

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of
linear restraints among variables of a program. In Proceedings
of the 5th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, 1978. doi:10.1145/512760.512770.

[CJGK+18] Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron
Peled, and Helmut Veith. Model checking. MIT press, 2018.

[Coo72] David C Cooper. Theorem proving in arithmetic without multi-
plication. Machine intelligence, 7(91-99), 1972.

[DJJ+12] Alexandre David, Lasse Jacobsen, Morten Jacobsen, Ken-
neth Yrke Jørgensen, Mikael H. Møller, and Jiří Srba. TAPAAL
2.0: Integrated Development Environment for Timed-Arc Petri
Nets. In Tools and Algorithms for the Construction and Analy-
sis of Systems (TACAS), LNCS. Springer, 2012. doi:10.1007/
978-3-642-28756-5_36.

21

https://doi.org/10.1137/0209063
https://doi.org/10.1137/0209063
https://doi.org/10.1007/978-3-031-27481-7_25
https://doi.org/10.1007/978-3-031-27481-7_25
https://doi.org/10.1016/j.jlamp.2018.09.002
https://doi.org/10.1007/978-3-540-47919-2_13
https://doi.org/10.1007/978-3-319-94111-0_4
https://doi.org/10.1007/978-3-319-94111-0_4
https://doi.org/10.1007/s10009-019-00519-1
https://doi.org/10.1080/00207540412331312688
https://doi.org/10.1145/512760.512770
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-642-28756-5_36

[DS97] Andreas Dolzmann and Thomas Sturm. Redlog: Computer al-
gebra meets computer logic. ACM Sigsam Bulletin, 31(2), 1997.
doi:10.1145/261320.261324.

[FL11] Paul Feautrier and Christian Lengauer. Polyhedron Model.
Encyclopedia of parallel computing, 1, 2011. doi:10.1007/
978-0-387-09766-4_502.

[GRVB08] Pierre Ganty, Jean-François Raskin, and Laurent Van Begin.
From many places to few: Automatic abstraction refinement for
Petri nets. Fundamenta Informaticae, 88(3), 2008.

[Haa18] Christoph Haase. A survival guide to Presburger arithmetic. ACM
SIGLOG News, 5(3), 2018. doi:10.1145/3242953.3242964.

[HK10] Alan J Hoffman and Joseph B Kruskal. Integral boundary points
of convex polyhedra. In 50 Years of integer programming 1958-
2008. Springer, 2010. doi:10.1007/978-3-540-68279-0_3.

[HLL92] Tien Huynh, Catherine Lassez, and Jean-Louis Lassez. Practical
issues on the projection of polyhedral sets. Annals of mathematics
and artificial intelligence, 6(4), 1992. doi:10.1007/BF01535523.

[Imb93] Jean-Louis Imbert. Fourier’s elimination: Which to choose? In
PPCP, volume 1, 1993.

[JM09] Bertrand Jeannet and Antoine Miné. Apron: A library of
numerical abstract domains for static analysis. In Computer
Aided Verification (CAV), LNCS. Springer, 2009. doi:10.1007/
978-3-642-02658-4_52.

[KBG+22] F. Kordon, P. Bouvier, H. Garavel, F. Hulin-Hubard, N. Amat.,
E. Amparore, B. Berthomieu, D. Donatelli, S. Dal Zilio, P. G.
Jensen, L. Jezequel, C. He, S. Li, E. Paviot-Adet, J. Srba, and
Y. Thierry-Mieg. Complete Results for the 2022 Edition of the
Model Checking Contest, 2022. URL: http://mcc.lip6.fr/2022/
results.php.

[KBJ21] Jiawen Kang, Yunjun Bai, and Li Jiao. Abstraction-based in-
cremental inductive coverability for Petri nets. In Application
and Theory of Petri Nets and Concurrency (Petri Nets), LNCS.
Springer, 2021. doi:10.1007/978-3-030-76983-3_19.

[KKG18] Yasir Imtiaz Khan, Alexandros Konios, and Nicolas Guelfi. A
survey of Petri nets slicing. ACM Computing Surveys (CSUR),
51(5), 2018. doi:10.1145/3241736.

[Kor15] Fabrice Kordon. Model SmallOperatingSystem, Model Checking
Contest benchmark, 2015. URL: https://mcc.lip6.fr/2023/pdf/
SmallOperatingSystem-form.pdf.

[LC23] LAAS-CNRS. Tina Toolbox. http://projects.laas.fr/tina, 2023.

22

https://doi.org/10.1145/261320.261324
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.1145/3242953.3242964
https://doi.org/10.1007/978-3-540-68279-0_3
https://doi.org/10.1007/BF01535523
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
http://mcc.lip6.fr/2022/results.php
http://mcc.lip6.fr/2022/results.php
https://doi.org/10.1007/978-3-030-76983-3_19
https://doi.org/10.1145/3241736
https://mcc.lip6.fr/2023/pdf/SmallOperatingSystem-form.pdf
https://mcc.lip6.fr/2023/pdf/SmallOperatingSystem-form.pdf
http://projects.laas.fr/tina

[LOST17] Marisa Llorens, Javier Oliver, Josep Silva, and Salvador Tamarit.
An Integrated Environment for Petri Net Slicing. In Application
and Theory of Petri Nets and Concurrency (Petri Nets), LNCS.
Springer, 2017. doi:10.1007/978-3-319-57861-3_8.

[LP09] Jérôme Leroux and Gérald Point. TaPAS: the Talence Presburger
arithmetic suite. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), LNCS. Springer, 2009. doi:
10.1007/978-3-642-00768-2_18.

[LS07] Aless Lasaruk and Thomas Sturm. Weak quantifier elimination
for the full linear theory of the integers: A uniform generaliza-
tion of Presburger arithmetic. Applicable Algebra in Engineer-
ing, Communication and Computing, 18, 2007. doi:10.1007/
s00200-007-0053-x.

[Min06] Antoine Miné. The octagon abstract domain. Higher-
order and symbolic computation, 19(1), 2006. doi:10.1007/
s10990-006-8609-1.

[Mon10] David Monniaux. Quantifier elimination by lazy model enumer-
ation. In Computer Aided Verification (CAV), LNCS. Springer,
2010. doi:10.1007/978-3-642-14295-6_51.

[Pug91] William Pugh. The Omega Test: A Fast and Practical Integer
Programming Algorithm for Dependence Analysis. In Proceedings
of the ACM/IEEE Conference on Supercomputing. ACM, 1991.
doi:10.1145/125826.125848.

[Rak12] Astrid Rakow. Safety slicing Petri nets. In Application and The-
ory of Petri Nets and Concurrency (Petri Nets), LNCS. Springer,
2012. doi:10.1007/978-3-642-31131-4_15.

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking
Safety Properties Using Induction and a SAT-Solver. In Formal
Methods in Computer-Aided Design (FMCAD), LNCS, Berlin,
Heidelberg, 2000. Springer. doi:10.1007/3-540-40922-X_8.

[TM15] Yann Thierry-Mieg. Symbolic Model-Checking Using ITS-Tools.
In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), LNCS. Springer, 2015. doi:10.1007/
978-3-662-46681-0_20.

[TM21] Yann Thierry-Mieg. Symbolic and structural model-checking.
Fundamenta Informaticae, 183(3-4), 2021. doi:10.3233/
FI-2021-2090.

[Ver10] Sven Verdoolaege. isl: An integer set library for the polyhedral
model. In Mathematical Software (ICMS), LNCS. Springer, 2010.
doi:10.1007/978-3-642-15582-6_49.

[Wol18] Karsten Wolf. Petri Net Model Checking with LoLA 2. In Appli-
cation and Theory of Petri Nets and Concurrency (Petri Nets),
LNCS. Springer, 2018. doi:10.1007/978-3-319-91268-4_18.

23

https://doi.org/10.1007/978-3-319-57861-3_8
https://doi.org/10.1007/978-3-642-00768-2_18
https://doi.org/10.1007/978-3-642-00768-2_18
https://doi.org/10.1007/s00200-007-0053-x
https://doi.org/10.1007/s00200-007-0053-x
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/978-3-642-14295-6_51
https://doi.org/10.1145/125826.125848
https://doi.org/10.1007/978-3-642-31131-4_15
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.3233/FI-2021-2090
https://doi.org/10.3233/FI-2021-2090
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/978-3-319-91268-4_18

	1 Introduction
	2 Petri Nets and Polyhedral Abstraction
	3 Combining Polyhedral Abstraction with Reachability
	4 Projecting Formulas Using Token Flow Graphs
	5 Formal Procedure and Proof of Correctness
	6 Experimental Results
	7 Discussion and Related Works

