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Abstract. To interact with humans, a robot has to know actions done
by each agent presents in the environment, robotic or not. Robots are
not omniscient and can’t perceive every actions made but, as humans
do, we can equip the robot with the ability to infer what happens from
the perceived effects of these actions on the environment.
In this paper, we present a lightweight and open-source framework to
recognise primitive actions and their parameters. Based on a semantic
abstraction of changes in the environment, it allows to recognise un-
perceived actions. In addition, thanks to its integration into a cogni-
tive robotic architecture implementing perspective-taking and theory of
mind, the presented framework is able to estimate the actions recognised
by the agent interacting with the robot. These recognition processes are
refined on the fly based on the current observations. Tests on real robots
demonstrate the framework’s usability in interactive contexts.

Keywords: Action Recognition · Human-Robot Interaction · Cognitive
Robotics.

1 Introduction

Where robots have been restricted for a while at performing complex tasks on
their own in an autonomous way, or in coordination with other robotic agents, the
field of Human-Robot Interaction brings the new challenge of robots performing
shared tasks with humans. In light of the definition of joint action, this means
that robots should be able to interact with humans and coordinate their actions
in space and time to bring about a change in the environment [18]. Cooperation
and collaboration tend to be key features to make robots more adaptative and
thus flexible with respect to humans’ actions.

As a prerequisite to joint action, Tomasello in [21] emphasized intentional
action understanding, meaning that an agent should be able to read its partner’s
intentions. In this way, when observing a partner’s action or course of actions,
the agent should be able to infer its partner’s intention in terms of goal and plan
to achieve the goal. Where in a shared task one can assume a shared goal to
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Fig. 1. A shared task example where the robot, performing its own part of the task,
cannot monitor the human activity.

exist, a shared plan can only be estimated by both partners. As a consequence,
during the entire realisation of a shared task, agents should continue to monitor
others’ actions to be able to adapt and coordinate their own actions.

Considering a shared task like cooking, when performing its own actions, a
robot has to perceive the elements it has to interact with. Wanting to grasp a
knife, the robot needs to look at the knife to estimate its position. However, when
focused on such elements, monitoring others’ actions can become unfeasible.
Even having multiple visual sensors, we cannot assume that the human will
perform its part of the plan in front of the robot, as illustrated in Fig. 1. In the
same way, we cannot assume to act in a fully instrumented area allowing the
robot to be omniscient. In such realistic applications, the need to detect human
actions with as little visual information as possible is mandatory.

In the following, we will make the distinction between action and task consid-
ering a hierarchic task decomposition point of view. This means that a task can
be decomposed into a set of sub-tasks and actions, where each sub-task can also
be decomposed in such a way. We consider as actions the leaves of the resulting
decomposition, meaning actions that can be directly executed by a robotic agent
(i.e. pick, place, release, etc). Reversing this assumption, a human task can be
monitored through the detection of the underlying human actions. Task recog-
nition is out of our current scope as requiring as a first step the recognition of
actions.

In this paper, we present a lightweight method for action recognition based
on a semantic knowledge flow. This knowledge is obtained through the use of
the DACOBOT robotic architecture [16]. The main contribution of this work
is the possibility to detect actions through the changes they brought to the
environment. Such a contribution allows to pass over the general assumption of
constant monitoring of the humans using visual sensors. The side contribution
of this work, more related to the context of Human-Robot Interaction, is the
ability to estimate the actions perceived by each agent it interacts with thanks
to perspective-taking.

In Sec. 2, we discuss related work and how action recognition is generally per-
formed. A detailed explanation of the approach is then provided in Sec. 3 before
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providing an overview of the knowledge flow in which it has been integrated in
Sec. 4 and its application in Human-Robot Interaction in Sec. 5. Finally, Sec. 6
presents results on a dataset and Sec. 7 concludes the paper.

2 Related Work

Action recognition takes its application in various fields [2] such as health care,
sports analysis, and robotics. It is used, for example, to monitor patients in
healthcare in order to detect falls [19], or to anticipate human action for au-
tonomous driving vehicles [7]. In robotics applications, action recognition is
intensively used to learn tasks from video demonstrations [22]. In the field of
Human-Robot Interaction, action recognition has become an important topic as
detailed in [6], with applications such as gestures learning [25] or risk evaluation
for decision making [26].

To date, two approaches coexist to recognise human actions: data-driven and
knowledge-based. While data-driven approaches aim to directly deal with sensor
data such as images, knowledge-based approaches rather focus on the analysis
of semantic data either stated or extracted beforehand.

Data-driven approaches were initially based on 2D images with the use of
pattern matching [1] or support vector machine [17]. The use of deep neural
networks has then allowed the generation of more robust recognitions [24] but
with the initial assumption of no occlusion. This concern has been later addressed
in [23] to deal with real-world scenarios and thus environments like offices with
desks and chairs. For finer estimations of the humans poses and thus more precise
recognition, similar approaches but using 3D point clouds have been proposed [9].

The data-driven approaches also provide solutions to the problem of recognis-
ing human actions when the robot cannot perceive directly the human activity.
A combination of RF-based (Radio Frequency) and vision-based detection has
been used in [8] where the RF part can provide information when it is impossible
for the vision. Other solutions aim at equipping the environment itself instead
of the robot with multiple sensors like cameras [5] to provide the greatest vision
and thus always keep track of the human’s body. The main inconvenience of
such solutions is the use of dedicated environments or specific robot hardware.

With regard to all the presented data-driven approaches, a general concern is
that they mostly recognise humans’ activities (i.e. drinking, sleeping, eating or
humans’ gestures) rather than primitive actions. In addition, as these approaches
focus on the human body, the track of objects is not considered. Nevertheless,
for human monitoring in a joint task, one would rather need low-level actions
recognition (to maybe recognise higher level tasks on top of it) such as picking
or placing and a track of the objects involved in the task.

On the other hand, knowledge-based approaches rely on data already pro-
cessed by the robot in order to abstract its environment. All these data are thus
centrally stored and formalised. One such formalism is ontology which can be
formalised thanks to the Ontology Web Language (OWL). Riboni et al. in [11],
explain that the human action recognition can be handled by an ontology-based
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approach with a result at the same level as the better data-driven algorithm.
Nevertheless, they also specify that the ontology-based approach needs a way
to have a time representation to reach this level of result. Thanks to [10], this
time representation can be solved. In this work, they define a temporal Web
Ontology Language (tOWL) as an extension to OWL with which it is possible
to have a time representation of actions or events in the ontology. This enables
to recognise actions thanks to ontology reasoning. However, it does not man-
age knowledge uncertainty or noise in the perception. To solve this, Rodriguez
et al. in [12] propose to use a fuzzy ontology described and formalized in [20].
Thanks to their model and the use of a fuzzy ontology, Rodriguez et al. solve
the problem of uncertainty and time representation, but their system does not
detect low-level actions.

Finally, at the intersection of data-driven approaches and knowledge-based
approaches, some hybrid approaches have been proposed [4, 3]. In such works, the
data-driven part is used to recognise the low-level activities while the knowledge-
base part is used the recognise higher-level activities, based on the low-level
actions. While still demonstrating the usability of knowledge-based methods,
the need to continuously observe humans still exists.

3 Approach and recognition

Let’s consider an example of a robot and a human working together to prepare
a meal in a kitchen. If we observe someone holding a fork, it must have been
picked up somewhere. Similarly, if utensils appear on the workplace, someone
must have placed them there. A human can infer which actions have caused
these changes in the environment without seeing them, even if some parameters
can remain unknown (e.g. who acted?).

This cognitive process allows the recognition of actions thanks to the ob-
servation of changes in the environment and also allows an estimation of the
possible set of actions in a given situation [21]. For example, if we see Bob’s
hand approaching an apple on the workplace, we can estimate that Bob’s next
action will probably be related to the apple, but we cannot predict whether he
will pick it up or push it. If we observe Bob grasping the apple, we can refine
our estimation because the set of possible actions in this state is limited.

Taking inspiration from this human ability, we choose to represent actions
as sequences of geometric changes in the environment. In this section, we thus
present our method to recognise on-the-fly actions, based on symbolic facts.

3.1 A dynamic state machine to handle the recognition

To represent the recognition process introduced earlier, we have chosen State
Machines (SM) where transition conditions represent the steps of the recognition
process, i.e. the changes to be perceived. Thus, a pick action can be recognised
by the following transitions of a SM: (1) the agent’s hand approaches the object
(2) the object is in the agent’s hand (3) the object is no longer on its support.
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These changes in the geometric situation of the environment can be abstracted
using semantic facts, resulting in the following sequence:

1. ?A hasHandMovingToward ?O

2. ?A isHolding ?O

3. NOT ?O isOnTopOf ?S

To represent the unspecified entities involved in the sequence (i.e. the agent,
the object, and the support), we use variables here represented by question
marks followed by a literal. During a recognition process, these variables will
be instantiated and will thus constrain the following facts of the sequence. For
example, perceiving first Bob’s hand approaching the object o 1meaning the fact
(bob hasHandMovingToward o 1), the variables A and O become instantiated
and constrain the rest of the sequence. The next expected fact would thus be
(bob isHolding o 1).

Even if sequence representation is convenient, some facts could be unper-
ceived by the robot. We propose a way to specify the minimal set of facts to
be perceived to recognise an action with the use of the tag REQUIRED. The
resulting description of an action is provided in List. 1.1.

Listing 1.1. Extract of the models file for a pick over action

Pick over :
sequence :

− ?A hasHandMovingToward ?O
− ?A i sHo ld ing ?O
− NOT ?O isOnTopOf ?S REQUIRED

As a consequence, our actions are no longer some purely linear sequences and
could rather be transposed to state machines as illustrated in Fig. 2. We can
see that the transition carrying the fact ?A isHolding ?O connects both states
s0 and s1 with state s2. These links mean that the transition between states s0
and s1 is not necessary to recognise the action. Not perceiving that the agent’s
hand approaches the object but perceiving that the agent is holding the object
is sufficient to reach state s2 and to start the recognition. Nevertheless, due to
such a bypass, one could notice that triggering the transition from s0 to s3,
variable A will never be instantiated resulting in missing parameters.

Fig. 2. State Machine for the detection of the pick action with only transition fact
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3.2 Dynamically created state machines

In real-world situations in general and in human-robot interaction scenarios in
particular, several agents can act simultaneously and even a single agent can do
several actions at the same time, like picking two objects. An action recognition
system must be able to handle the recognition of multiple actions in parallel
that’s why we designed state machine factory. When a semantic fact is sub-
mitted to a factory, if it allows to activate one of the transitions of the initial
state, the factory will create an instance of the SM it is responsible for. Such a
SM will be called an active state machine. The newly created SM will thus
be in a different state than the initial one and some of its variables will already
be instantiated.

When a new fact arrives in the recognition system, meaning a change in the
environment has been perceived by the robot, this fact is first used to try to
trigger a transition of all the active SMs. In the case the fact does not allow
any of them to trigger any transition, then it is submitted to each factory to try
to generate new SMs. Indeed, without this rule, multiple SMs recognizing the
same action (in terms of instance) could exist at the same time. Nevertheless,
several SMs coming from the same factory can exist simultaneously, that is to
recognise the same action type performed by different agents simultaneously, or
by the same agent on different objects.

When an active SM is finished, if all the variables used in the conditions of
its transitions have been set, the SM is stated to be complete, otherwise, the
SM is incomplete. Indeed, as not all transitions are required to recognise an
action, some variables can stay unbounded.

Once a SM is finished, an action has been recognised. The finished SM is
thus removed from the set of active SMs. In addition, as several SMs could have
been created from the same semantic fact (based on the principle of progressive
refinement when new facts arrive), all active SM involving facts used by the
finished SM are also removed from the set of active SMs. The implicit hypothesis
made here is that a fact can only be part of a single action performed by an agent.

4 Integration and Knowledge flow

In order to be fed with meaningful semantic facts representing the changes in
the environment, our Action Recognition System has been integrated into the
DACOBOT [16] robotic architecture. In this section, we present the knowledge
flow illustrated in Fig. 3.

4.1 Geometrical Situation Assessment

In this architecture, the geometrical Situation Assessment is handled by the soft-
ware Overworld [14]. This software can be connected to any perception system to
perceive objects, humans, or areas. As the same entity can be perceived through
several systems, Overworld is first able to aggregate the data from all the used
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Fig. 3. Knowledge flow for Action Recognition System in the DACOBOT architecture

perception systems to create a unified 3D representation of the robot’s environ-
ment. Thanks to geometrical reasoning based on the sensors’ field of view, the
entities’ visual occlusions, and physics simulation, Overworld provides a coherent
representation of the entire environment.

On the basis of the 3D representation, Overworld can then compute seman-
tic facts. These facts can link objects together like with isOnTopOf or isInCon-
tainer. They can link objects or agents to areas with isInArea. They can also
link agents to objects with facts such as hasInHand, isLookingAt, or hasHand-
MovingToward. These facts are computed at every update of the system and
are output on a ROS topic. A fact is generated when it starts to be perceived
(ADD) and when it stops (DEL).

An important feature of Overworld, essential for HRI, is its ability to estimate
the perspective of other agents and their representation of the world. From there,
in the same way it is done from the robot’s perspective, Overworld computes
and generates semantic facts from the others’ perspective allowing the use of the
theory of mind.

4.2 Semantic Knowledge Base

The architecture used considers as a central component a semantic knowledge
base. This latter contains both common sense knowledge (general concepts like
object types, colors, ...) and anchored knowledge related to the current situa-
tion. This knowledge can be accessed by every component of the architecture
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allowing a unified and coherent representation among the entire architecture.
This semantic knowledge base is managed by Ontologenius [15]. This software
has been specially developed for robotic applications with good performances
both on queries and dynamic updates. It is thus adapted to maintain the cur-
rent state of the situation at a semantic level with online inferences resolutions.
Regarding the knowledge stream, Ontologenius is directly connected to the out-
put of Overworld. When new facts arrive in it, they are first analysed to verify
their consistency regarding common sense knowledge, then once added to the
knowledge, Ontologenius will reason on this knowledge in order to extract new
facts. For example, from the fact ADD (cup 1 isInTopOf table 3), we can infer
thanks to inverse ADD (table 3 isUnder cup 1).

As an output, Ontologenius sends on a ROS topic the validated facts as well
as the inferred ones. However, as it does not deal with temporal aspects, the
inferred facts cannot be stamped on the base of the used facts for the inference
nor at the time of the inference. They are rather sent with an explanation about
the facts involved in their inference.

Like Overworld, Ontologenius can maintain several knowledge bases in par-
allel, allowing theory of mind. Each output of Overworld (one per human agent
in addition to the robot) is thus connected to a specific knowledge base.

4.3 Episodic Knowledge Base

As explained by Riboni et al. in [11], ontology-based action recognition is possi-
ble when linked to time representation. Regarding this temporal representation,
the DACOBOT architecture proposes the software Mementar [13] as an episodic
knowledge base. It is responsible for the organization of the semantic facts, pro-
vided by the ontology, on a temporal axis. While only the validated facts are
already stamped, the inferred ones have to be aligned. To this end, Mementar
finds the more recent fact among the ones used in the inference and aligns the
inferred fact on this later. All the facts once correctly stamped are then repub-
lished on a ROS topic for the components (as the action recognition) needing
continuous monitoring.

On the basis of this timeline, Mementar proposes a set of queries to retrieve
past facts based on their timestamp, their order, or their semantics thanks to a
link with the semantic knowledge base. In addition, Mementar allows to represent
actions/tasks in the timeline with a start stamp and an end stamp. These actions
can also be queried to retrieve the facts appearing during an action, the actions
holding during an action, their stamps, or their type.

Finally, in the same way it has been done for the two previously presented
components, Mementar can manage a timeline per agent allowing to manage
theory of mind at a temporal level.

4.4 Action Recognition

The action recognition component described in this paper is connected to the
output of Mementar where no distinction is made between the inferred facts and
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the others. As illustrated in Fig. 3, as an output, the action recognition sends
the description of the recognised actions to the semantic knowledge base and
temporally marks them in the episodic knowledge base.

This description of the recognised actions at the semantic level allows us to
link the actions to their parameters as a relation reification. An example of such
a description is presented in List. 1.2. This description is stored in a description
file and can reuse all the different variables used in the facts sequence linked to
the action models. Here we reuse the variables A to provide the knowledge of
who has acted. We also provide a way to symbolise the action itself with the
specific variable ?.

Actions are thus described both at the semantic and episodic levels, each
providing a different view of them and thus different ways to retrieve them. For
example, to know the agent having performed a given action, one can query the
semantic knowledge base. On the contrary, to know the facts that took place
during a given action or to know when has started an action, one would rather
query the episodic knowledge base.

5 Multi-human estimation and HRI

As described previously, all software used in the knowledge flow can manage in
parallel multiple instances. This specificity provides multiple independent knowl-
edge flows, one for each agent interacting with the robot in addition to the flow
for the robot itself. Taking advantage of that, we can recognise actions from
the knowledge flow of any available agent in order to estimate the actions they
are aware of. In this way, the knowledge base of each agent can be updated
independently which can lead to the generation of belief divergences.

To illustrate this divergence in beliefs, let’s consider a robot and a human
interacting together. The human temporarily leaves the room to pick up a tool.
Meanwhile, the robot picks an object and places it in a drawer. When the human
comes back, thanks to the actions recognition system, the robot can estimate
that the human knows that it picked the object but can also estimate that he
does not know that it placed the object in the drawer. Here a divergence in
beliefs is raised between the knowledge bases of both agents.

Such piece of information could later be used by a decisional process, like
a supervision component, to prevent future errors in the execution of a plan.

Listing 1.2. Description part of our model for the pick action

pick :
d e s c r i p t i o n :
− ?? isA PickAction
− ?? isPerformedBy ?A
− ?? isPerformedOn ?O
− ?? isPerformedFrom ?S
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In a similar way, actions with no visual effects on the environment, like scan-
ning a bar code, can be estimated as unknown by the human partner and thus
communication could be required to prevent a blockage in the execution of a
plan.

6 Experimentations

To illustrate the possibilities offered by our action recognition system, we present
here two scenarios tested on two different robots3.

6.1 Scenario 1

In the first scenario, we use a Pr2 robot to pick a cube and to drop it in a
box previously flipped by the human partner. Here we want to illustrate the
recognition of the actions of the robot itself but also actions made by a human
agent not perceived by the robot4. This case study thus demonstrates among
others the recognition of incomplete action as the robot does not have access to
all data needed to recognise all parameters of the action like who has performed
the action.

In this scenario, our system has been able to recognise a pick and a place
action of the robot but also a pick and a place action of an unknown agent. This
illustrates the multiple recognition of actions even if some are incomplete and
the capability to create and manage multiple SMs.

6.2 Scenario 2

In this second scenario, we use a Pepper as the robotic agent that is perceiving
two human agents (a 1 and a 2) making some tabletop manipulation on cubes
over boxes. Each human agent is equipped with a motion capture system to
be perceived by the robot. The configuration of the scenario is represented in
Fig. 45. This scenario is decomposed into three parts.

In the first part of the scenario, each agent looks at the table, to initialise
their knowledge base with the current state of the environment. After this initial
step, one agent (a 2) turns around (Fig. 4a) and the other human agent (a 1)
moves one cube. This later action is perceived by the robot and is also added
to the estimated knowledge base of a 1 who has done the action. The pick is
recognised between t0 and t2 for these two agents as it is presented in Fig. 5.
Based on the estimation of the perspective of a 2, the action made by a 1 is not
added to the knowledge base of a 2 as it could not be perceived by a 2. This
part allows us to demonstrate the recognition of the actions from the point of
view of different agents making a shared task.

3 ROSbags: https://gitlab.laas.fr/avigne/action_recognition_dataset
4 The agent is not perceived because it has not been equipped to do this.
5 Video: https://youtu.be/cwLLEAA_mCY
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Fig. 4. Representation of the situations used in scenario 2. At the left the situation
where a 2 can’t see the cubes. At the right the situation when a 2 turns around again
to continue the task.

In the second part of the scenario, a 2 turns around again to see what has
been done (Fig. 4b). With the estimation of his perspective, the robot now
estimates that the agent has perceived that the cube has moved. This allows
our system to recognise that a pick and a place action have been performed,
from a 2 perspective, but with no additional information. Indeed, with the facts
linked to this action (around t6), it’s impossible from the point of view of a 2 to
know who has done the action.

The last part of this scenario is a shared task between the two humans. They
have to take at the same time one cube each and make a tower. In this part,
we demonstrate the recognition of actions performed at the same moment on
different objects and made by different agents. This simultaneous recognition is
illustrated between the timestamp t11 and t12 in Fig. 5.

Fig. 5. Simplified view of the timelines maintained by Mementar for each agent of the
scenario 2. Facts are represented at the right of the timeline and actions are at the left.
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7 Conclusion and Future Work

In this paper, we present our Action Recognition system6. The recognition pro-
cess uses state machines dynamically created and instantiated thanks to the
semantic facts produced by the knowledge flow of the robotic architecture it has
been integrated into. These state machines are easily configurable to be adapted
to new actions. In addition, our system is also adapted to the HRI context
thanks to the management of multiple knowledge flows in parallel relying on
perspective-taking.

This system is a first step toward a larger system for task recognition based
on Hierarchical Task Network (HTN), allowing us to validate and test all the
requirements before handling this new challenge. Nevertheless, our action recog-
nition system has some limitations that will have to be handled. The main
limitation is due to the limited set of facts currently computed by the situation
assessment. Indeed, we are aware that with the current set of facts, only pick
and place can be detected. However, with the presented system, we can easily
handle new sets of facts and thus describe and recognise new actions.

Another aspect that we want to develop would be a post-processing of de-
tected actions to try to fulfil the incomplete actions and to remove false detection
due to natural changes in the environment. Indeed, currently, an object falling
on the ground would generate the recognition of a pick action and the presence
of a single action at the place of action is not used to estimate who performed
the action.
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