
HAL Id: hal-04397558
https://laas.hal.science/hal-04397558

Submitted on 1 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

How to early integrate operational diagnosis objectives
in model-driven engineering processes: A methodological

proposal based on fault and behavior trees
Nikolena Christofi, Claude Baron, Xavier Pucel, Marc Pantel, David Canu,

Christophe Ducamp

To cite this version:
Nikolena Christofi, Claude Baron, Xavier Pucel, Marc Pantel, David Canu, et al.. How to early
integrate operational diagnosis objectives in model-driven engineering processes: A methodologi-
cal proposal based on fault and behavior trees. Systems Engineering, 2023, 27 (3), pp.585–597.
�10.1002/sys.21740�. �hal-04397558�

https://laas.hal.science/hal-04397558
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Received: 17 April 2022 Revised: 31March 2023 Accepted: 27 November 2023

DOI: 10.1002/sys.21740

R E GU L A R ART I C L E

How to early integrate operational diagnosis objectives in
model-driven engineering processes: Amethodological
proposal based on fault and behavior trees

Nikolena Christofi1 Claude Baron2 Xavier Pucel3 Marc Pantel4

David Canu5 ChristopheDucamp5

1IRT Saint Exupéry, LAAS-CNRS, Airbus

Defence and Space, INSA Toulouse, Université

de Toulouse, Toulouse, France

2INSA Toulouse, LAAS-CNRS, Université de

Toulouse, Toulouse, France

3Office National d’Etudes et de Recherches

Aérospatiales (ONERA), Artificial and Natural

Intelligence Toulouse Institute (ANITI),

Université de Toulouse, Toulouse, France

4IRIT, INP Toulouse - ENSEEIHT, Université de

Toulouse, Toulouse, France

5Airbus Defence and Space, Toulouse, France

Correspondence

Claude Baron, Computer and Electrical

Engineering department, INSA Toulouse, and

Researcher, System Engineering and

Integration team, LAAS-CNRS, 7 avenue du

Colonel Roche, 31031 Toulouse cedex 4,

France.

Email: claude.baron@laas.fr

Funding information

Agence Nationale de la Recherche,

Grant/Award Number: 10-AIRT-0001

Abstract

To help operators perform their diagnosis tasks more efficiently, the authors put

forward a novel methodology introducing a new type of model, dedicated to oper-

ations, co-created in parallel with the design models, in the preliminary stages of

system development, using the language semantics of behavior trees. In this paper,

the authors present the need for this new model type as expressed by the indus-

try and justify their choice for adopting behavior trees, while illustrating in detail the

proposedmethodology.

KEYWORDS

behavior trees, complex systems, fault trees, MBSA, MBSE, operational diagnosis, space opera-
tions, space systems, systemmodeling, systemmonitoring

1 INTRODUCTION

In the field of complex systems such as satellites, operational perfor-

mance requirements impose important constraints to system design.

System operation risk assessments are based on RAMS performance

factors that is, Reliability, Availability, Maintainability, and Safety.1

However, while the methodologies associated to the evaluation of sys-

tem Reliability and Safety are well defined, no official methodology is

established for Availability and Maintainability. For the case of satel-

lites, maintenance is performed by their operators in distance, since

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and nomodifications or adaptations aremade.

© 2023 The Authors. Systems Engineering published byWiley Periodicals LLC.

no intervention for in-situ reparation is possible. The only way ground

operators can resolve issues on-board the satellite is by initially detect-

ing and isolating the faults occurred, with the eventual goal to restore

the system to its nominal (or acceptably functional) state, as soon as

possible. These activities constitute key elements of Fault Detection

and Diagnosis (FDD) activities, an evolution of the Fault Detection and

Isolation (FDI) domain.2

However, although the onboard Fault Detection, Isolation and

Recovery (FDIR) capabilities of modern-day satellites are very

advanced, that is not the case for their respective Earth segments. The

Systems Engineering. 2024;27:585–597. wileyonlinelibrary.com/journal/sys 585

https://orcid.org/0000-0003-1249-0839
https://orcid.org/0000-0001-9573-7002
https://orcid.org/0000-0001-8747-0889
mailto:claude.baron@laas.fr
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/sys
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsys.21740&domain=pdf&date_stamp=2023-12-26


586 CHRISTOFI ET AL.

latter are expected to operate with a lower level of autonomy, whilst

on-the-spot intervention for physical repairs is possible. In fact, phys-

ical repairs in space operational systems are only possible onboard

manned orbiting spacecrafts, such as the International Space Station.

System operators have various simulation tools in their disposal.

Nevertheless, their activities are bound by strict time limits: narrow

communication windows (the time interval within which an operator

can exchange data and commandswith the satellite) last no longer than

10 min in the case of Low-Earth-Orbit satellites. Working towards the

improvement of diagnosis during operations is imperative, since down-

time costs are significant for every second the satellite is unavailable

that is, satellite unreachable or not able to perform its mission. Based

on feedback received by Airbus Defense and Space and the French

Aerospace Lab ONERA, the authors have confirmed the space indus-

try’s urgent need formodels and tools dedicated to systemmonitoring,

aiming to helping operators in their diagnostics tasks.

The long-term objectives of international space agencies such as

the National Aeronautics and Space Administration (NASA) and the

European Space Agency (ESA), also confirm the need to improve oper-

ations by increasing the use of model-driven design techniques. More

specifically, according to NASA’s 2022 Strategic Plan,3 one of the four

strategic goals of the agency is to “enhance capabilities and oper-

ations to catalyze current and future mission success”. In addition,

and as stated in its previous strategic plan review, the consolida-

tion and improvement of operations already consisted an important

pillar within NASA’s long-term objectives, the end goal being to “bal-

ance risks across services and activities to provide a safe and reliable

infrastructure”.4 In an effort to reduce costs, while moving towards an

interdependence model between facilities, tools and services, NASA

aims to a “more focused investment on condition-based maintenance

and reliability-centered maintenance”. In line with the effort for the

digitalisation of data, tools, services, and their continuity, ESA aims

to reduce the recurring cost of operations, and to invest in inno-

vative spacecraft operations solutions, in order to “enable flexible,

efficient and high-performant operations concepts”. In particular, the

agency aspires to “further position Europe as a strong competitor on

the world market”, as stated in its Technology Strategy for Space19+

plan.5

Operators’ troubleshooting tasks vary depending on the health sta-

tus of the system at each given moment, as indicated by the registered

data. Per contra, if a symptom –or a combination of symptoms, is

unknown, that is, if system designers did not model the symptom

or foresee the specific failure occurrence, operators are expected to

perform troubleshooting, in order to eliminate the error, and restore

functions to their nominal state (or the least degraded possible). Trou-

bleshooting consists of the tasks of requesting for the system for

additional information or/and performing manual tests/manual inves-

tigation, etc. The operators’ priority is to avoid loosing the system

services. Thus, unless the anomaly has an associated troubleshooting

procedure for example, in a symptoms’ database, the operators must

take individual action that is, carrying out a dedicated analysis and

updating the system’s knowledge data base.

These actions are usually based on the operators’ knowledge and

experience. If this knowledgewere to be supported by organized docu-

mentation of the system itself (architectural and behavioral, as well as

functional and dysfunctional), operational diagnosis could be improved

significantly. At the same time, system design models are not adapted

for maintenance activities, while they are far too complex to exploit.

What is more, operators do not necessarily have the needed exper-

tise to explore thesemodels. For this reasonwe envisaged the creation

of an Operations-Dedicated Model (ODM) oriented toward system

maintenance tasks and FDD.

As shown in Figure 1, system architecture and behavior descrip-

tion models, which are created throughout Systems Engineering (SE)

activities, along with system dysfunctional behavior models, which

are in turn produced during Safety Analysis (SA) activities, are being

built in the beginning of the system lifecycle, during the system

design phase. MBSE and MBSA models are used beyond the sys-

tem design, particularly in the development and verification system

phases, in particular for traceability reasons. The first serves in

meeting the set requirements, and the latter in respecting safety

objectives while complying with international standards and regu-

lations, which are defined during the system conception phase—

mostly the case for the aeronautics domain, not applicable in the

aerospace sector—except for satellite End-Of-Life management. As

illustrated in the schema, the activities related to system design

(prior to system launch), as much as operations and maintenance

(post-system deployment), are, although related and interdependent,

detached.

The ODM shall help the operators perform their diagnostics tasks

more efficiently by reducing their response time to failure, but also

facilitate access to documentation and dedicated procedures so as to

optimise their troubleshooting actions. Hence the ODM shall have the

capability not only to provide the current system overview, but also

to be exploited by a diagnosis tool. This way it shall provide possible

fault candidates, in the case of a raised alarm, or erroneous received

data.

Hence this new type of system model, dedicated to system mon-

itoring, shall be able to be exploited during operations. One way to

exploit the ODM is to drive a diagnosis tool, with which the opera-

tors could interact, through adedicatedGraphicalUser Interface (GUI).

Moreover, the ODM can be built during the design phase and along

the production of other design models and documents, in a co-design

manner that is through a digital continuity betweendesign, operational

safety andODMconstruction.

The structure of this article is as follows. Section 1 outlines the con-

text of our researchand theproblemaddressed, aswell as theacademic

and industrial gaps that motivate our study. Section 2 introduces the

language semantics of BTs and justifies their choice for the ODM con-

struction. Section 3 provides a detailed description of the standard

semantics of BTs, as well as the extensions we have added to the lan-

guage, to meet our FDD needs. The proposed approach, and greatest

contribution of our work, is presented in Section 4. Finally, Section 5

draws conclusions and discusses future work opportunities.

 15206858, 2024, 3, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21740 by O

N
E

R
A

, W
iley O

nline L
ibrary on [01/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHRISTOFI ET AL. 587

F IGURE 1 Overview of the proposed approach: ODM concurrent creation with system functional and dysfunctional models. Exploitation
during operations andmaintenance: integrated in system health monitoring tools, for fault detection, diagnosis and troubleshooting. System
lifecycle processes based on.6 ODM,Operations-dedicatedmodel.

2 CHOOSING THE ODM SEMANTICS

In order to construct the ODM, we need a formalism that can inter-

pret both SE and SA elements into one unique model. This model shall

serve a double purpose. On the one hand, it shall include necessary

system monitoring information in order to perform automatic diagno-

sis and hint to a single failure candidate, and on the other, to be easily

readable and usable by operators, in order to aid them in their trou-

bleshooting tasks. AsBTs can fulfill both these causes,wehave selected

them, among other candidate language semantics, as illustrated in

Section 2.2), as themost suitable choice for theODM construction.

To this end, before demonstrating the use of BTs to construct an

ODM, we set their requirements in Section 2.1. We then provide a

thorough comparative study amongst the candidate language seman-

tics for the ODM construction and justify our BT choice in Section 2.2.

Section 2.3 provides a summary of the section’s findings.

2.1 Setting the ODM requirements

As mentioned earlier, several languages can be considered suitable

for expressing the ODM. The ability of each language semantics to

meet theODMsemantic requirementswas used as a criterion for their

evaluation. Each criterion was assigned a weight factor, indicating its

importance for theODMcreation and exploitation, on a scale of one to

three—one having the lowest and three the highest impact, as shown in

Table 1. The criteria were defined based on the:

∙ ability of the language to represent specific system elements,

notably:

– hierarchical structural decomposition (component breakdown),

as hierarchical modeling capacity is essential for FDD purposes;

– hierarchical behavioral decomposition/functional description

(processes/tasks/activities/functions’ breakdown);

– functional anddysfunctional behavior (howthe systembehaves in

nominal and non-nominal conditions), necessary for operational

diagnostics;

– represent system supervision information / account for feared

events, faults, and mitigation means such as troubleshooting and

repair that is, system diagnostic capacity;

∙ ability of the language to integrate textual information and model

data derived by SE and SA activities;

∙ ability of the language tomodel operational activities;

∙ models’ executability;

∙ ability of the executable models to return all system states;

∙ ease (level of semantic complexity) and intuitiveness of modeling, so

as to reduce the skills required by theODMmodeler;

∙ ease (level of semantic complexity) and intuitiveness of model

exploitation, in order to maximise user-friendliness (we consider

operators as the end-users);

∙ maintainability of the created models, in the sense that high seman-

tic complexity increases the difficulty of understanding by future

modelers hencemaking themodels hard tomaintain;

∙ ability of the language to support of functional & dysfunctional sys-

tem analyses, for the amelioration of system design; not part of

the comparison since it consists future work, but was taken into

consideration;

∙ ability of the language to be integrated within a diagnostic tool

equipped with a GUI; not part of the comparison since it consists

future work, but was taken into consideration.

2.2 Language semantics comparison

Based on their popularity, extensive usage and numerosity of applica-

tions, we have selected seven semantic approaches to evaluate. A brief

description of each and an assessment of their potential application to

the operation of aerospace systems is to follow.

 15206858, 2024, 3, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21740 by O

N
E

R
A

, W
iley O

nline L
ibrary on [01/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



588 CHRISTOFI ET AL.

TABLE 1 Comparison amongst candidate language semantics for the creation and exploitation of Operations-dedicatedmodels.

Business

Process

Model and

Notation

Finite State

Machines

Markov

Chains Petri Nets

Decision

Trees Fault Trees

Dynamic

Fault Trees

behavior

Trees Weight

(BPMN) (FSMs) (MCs) (PNs) (DTs) (FTs) (DFTs) (BTs) (1–3)

Original Application Field Human Task

Planning

System

Logic

modeling

Event Prob-

abilities

Formal Ver-

ification

Rational

Decision

Making

Safety

Analysis

Safety

Analysis

Gaming, AI,

Robotics

-

Can represent system

structure

No No No Yes No Yes Yes Yes 3

Can represent system

behavior

Yes No Yes Yes No Yes Yes Yes 3

Can represent operational

sequences & fault

mitigationmechanisms

Yes No No Yes No No No Yes 3

Models’ executability No Yes Yes Yes Yes No No Yes 3

Can return status of all

system states

No Yes Yes Yes No Yes Yes Yes 3

Supports hierarchical

structural modeling

No No No No No No Yes Yes 3

Supports hierarchical

behavioral modeling

Yes Yes No Yes No No No Yes 3

Supports functional and

dysfunctional input data

No Yes Yes Yes No Yes Yes Yes 3

Can intuitively illustrate

current system states

(system states overview)

Yes Yes No No Yes No No Yes 2

Can integrate system

design data

No Yes Yes Yes Yes Yes Yes Yes 2

Lowmodeling semantic

complexity

Yes No No No Yes Yes Yes Yes 2

Level of modeling

intuitiveness

High Medium Low Low High High High High 2

Level of user understanding

intuitiveness

High High Low Low High High High High 3

Level of model

maintainability

High Low Low Low High Low Low High 1

First we tackle the Business Process Model and Notation (BPMN).

BPMN is a standard for business process modeling7 that provides a

graphical notation for specifying business processes. BPMN models

comprise of Business Process Diagrams (BPDs).8 The latter are based on

the flowcharting technique—similar to UML Activity Diagrams.9 The

objective of BPMN is to support business processes’ management. It

also provides a mapping between the graphics of the notation and the

underlying constructs of execution languages, particularlyBusiness Pro-

cess Execution Language (BPEL). BPMN is made to represent processes,

and not complex embedded systems. Although it provides a notation

that is intuitive to both business and technical users, while being able

to represent complex process semantics, it does not meet the ODM

objectives. Althoughwith BPMN it is possible tomodel the behavior of

system processes, it is not possible to model the system structure. The

same goes for hierarchy: sub-processes can be modeled inside other

processes, but sub-activities cannot bedecomposed into sub-activities.

Some research work on risk analysis andMBDA has implicated the use

of BPMN, but only for visualisation purposes that is, methodological

process modeling, not executable behavior modeling.10,11

We then turn to Finite State Machines (FSMs) —otherwise called

Finite State Automata (FSA). FSMs consist the simplest modeling

description of Discrete Event Systems, by providing a graphical rep-

resentation of finite relations between the constituting system states.

Each FSM can be in exactly one of a finite number of states at any

given time t, based on its input and state transition function.12 Some

example model diagrams that use FSMs are SysML Activity Diagrams

or Harel Statecharts. Although FSMs are based on a strong mathemat-

ical computation model, they fail to represent system structure and

 15206858, 2024, 3, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21740 by O

N
E

R
A

, W
iley O

nline L
ibrary on [01/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHRISTOFI ET AL. 589

behavior. Moreover, FSM diagrams can get quite overwhelming when

dealingwith largemodels. Asmentioned in ref. [13], FSM-basedmodels

“involve exhaustive searches or simulation of system behavior and are

especially impractical for large and complex systems”. What is more,

they provide only one way (finite state automaton) to represent a sys-

tem element for example, function and component. They hence lack

modeling expressiveness. What is more, automata are not good with

parallelism and numbers, that cause the number of states to explode.

Defining system structure is possible by using variants of FSMs,

such as synchronous state machines. The latter allows the splitting of

machines into components, however the tool is difficultly deployed and

the systemhard tomodel. Another exampleof FSMvariants areMarkov

Chains. AMarkov chain describes a process in which the transition to a

state at time t + 1 depends only on the state at time t. The main differ-

ence to FSMs is that the transitions in Markov chains are probabilistic

rather than deterministic. Also, Markov chains must be synchronized

to be able to represent system structure. Thus they display the same

limitations as FSMs, as regards to ODMdesign and execution.

Petri Nets (PNs) offer a richer language to describe FSMs. In contrast

to FSMs, they offer more convenient means to complex systemmodel-

ing in that large systems canbe represented in amore compactmanner.

As stated in ref. [13], PNs “offer amuchmore compact state space than

finite automata and are better suited to model systems with repeated

structure”; a reason why they are still used in industrial research and

development. PNs also allow representing system elements in many

different ways, hence providingmoremodeling freedom than FSMs.

Nevertheless, PNs were shown to be inferior to FSM in terms of

response time performance,13 for some problems. Moreover, since

PNs do not have a tree structure, there can be multiple shared places

and transitions between multiple nets, leading to a potential spaghetti

code problem. That is in the sense that tree structures tend to be

easily maintainable.

Last but not least, in PNs or automata-based methods (PN transi-

tions are similar to event firings in FSA), only the start and finish of each

simulated event is considered in the modeling, resulting to neglecting

the variable dynamics that take place in between.14 For all these rea-

sons, we also determined PNs to be unsuitable for ODM construction

and exploitation.

Next, we contemplate the use of Decision Trees as the language

semantics to create and exploit ODMs. Although Decision Trees have

very similar logic to BTs, they present amain disadvantage. That is that

they represent stateless functions, that is, functions whose output at

time t depends on their input at time t. It is still possible to use them

to represent a transition function, where the Decision Tree input rep-

resents the system state at time t − 1, and the system input at time t,

and the Decision Tree output represents the system state and output

at time t.

Although Decision Trees are good at expressing complex functions

in a compact and explainable manner, they lack the notion of com-

ponent. Their “tree” aspect cannot be used to model a component or

function hierarchy, because it is used to represent the different possi-

ble choices that a function involves. This assuredly argues thatDecision

Trees are incompatible with the ODM requirements, and are thus

rejected. What is more, attempting to force the notion of state into

a Decision Trees is not possible. In fact, BTs are known to generalize

Decision Trees.15

Finally we evaluate the sole use of Fault Trees (FTs) as an ODM

alternative. FTs are considered as the most used technique in com-

plex systems dependability assessment. Albeit their many advantages,

they presentmany drawbackswhen it comes to systemsmodelingwith

strong temporal component dependencies. That is, in FTs, there is a

structural dependence between components, but this dependence is

not dynamic (temporal). Hence the modeled faults are considered to

occur asynchronously (asynchronous faults-sequence).

Moreover, as observed in ref. [16], “The assumption of compo-

nents independence is precisely what makes FTs so powerful, but this

assumption is extremely restrictive, and may prove to be totally unre-

alistic and lead to grossly erroneous results for some kinds of systems.

To be able to model component dependencies, one has to recur to

dynamic models. The most popular are Markov processes, because of

their numerous nice mathematical properties.” However, and as dis-

cussed above, we have already concluded that Markov chains do not

consist adequate ODM candidates.

In addition to the lack of FTs’ dynamic and synchronous properties,

FTs fail to support hierarchical modeling and operational sequences

representation. What is more, FTs are not easily maintainable, since

a small change in the respective SE model can lead to big modifica-

tion efforts in the FT. That is, unless we consider an automatic solution

to generate FTs from design models, by defining a cross matching

between anMBSEmeta-model, an FTmeta-model and a dysfunctional

meta-model (failure mode). However, this kind of solutions are not yet

mature, while they are based on assumptions regarding the design

model structure. For this and all the above reasons, we can safely

conclude that BTs consist a more optimal solution, than FTs, for the

ODM semantics.

Lastly, we slightly shift our focus from FTs to Dynamic FTs (DFTs),

which were created to overcome FTs’ non-temporal constraints, by

allowing the modeling of sequence/time-dependent failure system

behavior. AlthoughDFTs extendFTs’ expressiveness in terms of events’

execution priority, redundancy and functional dependency to other

trigger events, they tend to get very large and complex when dealing

with real-size systems. Not only a high level of expertise is required

for their modeling, but also additional processing is necessary for their

qualitative and quantitative analysis.17 By keeping in mind that our

main objective is to have an easily accessible overview of the system

functions’ state for the operators, and at the right level of abstraction

so as to facilitate their troubleshooting tasks, we can safely conclude

that DFTs do not either fulfill ODMs’ requirements.

2.3 Discussion

Although our inclination towards the use of BTs is justified, the use of

other language semantics would add some benefits to our approach.

For example, FTs are farmore knownandpopular thanBTs in the indus-

trial world, and can be easily interpreted by non-experts (useful for

 15206858, 2024, 3, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21740 by O

N
E

R
A

, W
iley O

nline L
ibrary on [01/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



590 CHRISTOFI ET AL.

troubleshooting activities). Other than their familiarity, FTs can model

a flexible number of feared events, while they are also applicable to

positive events. However, BTs can also model both positive and neg-

ative events, and with no limitations to the size of the tree that is,

number of modeled nodes. Still, the industrial world will need to be

convinced for adopting a newmodeling language.

The main reason why we propose an activity behavior model as

the ODM, and BTs to represent it, is mainly the fact that we must

remain, at all times, system agnostic. This eliminates the choice of any

domain-specific models for example, Decision Trees, FSA, etc., as well

as of model templates where expected system behavior is categorized

by preset dysfunctional tasks.18 Furthermore, an activity behavior

model helps with coordinating diagnosis activities’ actors, since some

diagnosis activities are automated, and some other manual.

Furthermore, the ODM is supposed to help operators decide what

should their next action be—and elaborate an automatic diagnosis as

far as possible, which is a matter of activity, rather than structure,

or interactions. Not choosing a structure or interaction diagram—as

opposed to a behavior diagram, assumes having a single “Operator”

entity communicating with a single “System” entity. In a system with

a more complex structure, initial work is required to narrow down

“Operator-system” pairs to which our methodology can be applied.

Incidentally, our methodology proposes a semi-automated model

transformation, in contrast to a fully automated approach, considering

that some expert knowledge is still required to link all the comple-

mentary information coming from the SE activities in the right “place”

in the new model. Moreover, using FTs as the transformation start-

ing point means that the system dysfunctional analysis is completed

by an an independent team of RAMS/SA/MBSA experts. So by hav-

ing FTs as input, we ensure receiving a full system FMECA description.

This means that we do not need to be concerned about fault omissions,

neither about introducing wrong dysfunctional elements in the system

model. Errors during operational diagnosis, for example due to abadBT

model, will result in inappropriate actions from the operators. This kind

of fault is typically addressed in FTA. In that sense, our methodology

does not intervene in the work of SA.

3 BT LANGUAGE SEMANTICS

Before demonstrating the use of BTs to construct ODMs, an intro-

duction to BT theory is necessary. This section is dedicated to the BT

language semantics description.

BTs have shown a lot of potential in the last decade,19,20 mainlywith

their application to robotics and artificial intelligence.21–23 They were

initially developed within the gaming community to replace FSMs with

more user friendly models.24

According to Colledanchise and Ögren, “a Behavior Tree is a way

to structure the switching between different tasks (assuming that an

activity can somehow be broken down into reusable sub-activities

called tasks) in an autonomous agent, such as a robot or a virtual entity

in a computer game”.25 According to García et al., a Behavior Tree is

“a mathematical model of plan execution that allows composing tasks

in a modular fashion through a set of nodes representing tasks and

connections among them”.26

The underlying formalism and semantics of BTs support top-down

elicitation, thus allowing modular modeling. By this it is meant that,

throughout the system development, some subsystems can be thor-

oughly developed and some others remain as “blackboxes”, depending

on the information available at the time. This way a single BT is eas-

ier to elicit, since it can be exploitable at any level of development.

The model can hence stay abstract or be developed in detail. More-

over, new knowledge can be integrated in the BT when this knowledge

becomes available from the elicitation of other models, namely the SE

and SAmodels.

In this section, we present the classic formulation of BTs as

described in ref. [25] by Colledanchise and Ögren, where BTs can be

considered as a formof directed tree,where the flowamongst its nodes

and edges is sequential. BTs can be confused with Decision Trees but

both are fundamentally different. On the one hand, a Decision Tree, in

its classical formulation, implements a function from 𝔹n to 𝔹 –where

𝔹 is the set of Boolean values {0,1}. On the other hand, a BT imple-

ments a way to orchestrate the execution of a set of processes (called

behaviors), to support both sequential and concurrent compositions.

Most BTs libraries use concepts of “Success” and “Failure” of a behav-

ior to perform conditional branching.We present here the formulation

of ref. [25], illustrated in Figure 2.

A BT represents and implements a way to control the execution of

a set of concurrent processes. Each concurrent process is represented

by a leaf node. Parent nodes for example, Fallback, Sequence, Parallel,

can start and interrupt their children nodes, and query their status. The

BT itself is another process that executes periodically. The root node

has no parent nodes, and leaf nodes have no children. Amore complete

description can be found in ref. [25].

During execution, at regular time intervals, the BT “ticks” its nodes.

The Root is ticked first, and each composite node ticks some (or all)

of its children, in a top-down, left-right execution priority, as shown in

Figure 3. The returned status of each node can be one of the three:

“Success”, “Failure”, or “Running”. Fallback and Sequence nodes tick

their children sequentially (from left to right), while Parallel nodes tick

all of their children in parallel.

At each tick, Fallback, Sequence andParallel nodes return “Running”

if and only if their currently active child returned “Running”. Upon tick-

ing, a Fallback node returns “Success” if at least one of its children

nodes returns “Success”, and “Failure” if all of its children return “Fail-

ure”. On the other hand, a Sequence node returns “Success” if all of

its children return “Success”, and “Failure” if at least one of its nodes

returns “Failure”.

Parallel nodes launch all of their children in parallel. They return

“Success” if all of their children nodes have returned “Success”, and

“Failure” if at least one of their children nodes have returned “Failure”.

Inverter nodes return the inverse behavior status of their child. They

return “Success” if their child node has returned “Failure”, and “Failure”

if their child node has returned “Success”.

Different libraries dedicated to BT modeling exist, such as a python

implementation of BTs,27 and a BT library in C++.28 Moreover, there

 15206858, 2024, 3, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21740 by O

N
E

R
A

, W
iley O

nline L
ibrary on [01/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHRISTOFI ET AL. 591

F IGURE 2 Behavior Trees’ basic elements.

F IGURE 3 BTs’ execution sequence. BT, Behavior Trees.

exist Graphical Editors to create BTs, such as “Groot”,29 compati-

ble with “BehaviorTree.CPP”. For the needs of our work we have

decided to use the python BT implementation for the ODM construc-

tion. Based on our experience, after having tested both PyTrees and

BehaviorTree.CPP, we concluded that PyTrees is more adapted to

our requirements. We believe that PyTrees is much easier and more

intuitive to use than BehaviorTree.CPP, especially for people with no

particular coding skills. Hence evenwithout the help of a graphical tool,

engineers with no programming background nor development experi-

ence (consisting our target group) can buildODMs. Thatwould assume

themodelers’ accompaniment with appropriate guidance and training.

BTs represent Discrete Event Systems in a way that seems promis-

ing, in our context of model elicitation by operators. Neverthe-

less, other representations provided by MBSE, MBSA and scientific

research also do exist. To our knowledge, the use of BTs for operational

or model-based diagnosis has not so far been explored elsewhere.

3.1 BT language semantics - Standard nodes

This section provides definitions for standard BT nodeswhich are used

in the ODMmethodology. Although a terms description exists in liter-

ature, formal definitions are lacking. We have hence chosen to define

our own formal descriptions for BTs as follows, as shown in Section 3.1

below. Section 3.2 provides the definitions of BT behavior nodes as

extended tomatch the semantic needs of ODMs.

Behavior Tree (BT) A Behavior Tree (BT) is a tuple ⟨, root, children⟩

where  is a set of behaviors, root ∈  is the root

behavior, and children : B→ B∗ is a function which

associates each behavior with an ordered (and

possibly empty) list of children behaviors. In a BT,

each behavior has exactly one parent—except the

root behavior, which has no parent.

Figure 4 illustrates a BT, in which the root behavior is named “Oper-

ate system andmitigate fault”. Its children are named “Operate system

(nominal mode)” and “Operate system (degraded mode)”; the former

has children behaviors, while the latter is a leaf behavior. Each behavior

is composed of its children—with the exception of leaf/atomic behavior

nodes.

Behavior status The set of possible statuses for behaviors is the finite

set  = {IDLE,RUNNING, SUCCESS,FAILED}. At each

instant in the execution of a BT, the state of the BT

is a function state :  →  , which associates a status

to each behavior in the tree.

Abehaviorwhose status is notRUNNING canbe startedby its parent,

and its status then becomesRUNNING. A running behavior can be inter-

rupted by its parent; its status then becomes IDLE. A running behavior

can autonomously change its status to SUCCESS or FAILED.

Leaf behaviors are used to represent the actual activities imple-

mented by the system, under the form of concurrent processes. Their

execution is orchestrated by their parent behaviors, which are usually

picked among a set of predefined composite behaviors.

We use four predefined types of composite behaviors: SEQUENCE,

FALLBACK, PARALLEL and the INVERTER behavior. For the needs of our

study we have created a new type of parallel behavior node.We hence

 15206858, 2024, 3, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21740 by O

N
E

R
A

, W
iley O

nline L
ibrary on [01/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



592 CHRISTOFI ET AL.

F IGURE 4 The BT for a system operation
with fault detection andmitigation. Children are
ordered from left to right. The BT features a new
type of Fault detection node as presented in
Definition 3.2. BT, Behavior Tree.

TABLE 2 Description Summary of Behavior Tree Standard and ExtendedNodes Execution: Sequence, Fallback, ParallelAll, ParallelAny,
Inverter, Fault Detection and Fault Avoidance.

Sequence Fallback ParallelAll ParallelAny Inverter

Fault

Detection

Fault

Avoidance

On tick Ticks current

child

Ticks current

child

Ticks all children Ticks all children Ticks child Ticks child Ticks child

One child

returns

“Success”

Ticks next child Returns

“Success”

Waits all children Interrupts other

children,

Returns

“Success”

Returns

“Failure”

Returns

“Success”

behavior never

succeeds

Last child

returns

“Success”

Returns

“Success”

Returns

“Success”

Returns

“Success”a
Returns

“Success”a
– – –

One child

returns

“Failure”

Returns

“Failure”

Ticks next child Interrupts other

children,

returns

“Failure”

Waits all children Returns

“Success”

behavior never

fails

Returns

“Failure”

Last child

returns

“Failure”

Returns

“Failure”

Returns

“Failure”

Returns “Failure”a Returns “Failure”a – – –

One child

returns

“Running”

Returns

“Running”

Returns

“Running”

Returns

“Running”

Returns

“Running”

Returns

“Running”

Returns

“Running”

Returns

“Running”

ahere ‘last child’’ refers to the last non-terminated child; the childwhich has not yet returned its status to its parent—applicable only to nodes that tick several

children in parallel.

named the behavior node standardly called Parallel, PARALLELALL, so

as tomake a distinction between the twoParallel behaviors. The defini-

tions of the non-standard behavior nodes (contribution) are presented

in Section 3.2. The returned behavior status of each standard BT node,

based on the status behavior of their children nodes is summarized in

Table 2.

Sequence behavior When a Sequence behavior starts, it starts its

first child. When the currently running child suc-

ceeds, the Sequence behavior starts its next child,

or succeeds if it is the last child. If any child

behavior fails, the Sequence behavior fails at the

same instant. We use gray signal shapes to

represent Sequence behaviors.

Fallback behavior When a Fallback behavior starts, it starts its first

child. When the currently running child fails, the

Fallback behavior starts its next child, or fails if

it is the last child. If any child behavior succeeds,

theFallbackbehavior succeeds at the same instant.

We use gray octagon shapes to represent

Fallback behaviors.

 15206858, 2024, 3, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21740 by O

N
E

R
A

, W
iley O

nline L
ibrary on [01/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHRISTOFI ET AL. 593

Sequence and Fallback behaviors call their children sequentially,

with execution order from left to right. They both have at most one

running child at each instant.

ParallelAll behavior When a ParallelAll behavior starts, it starts all its

children in parallel. It succeeds if and only if all

its children have succeeded. If one child fails, the

ParallelAll behavior fails and interrupts the rest

of the children. We use gray ∧-shaped trapezia

to represent ParallelAll behaviors. Note: in

common literature ParallelAll behaviors are referred

to as Parallel behaviors.

Inverter behavior An Inverter behavior has exactly one child. It starts

its childwhen it starts, and is runningwhen its child

is running; succeeds when its child fails, and fails

when its child succeeds.We represent Inverters by

triangle arrow decorations .

3.2 BT language semantics - Extended nodes

Here are provided three new BT node types, which we defined

throughout our work towards the ODM definition and creation. They

are an extension of the standard BT behaviors, as introduced in Sec-

tion 3.1. These new behavior nodes were created so as to achieve the

representation of redundant system behaviors—that is, ParallelAny, as

well as fault detection and avoidance systemmechanisms in theBT lan-

guage. They also facilitate the automatic model transformation from

FTs to BTs. The returned behavior status of each node, based on the

status behavior of their children nodes is summarized in Table 2.

ParallelAny behavior When a ParallelAny behavior starts, it starts

all its children in parallel. It fails once all its

children have failed. If one child succeeds, Par-

allelAny behavior succeeds and interrupts the

rest of the children. We represent ParallelAny

behaviors by ∨-shaped gray trapezia .

Fault detection behavior A Detect behavior is an atomic behavior

dedicated to detecting a fault. In this behav-

ior, success means that it has detected

the fault. Otherwise, it stays in the run-

ning mode and never fails. Fault detection

behaviors are represented by diamonds

.

The semantics of the BT depicted in Figure 4 are as follows. The

top-most behavior is a fallback, that is, it tries to run its first child, and

in case of failure, falls back to its next child. In this instance, the first

executed behavior is “Operate system (nominal mode)”. The nominal

mode is implemented by a ParallelAll behavior, that runs the inverted

“Detect fault” and “Control system” behaviors in parallel. When a

fault is detected, the “Detect fault” succeeds, so its inverter fails, and

thus the whole nominal mode behavior fails. This interrupts the “Con-

trol system” behavior. Similarly, if the “Control system” fails for some

internal reason, the nominal mode fails and interrupts the “Detect

fault” behavior as a result. When the nominal mode fails, the root fall-

back behavior starts the “Operate system (degraded mode)” behavior.

Finally, the ODM methodology uses a type of behaviors that can be

either atomic or composite, but their semantic is defined with respect

to a specific fault event.

Fault event avoidance behavior A Fault event avoidance behavior is a

behavior that should fail when the

fault event occurs, and never suc-

ceed. It can be atomic or compos-

ite. All behaviors whose names start

with “Avoid” are Fault event avoid-

ance behaviors.

Fault event avoidance behaviors are always associated with a fault

event from a FT. These fault events represent the failure of a function

or of a fault detection mechanism. Therefore they do not always make

sense from an operational point of view. Fault event avoidance behav-

iors are merely an artifact used as temporary translation between FTs

and ODMs. Moreover, in a composite Fault event avoidance behavior,

its children must be compatible with the fault avoidance specification,

otherwise the BT is invalid, and its semantics hence undefined.

4 METHODOLOGICAL PROPOSAL FOR
BUILDING ODMs

The ODM methodological approach consists in defining a model that

describes the system’s operational procedures, with particular empha-

sis on fault diagnosis activities. In this sectionweprovidea step-by-step

description of the proposed methodology. Moreover, we define a vari-

ant of the BT language, created for the needs of theODMmethod. The

aimof this extension is to provideBT language semanticswith the tools

to express ODMs using FTs as input artifacts.

As illustrated in Figure 5, ODMs serve a double purpose. On the

one hand, since they are concurrently created with the SE & SA/RAMS

models, they provide feedback to system designers, specific to health

monitoring and FDIR aspects. ODMs consequently contribute to

improving the system’s structural and behavioral design, as well as its

andmaintenance aspects.

The left side of Figure 5 portrays these interactions, between sys-

tem architects, safety experts, theODMdesign team (left side) and the

operators (right side). Note that, the left part of the Figure portrays a

group of recursive processes, which are initiated by the preliminary sys-

tem architecture proposal, followed by a series of iterative activities,

eventually leading to the final system design definition.

On the other hand, following system deployment, the ODM can

immediately be used for system supervision and diagnosis. BTs are exe-

cutable, hence the ODM can facilitate the design of test scenarios,

distribute diagnosis objectives across the various activities, and ensure

 15206858, 2024, 3, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21740 by O

N
E

R
A

, W
iley O

nline L
ibrary on [01/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



594 CHRISTOFI ET AL.

F IGURE 5 Overview of the proposedmethodology for theODM construction and exploitation. ODM, operations-dedicatedmodel.

F IGURE 6 ODMcreationmethod demonstration. ODM,Operations-dedicatedmodel.

that operators are given realistic tasks. This process is illustrated at the

right side of Figure 5.

As illustrated in Figure 6, our methodology for obtaining an ODM

from a FT is composed of two steps:

1. Translate each FT into aBT (BT-v.1). This step is automated; the pur-

pose is to provide a first draft which accounts for all the faults that

can affect the system.

2. Elicit all BTs into a single BT (BT-v.2), in which each behavior rep-

resents an actual activity in operations. This step is done manually

by a person with modeling skills, but more importantly operational

experience.

For illustrative purposes, we assume that all fault events can be

detected or mitigated, hence be included in the ODM as their corre-

sponding operational activities. However, in general FTs may contain

faults that cannot be detected nor mitigated (e.g., automatic mon-

itoring not implemented), and therefore cannot be translated into

any behavior. In this sense, FTs can contain information irrelevant

to operations.

This is why we propose to construct ODMs from BTs through two

steps, since: (i) an FT cannot consist an ODM as is, while (ii) addi-

tional new information must be elicited—in combination with FT data,

to create a coherent and useful ODM.

During the first step, the FT is transformed into a BT as follows.

 15206858, 2024, 3, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21740 by O

N
E

R
A

, W
iley O

nline L
ibrary on [01/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHRISTOFI ET AL. 595

Fault tree transform FT2BT The transform of a FT into a BT is imple-

mentedby the function FT2BT definedon

FT nodes as follows.

1. If FTN is a basic event named “Fault

event X”, then:

FT2BT(FTN) is an atomic fault

avoidance behaviour named “Avoid

fault event X”.

2. If FTN is an AND gate labelled “Fault

event X” with children nodes FTN1,

FTN2,..., then FT2BT(FTN) is a Paral-

lelAny behaviour named “Avoid fault

event X”, with children behaviours

FT2BT(FTN1), FT2BT(FTN2),...

3. If FTN is an OR gate labelled “Fault

event X” with children nodes FTN1,

FTN2,..., then FT2BT(FTN) is a Paral-

lelAll behaviour named “Avoid fault

event X”, with children behaviours

FT2BT(FTN1), FT2BT(FTN2),...

A pseudo-code for the FT2BT function is proposed below.

Fault tree transform FT2BT pseudo-code

def FT2BT(ft_node){

bt_node_name = “Avoid ” + ft_node.name

if (ft_node.is_basic_event())

return AtomicBehaviour(bt_node_name)

bt_children = list()

for (ft_child in ft_node.get_children())

bt_children.append(FT2BT(ft_child))

if (ft_node.is_AND_node())

return ParallelAny(bt_node_name,

bt_children)

if (ft_node.is_OR_node())

return ParallelAll(bt_node_name,

bt_children)

raise Error(“Unknown FT node type”)

}

During the second step, firstly, Fault avoidance behaviors are

elicited to “Operate”-type behaviors. That is because BT-v.2 repre-

sents an executable system model. Then, critical Fault avoidance

behaviors are elicited to a parent Sequence “Operate without criti-

cal faults” behavior, with children an Inverted Fault detection that is,

“Detect critical faults” behavior, and an “Operate with degraded faults”

behavior.

The second step of the ODM methodology is performed manually,

whilst following several general guidelines. Inmany instances, a behav-

ior named “Avoid somethingnegative” doesnot represent a real activity

in the system. The purpose of this step is to replace these unrealistic

behaviors with other behaviors which account for:

∙ Fault tolerance and robust control.

∙ Fault mitigation activities.

∙ The fact that some activities occur in a predetermined sequence.

∙ The fact that some faults may have different observable effects

depending on the system configuration, or its operational phase.

One important aspect of this step is that every transformation is

documented and justified. This guarantees that every fault event con-

sidered in the FT is either directly accounted for in the BT, or handled

by one or several precisely identified behaviors.

Regarding the expertise required for the building of the BT mon-

itoring models, we propose that a dedicated team with operations

background shall build the ODMs rather than the system archi-

tects or the safety analysts, so as to allow a distinct point of view.

That would also ensure that the models will contain the necessary

information for supervision and diagnosis only. Moreover, the con-

struction of BTs with the PyTrees library is relatively easy and intuitive

to code with. We hence believe that most system modeling engi-

neers with no particular coding background, provided with sufficient

training, guidance and documentation, could create ODMs. By not

requiring particularly sophisticated skills prior to the initial training—

other than system modeling and knowledge of operations, we can

ensure that the monitoring model is easy to maintain throughout the

years.

5 CONCLUSIONS

In this paper we have introduced a novel approach demonstrating the

potential of using BTs for system monitoring, as well as their limita-

tions, based on the state-of-the-art and the current industrial needs.

Monitoring tools for diagnosis during system operations are, to this

day, still relying on knowledge acquired through previous experience

as well as engineers’ and operators’ know-how, rather than the system

design elements. For this reason we have presented amethod towards

the concurrent construction of a monitoring tool—along with the sys-

tem design (SE and SA) models, which is tailored to the system under

development. Inourproposal, thewayBTsareused formonitoring shall

depend on the system and its operational environment, which impacts

the way the monitoring tool is implemented and deployed. Our ODM

approach is compatiblewithautomateddiagnosis approaches,whether

model-based or data-based.

ODMs can be considered as reconstructedMBSAmodels built with

an operational maintenance perspective, and with focus on FDD. The

fact that ODM-based diagnostic tools can offer visibility on the faults’

order of occurrence, is a great benefit over other traditional FDD tools,

for example, tools based on FTAs, where the fault occurrence order

 15206858, 2024, 3, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21740 by O

N
E

R
A

, W
iley O

nline L
ibrary on [01/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



596 CHRISTOFI ET AL.

is not part of the modeling parameters. The latter is imperative when

attempting to understand the fault propagation that took place and

identify the single fault that triggered the series of events leading to

the current situation.

Moreover, diagnostic tools based on ODMs can offer dedicated UI

for operators,meant to facilitate their overviewof the systemarchitec-

ture (how the system is built) and of its current state (what the system

is currently doing). This can eventually reduce the response time to fail-

ure, leading to greater efficiency in diagnostic operations and increase

in the satellites’ Availability. Moreover, it can potentially reduce the

operators’ stress level during FDD activities.

On the downside, a threat associated to the ODM proposal is the

non-adoption by the operators. Moreover, additional training might be

considered necessary: on the on hand, for the operators, so as to learn

how to use the new tools, and on the other, for the operations and diag-

nostics experts (future ODM team) to master the ODM methodology

and BT semantics.

Regarding the types of faults ODMs can eventually integrate,

that will depend on the maintenance actions. In our approach so

far, faults are treated from system viewpoint. Other fault types,

such as time-dependent (abrupt, incipient, intermittent) relate

to a low-level, component-dependent system description, which

is not the case for our modeling practises at this stage of the

study.

The authors have validated the proposed approach through their

collaboration with research laboratories that is, ONERA, LAAS-CNRS,

aerospace companies that is, ADS and space agencies that is, CNES,

as well as by the space operations community. Future work can con-

template the following perspectives: ODM method refinement; ODM

integration in system monitoring/diagnosis tools; operators’ training

for the ODM building and exploitation; method deployment in the

ongoing process of real systems’ development. This would also con-

tribute in the evaluation of the method’s scalability (how large of a

system the ODM can handle, and where the benefits of its usage

remain significant). Another option would be the application of the

ODMcreationmethodology in an existing, operational system, so as to

compare the added value of the use of ODMs for FDD, compared to

current practise.

ACKNOWLEDGMENTS

S2C Project, IRT Saint Exupéry, supported by the French National

Research Agency (ANR).

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

Data available on request from the authors.

ORCID

NikolenaChristofi https://orcid.org/0000-0003-1249-0839

ClaudeBaron https://orcid.org/0000-0001-9573-7002

Xavier Pucel https://orcid.org/0000-0001-8747-0889

REFERENCES

1. Bitetti L, De Ferluc R,MaillandD, Gregoris G, Capogna F.Model based

approach for RAMS analyses in the space domain with capella open-

source tool. In: Papadopoulos Y, Aslansefat K, Katsaros P, Bozzano

M, eds. Model-Based Safety and Assessment. Lecture Notes in Com-

puter Science. Springer International Publishing; 2019: 18-31. ISBN

978-3-030-32872-6. https://doi.org/10.1007/978-3-030-32872-6_2

2. HenryD, Simani S, Patton RJ. Fault Detection and Diagnosis for Aeronau-
tic and Aerospace Missions. Springer; 2010:91-128. ISBN 978-3-642-

11690-2. https://doi.org/10.1007/978-3-642-11690-2_3

3. National Aeronautics and Space Administration. NASA 2022 Strate-

gic Plan; NPD 1001.0D, Page 7. https://www.nasa.gov/ocfo/strategic-

plan/

4. National Aeronautics and Space Administration. NASA 2018 Strategic

Plan; Page 43. https://www.nasa.gov/ocfo/strategic-plan/

5. European Space Agency, ESA’s Technology Strategy for Space19+;

Version 1.2, September 2022, Page 52. https://www.esa.int/Enabling_

Support/Space_Engineering_Technology/ESA_s_Technology_

Strategy_for_Space19

6. ISO15288, ISO/IEC/IEEE 15288:2015 - Systems and Software Engineer-
ing - System Life Cycle Processes. International Standards Organization

(ISO), Geneva, Switzerland; 2015.

7. Aguilar-Savén RS. Business process modelling: review and framework.

Int J Prod Econ. 2004;90:129-149. ISSN0925-5273. https://doi.org/10.

1016/S0925-5273(03)00102-6. Production Planning and Control.

8. Allweyer T. BPMN 2.0: introduction to the standard for business process
modeling, 2016. ISBN-10: 383709331X.

9. Geambaşu CV. BPMN vs. UML activity diagram for business process

modeling. In: Proceedings of the 7th International Conference Accounting
andManagement Information Systems. AMIS; 2012:934-945.

10. Herzner W, Sieverding S, Kacimi O, Böde E, Bauer T, Nielsen B.

Expressing best practices in (risk) analysis and testing of safety-critical

systems using patterns. In: 2014 IEEE International Symposium on Soft-
ware Reliability Engineering Workshops. IEEE; 2014: 299-304. https://
doi.org/10.1109/ISSREW.2014.24

11. AdedjoumaM,YakymetsN.A framework formodel-baseddependabil-

ity analysis of cyber-physical systems. In: 2019 IEEE 19th International
Symposium on High Assurance Systems Engineering (HASE). IEEE; 2019:
82-89. https://doi.org/10.1109/HASE.2019.00022

12. Chen X, Jiao J. A fault propagation modeling method based on a finite

state machine. In: 2017 Annual Reliability and Maintainability Sympo-
sium (RAMS). IEEE; 2017: 1-7. doi: https://doi.org/10.1109/RAM.2017.

7889776

13. Zhu M, Brooks R. Comparison of petri net and finite state machine

discrete event control of distributed surveillance network. IJDSN.
2009;5:480-501. https://doi.org/10.1080/15501320903048753

14. Ekanayake T, Dewasurendra D, Abeyratne S, Ma L, Yarlagadda P.

Model-based fault diagnosis and prognosis of dynamic systems: a

review. Procedia Manuf. 2019;30:435-442. ISSN 2351-9789. https://

doi.org/10.1016/j.promfg.2019.02.060. Digital Manufacturing Trans-

forming Industry Towards Sustainable Growth.

15. Colledanchise M, Ögren P. How behavior trees modularize hybrid

control systems and generalize sequential behavior compositions,

the subsumption architecture, and decision trees. IEEE Trans Rob.
2017;33(2):372-389. ISSN 1941-0468. https://doi.org/10.1109/TRO.

2016.2633567. Conference Name: IEEE Transactions on Robotics.

16. Bouissou M, Bon J-L. A new formalism that combines advantages

of fault-trees and Markov models: Boolean logic driven Markov pro-

cesses. Reliab Eng Syst Saf. 2003;82(2):149-163. ISSN 0951-8320.

https://doi.org/10.1016/S0951-8320(03)00143-1

17. Aslansefat K, Kabir S, Gheraibia Y, Papadopoulos Y. Dynamic

Fault Tree Analysis: State-of-the-Art in Modelling, Analy-

sis and Tools. Reliability Management and Engineering. CRC

Press; 2020:73-112. 06 2020. ISBN 9780429268922. doi:

https://doi.org/10.1201/9780429268922-4

 15206858, 2024, 3, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21740 by O

N
E

R
A

, W
iley O

nline L
ibrary on [01/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0003-1249-0839
https://orcid.org/0000-0003-1249-0839
https://orcid.org/0000-0001-9573-7002
https://orcid.org/0000-0001-9573-7002
https://orcid.org/0000-0001-8747-0889
https://orcid.org/0000-0001-8747-0889
https://doi.org/10.1007/978-3-030-32872-6_2
https://doi.org/10.1007/978-3-642-11690-2_3
https://www.nasa.gov/ocfo/strategic-plan/
https://www.nasa.gov/ocfo/strategic-plan/
https://www.nasa.gov/ocfo/strategic-plan/
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/ESA_s_Technology_Strategy_for_Space19
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/ESA_s_Technology_Strategy_for_Space19
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/ESA_s_Technology_Strategy_for_Space19
https://doi.org/10.1016/S0925-5273(03)00102-6
https://doi.org/10.1016/S0925-5273(03)00102-6
https://doi.org/10.1109/ISSREW.2014.24
https://doi.org/10.1109/ISSREW.2014.24
https://doi.org/10.1109/HASE.2019.00022
https://doi.org/10.1109/RAM.2017.7889776
https://doi.org/10.1109/RAM.2017.7889776
https://doi.org/10.1080/15501320903048753
https://doi.org/10.1016/j.promfg.2019.02.060
https://doi.org/10.1016/j.promfg.2019.02.060
https://doi.org/10.1109/TRO.2016.2633567
https://doi.org/10.1109/TRO.2016.2633567
https://doi.org/10.1016/S0951-8320(03)00143-1
https://doi.org/10.1201/9780429268922-4


CHRISTOFI ET AL. 597

18. Tundis A, Garro A. On the reliability analysis of systems and SoS: the

RAMSASmethod and related extensions. IEEE Syst J. 2015;9:232-241.
doi: https://doi.org/10.1109/JSYST.2014.2321617

19. Colledanchise M, Ögren P. How behavior trees modularize robust-

ness and safety in hybrid systems. In: 2014 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE; 2014:

1482-1488. ISSN: 2153-0866. https://doi.org/10.1109/IROS.2014.

6942752. ISSN: 2153-0866.

20. ColledanchiseM,MarzinottoA,DimarogonasDV,ÖgrenP. Theadvan-

tages of using behavior trees in mult-robot systems. In: Proceedings of
ISR 2016: 47st International Symposium on Robotics. VDEVerlag GmbH;

2016:1-8.

21. Klöckner A. Interfacing behavior trees with the world using descrip-

tion logic. In: AIAA Guidance, Navigation, and Control (GNC) Confer-
ence, Guidance, Navigation, and Control and Co-located Conferences,
American Institute of Aeronautics andAstronautics; 2013. https://arc.

aiaa.org/doi/10.2514/6.2013-4636

22. Rovida F, Grossmann B, Krüger V. Extended behavior trees for quick

definition of flexible robotic tasks. In: 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS); IEEE; 2017: 6793-
6800. https://doi.org/10.1109/IROS.2017.8206598. ISSN: 2153-

0866.

23. Colledanchise M, Parasuraman R, Ögren P. Learning of behavior trees

for autonomous agents. IEEE Trans Games. 2019;11(2):183-189. ISSN
2475-1510. https://doi.org/10.1109/TG.2018.2816806. Conference

Name: IEEE Transactions on Games.

24. Colledanchise M, Ögren P. How behavior trees modularize hybrid

control systems and generalize sequential behavior composi-

tions, the subsumption architecture, and decision trees. IEEE

Trans Rob. 2017;33(2):372-389. https://doi.org/10.1109/TRO.2016.
2633567

25. Colledanchise M, Ögren P. Behavior Trees in Robotics and AI: An

Introduction. arXiv:1709.00084 [cs] 2018. https://doi.org/10.1201/

9780429489105. arXiv: 1709.00084.

26. García S, Pelliccione P, Menghi C, Berger T, Bures T. High-level mis-

sion specification for multiple robots. In: Proceedings of the 12th ACM
SIGPLAN International Conference on Software Language Engineering, SLE
2019, New York, NY, USA. Association for Computing Machinery;

2019: 127-140. ISBN 978-1-4503-6981-7. https://doi.org/10.1145/

3357766.3359535

27. PyTrees. Library Documentation. https://py-trees.readthedocs.io/en/

devel/. Last accessedMarch 2023.

28. BehaviorTree.CPP. Behavior Trees Library inC++. https://github.com/

BehaviorTree/BehaviorTree.CPP. Last accessedMarch 2023.

29. AurynRobotics. Groot - Graphical Editor to create Behavior Trees.

Compliant with BehaviorTree.CPP. https://github.com/BehaviorTree/

Groot. Last accessedMarch 2023.

How to cite this article: Christofi N, Baron C, Pucel X, Pantel

M, CanuD, DucampC. How to early integrate operational

diagnosis objectives in model-driven engineering processes: A

methodological proposal based on fault and behavior trees.

Systems Engineering. 2024;27:585–597.

https://doi.org/10.1002/sys.21740

 15206858, 2024, 3, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21740 by O

N
E

R
A

, W
iley O

nline L
ibrary on [01/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1109/JSYST.2014.2321617
https://doi.org/10.1109/IROS.2014.6942752
https://doi.org/10.1109/IROS.2014.6942752
https://arc.aiaa.org/doi/10.2514/6.2013-4636
https://arc.aiaa.org/doi/10.2514/6.2013-4636
https://doi.org/10.1109/IROS.2017.8206598
https://doi.org/10.1109/TG.2018.2816806
https://doi.org/10.1109/TRO.2016.2633567
https://doi.org/10.1109/TRO.2016.2633567
https://doi.org/10.1201/9780429489105
https://doi.org/10.1201/9780429489105
https://doi.org/10.1145/3357766.3359535
https://doi.org/10.1145/3357766.3359535
https://py-trees.readthedocs.io/en/devel/
https://py-trees.readthedocs.io/en/devel/
https://github.com/BehaviorTree/BehaviorTree.CPP
https://github.com/BehaviorTree/BehaviorTree.CPP
https://github.com/BehaviorTree/Groot
https://github.com/BehaviorTree/Groot
https://doi.org/10.1002/sys.21740

	How to early integrate operational diagnosis objectives in model-driven engineering processes: A methodological proposal based on fault and behavior trees
	Abstract
	1 | INTRODUCTION
	2 | CHOOSING THE ODM SEMANTICS
	2.1 | Setting the ODM requirements
	2.2 | Language semantics comparison
	2.3 | Discussion

	3 | BT LANGUAGE SEMANTICS
	3.1 | BT language semantics - Standard nodes
	3.2 | BT language semantics - Extended nodes

	4 | METHODOLOGICAL PROPOSAL FOR BUILDING ODMs
	5 | CONCLUSIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES


