
HAL Id: hal-04425002
https://laas.hal.science/hal-04425002v2

Submitted on 13 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model predictive control under hard collision avoidance
constraints for a robotic arm

Arthur Haffemayer, Armand Jordana, Médéric Fourmy, Krzysztof
Wojciechowski, Guilhem Saurel, Vladimír Petrík, Florent Lamiraux, Nicolas

Mansard

To cite this version:
Arthur Haffemayer, Armand Jordana, Médéric Fourmy, Krzysztof Wojciechowski, Guilhem Saurel, et
al.. Model predictive control under hard collision avoidance constraints for a robotic arm. Ubiquitous
Robots 2024, Korea Robotics Society, Jun 2024, New York (USA), United States. �hal-04425002v2�

https://laas.hal.science/hal-04425002v2
https://hal.archives-ouvertes.fr

Model predictive control under hard collision avoidance constraints
for a robotic arm

Arthur Haffemayer1,2,3, Armand Jordana4, Médéric Fourmy5, Krzysztof Wojciechowski1, Guilhem Saurel1,
Vladimir Petrik5, Florent Lamiraux1, and Nicolas Mansard1,2

Abstract— We design a method to control the motion of a
manipulator robot while strictly enforcing collision avoidance
in a dynamic obstacle field. We rely on model predictive control
while formulating collision avoidance as a hard constraint. We
express the constraint as the requirement for a signed distance
function to be positive between pairs of strictly convex objects.
Among various formulations, we provide a suitable definition
for this signed distance and the analytical derivatives the
numerical solver needs to enforce the constraint. The method
is completely implemented on a manipulator ”Panda” robot,
and the efficient open-source implementation is provided along
with the paper. We experimentally demonstrate the efficiency
of our approach by performing dynamic tasks in an obstacle
field while reacting to non-modeled perturbations.

I. INTRODUCTION

For manipulator robots to act in a dynamic environ-
ment while achieving versatile tasks, they need to gener-
ate collision-free trajectories efficiently. While the collision
constraint is one of the first that roboticists have considered,
particularly in motion planning, a generic control method
that would enforce collision-safe movements while enabling
versatile programming of the robot motion objectives is still
lacking.

Early approaches often relied on randomized motion
planning, such as Rapidly Exploring Random Trees (RRT)
algorithms to generate collision-free trajectories [1]. The
planning phase is complemented by trajectory-following
algorithms [2], ensuring precise adherence of the robot to
the planned trajectory. Besides, the trajectories planned with
randomized algorithms tend to have sub-optimal dynamics
[1]. Trajectory optimization can then filter the random search
output and produce a local optimum near the planned trajec-
tory [3]. Several studies have led to improving the capa-
bilities of numerical solvers to handle obstacle avoidance.
In [4], a specific (covariant Hamiltonian-based) numerical
algorithm optimizes the motion of various robotic systems
while considering collision distances. Approach [5] works on
the cost formulation to introduce the collision constraint in
a more classical sequential-quadratic solver. We follow this

This work is supported by the European project AGIMUS (under
GA no.101070165), ANITI (ANR-19-P3IA-0004), NERL (ANR-23-CE94-
0004-02) and by the National Science Foundation grants 1932187, 2026479,
2222815 and 2315396.

1 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
2 Artificial and Natural Intelligence Toulouse Institute, France
3 Continental, France
4 Machines in Motion Laboratory, New York University, USA
5 CIIRC, Czech Technical University in Prague
*corresponding author: arthur.haffemayer@laas.fr

Fig. 1: Highly dynamical yet compliant torque-controlled
robot avoiding a fixed obstacle with MPC.

direction by focusing on the constraint formulation to exploit
off-the-shelf solvers. However, these early works could only
consider the collisions in the off-line planning phase while
relying on trajectory tracking to control the robot safely. This
prevents safe disturbance rejection or dynamic adaptation to
changes in the tasks or the motion of the nearby obstacles.

Building on the progress in optimal control, model pre-
dictive control (MPC) has become increasingly popular in
robotics due to its ability to generate complex motions
online [6], [7]. To meet the computational needs of robotics,
a variety of optimization algorithms tailored for optimal
control have been proposed [8], [9], [10]. The first numerical
algorithms used in MPC for robotics could typically not
handle hard constraints. In practice, penalization functions
were used for collision constraints [11], [12], [13], [14]. Most
of the previous papers relied on gradient-based optimization
although gradient-free (evolution strategy) has also shown
interesting capabilities when using the sampling power of
a GPU [14]. In both gradient-based and gradient-free ap-
proaches, the penalty implies that the solver has to find
a compromise between optimized quantities (energy, time
optimality, etc.) and collision avoidance. The trade-off is de-
fined by a parameter whose value must be manually adjusted.
This is a classical drawback of penalty-based MPC solvers.
Compared to other constraints (e.g. torque or velocity limits),
it is particularly harmful when dealing with constraints
because of the lack of general margin: being conservative can
easily lead to a loss of a large part of the workspace, while
small violations of this constraint cannot be accepted. This
makes tuning the trade-off parameter particularly delicate

mailto:arthur.haffemayer@laas.fr

to achieve the desired robot behavior. In some instances,
researchers resort to reinforcement learning to identify the
optimal set of weights [15].

Recently, several algorithms have been proposed to en-
force strict constraint satisfaction [16], [17], [18]. These
solvers have the potential to enforce hard constraints in real-
time in an MPC implementation. In particular, we consider in
this paper a tailored implementation of Sequential Quadratic
Programming (SQP) for optimal control problems [19].
This implementation showed promising results in hardware
experiments by performing closed-loop MPC while strictly
enforcing simple end-effector constraints.

In this paper, we propose to capitalize on these newly
available solvers to establish a generic versatile method
for controlling the robot while strictly enforcing collision
avoidance. We present a simple and rigorous way to write
collision avoidance as a hard constraint. We then efficiently
implement this formulation into an SQP numerical scheme
to optimize the robot trajectory while avoiding collisions in
real-time on an MPC scheme. We demonstrate the value of
this controller by hardware experiments using a torque-driven
manipulator robot, performing pick-and-place-like tasks in
an obstacle field while reacting to the physical perturbation
of a human operator (see Fig. 1). To our knowledge, this is
the first experimental demonstration of a torque-controlled
manipulator arm employing nonlinear MPC with collision
avoidance explicitly formulated as a hard constraint and
solved using SQP. The practical implications of the results
are noteworthy: the robot demonstrates versatile adaptabil-
ity to perturbations during dynamic tasks, achieves precise
target reaching, and ensures complete compliance, particu-
larly when interacting with an operator, while successfully
avoiding specified obstacles.

II. SQP-BASED MPC

In this section, we formulate the motion generation prob-
lem as an OCP and introduce our collision constraint’s
abstract formulation.

A. OCP formulation

The problem is formulated as an OCP of the form :

min
x,u

T−1∑
t=0

ℓt(xt,ut) + ℓT (xT) (1a)

subject to xt+1 = ft(xt,ut) ∀ 0 ≤ t < T, (1b)
ct(xt,ut) ≥ 0, ∀ 0 ≤ t < T, (1c)
cT (xT) ≥ 0, (1d)

where xt = (qt,vt) is the robot state concatenating robot
configuration qt and velocity vt = q̇t, and ut = τt
are the controlled joint torques; ft is the transition func-
tion representing the discretized robot dynamics along the
horizon of length T , given an initial state x0 (e.g. mea-
sured state). The optimization variables are the state tra-
jectory x = (x1, ...,xT) and the control trajectory u =
(u0,u1, ...,uT−1). The costs, written here as ℓt for the

running cost and ℓT for the terminal cost specify the goal-
reaching task. Functions ct and cT represent the hard (in-
equality) constraints at each time step. The SQP takes state
and control sequences as initial guesses and solves (1). Sec.
IV-A describes these costs and constraints.

The first MPC obtained on real robot hardware [11], [7],
[10] were constraint-free, i.e. not able to take into account
ct, cT . Here we instead consider a constraint-based OCP
solver and show how ct, cT should be chosen to enforce
collision avoidance. We first discuss how the solver works,
defining how ct, cT must be chosen.

B. SQP resolution

There exists a vast body of work providing efficient solvers
tailored for optimal control [16], [17], [9], [18], [19]. These
solvers typically combine the main principle of a constrained
nonlinear solver [20] with some particular developments to
handle the temporal structure (sparsity) of the OCP (1a).
This is generally done by using the Riccati recursion to fully
exploit the sparsity of the OCP, following the initial idea of
the differential dynamic programming (DDP) algorithm [21].

In this work, we use the solver proposed in [19]. This
solver relies on an SQP algorithm using the operator-splitting
quadratic program (QP) solver OSQP [22] in the inner loop.
This QP solver is in turn taking advantage of the sparse
structure of the OCP by implementing a DDP recursion.

At each control cycle, the solver needs to compute one
or several steps of SQP. Each step implies (i) the evalu-
ation of the derivatives of the functions ℓt, ℓT , ft, ct and
cT along each point of the candidate trajectories x, u, (ii)
the resolution of the QP in the inner loop, (iii) and a line-
search or equivalent, by evaluating possibly multiple times
the functions ℓt, ℓT , ft, ct and cT to decide the new value
of the decision variables. This implies that the obstacle
constraints ct, cT must be written in a form that allows
efficient evaluation of its value and its derivative.

III. OBSTACLE AVOIDANCE AS A HARD CONSTRAINT

In this section, we formulate the obstacle avoidance con-
straint as a hard constraint.

A. Signed distance

We consider two objects A and B, modeled as convex and
compact subsets of R3. We then denote by:

• A◦, B◦ the interior sets of A and B,
• ∂A = A \ A◦, ∂B = B \ B◦ the boundaries of A and

B.
We say that A and B:

• are in collision if A◦ ∩B◦ ̸= ∅,
• are in contact if A◦ ∩B◦ = ∅ and A ∩B ̸= ∅,
• are collision-free if A ∩B = ∅.

If A and B are not in collision, we define the signed distance
between A and B by the following optimization problem:

d(A,B) = min
v∈R3

∥v∥ , (2)

such that A and B + v are in contact ,

(a) Not in collision (b) Shapes in collision

Fig. 2: Definition of the signed distance and of the witness
points between two convex shapes.

where B + v = {b + v,b ∈ B} is the translation of B
by v. When A and B are in collision, we define the signed
distance between A and B by

d(A,B) = − min
v∈R3

∥v∥ , (3)

such that A and B + v are in contact .

If v is a minimizer of (2) or (3), and a ∈ A∩B+v, we say
that a and a−v are witness points on A and B, respectively
(see Fig. 2). If A and B are strictly convex, then the witness
points are unique, they lie on the boundaries of A and B
and their distance is the absolute value of d(A,B).

B. Derivative of the signed distance

We now consider that A and B are strictly convex, and
move with respect to each other. We denote by T ∈ SE(3)
the relative pose between the two objects. The signed dis-
tance d(T) is continuous and piecewise C1 on SE(3). We
denote by wA,wB the witness points on respectively A and
B. The derivative of the signed distance d with respect
to the relative pose of the objects can be expressed by
differentiating1:

d = σ
√
(wA −wB |wA −wB),

where σ = 1 if the objects are collision-free and −1 if they
are in collision:

∂d

∂T
=

σ

d
(wB −wA)(

∂wB

∂T
− ∂wA

∂T
) , (4)

where ∂wA

∂T is the tangent application of wA with respect to
T (and respectively for wB).

C. Derivative with respect to the robot configuration

Let us consider that the two bodies are attached to a joint
of the robot or an obstacle of the environment. Now T =
T (q) only depends on the configuration q of the robot. As
explained in [24, Sec.III], we can replace in (4) ∂wA

∂T , ∂wB

∂T by
the Jacobians of the coinciding points on wA and wB , thus
getting the Jacobian with respect to the robot configuration:

∂d

∂q
=

σ

d
(wB −wA)(

∂wB

∂q
− ∂wA

∂q
) , (5)

where now ∂wA

∂q (resp. ∂wB

∂q) is the Jacobian of wA (resp.
wB) with respect to the robot configuration q or 0 if A
(resp. B) is a static obstacle. These Jacobians are computed
by forward kinematics (using the Pinocchio library [25]).

1see [23] for details about differentiation on SE(3).

D. Integrating the constraints in the solver
For each relevant pair of objects Bi, Bj in the robot model,

that may be in collision and for each time discretization step
t ∈ {1, · · · ,T}, we add an inequality constraint of the type:

ct,i,j(xt) = dij(xt)− ϵ ≥ 0 , (6)

where dij(xt) is the signed distance between Bi and Bj when
the robot is in configuration qt, and ϵ is the safety margin.

IV. IMPLEMENTING A REACHING TASK WITH COLLISION
AVOIDANCE

In this section, we present the OCP used in the experi-
mental section and implement a reaching task under collision
constraints. The program implements the template (1a) with
ct, cT a vector concatenating the signed distance function
introduced in (2),(3) for each relevant pair of collision bodies
Bi,Bj . The dynamics ft is computed from the forward
dynamics (articulated body algorithm [26]) integrated using
Euler method [27]. The cost functions ℓt, ℓT are chosen to
penalize the distance to the target to reach while regularizing
the state and the control, as explained below.

A. Goal-reaching task
The task is defined by the formulation of the running and

terminal costs in Problem (1). For the goal-reaching task,
the running and terminal costs are split into a goal-reaching
term and regularization terms.

They are formulated as follows:

lt(xt,ut) = ωeelee(xt) + ωxlx(xt) + ωulu(xt,ut) , (7a)
lT (xT) = ωeelee(xT) + lx(xT) , (7b)

where lee(xt) is the goal reaching term, lx(xt) is the
state regularization and lu(xt) is the control regularization.
Parameters ωi are the weights of the different costs.

1) Goal-reaching cost: The goal-reaching cost minimizes
the distance between the end effector pose of the robot and
the goal pose. The cost is formulated as follows:

ℓee(xt) = || log(T−1
goal · Tee(qt))||2 , (8)

where Tee, Tgoal ∈ SE(3) are respectively the end effector
pose obtained from forward kinematics and a pose goal.
Function log : SE(3) → R3 is the SE(3) logarithm map
[23].

2) State regularization cost: The state regularization cost
penalizes both extreme joint configurations (i.e. far from the
initial configuration) and high joint speed:

ℓx(xt) = (xt − xinit)
TQx(xt − xinit) , (9)

where xinit = (qT
init 0T), the initial configuration of the

robot as the start of the problem.
3) Control regularization cost: The control regularization

cost is defined to keep the controls close to the torque
compensating for gravity at a given configuration:

ℓu(xt,ut) = (ut−ugrav(qt))
TQu(ut−ugrav(qt)) , (10)

where ugrav(xt) is the torque compensating for gravity at
configuration qt.

Fig. 3: Scene arrangement and capsule decomposition.

B. Receding horizon scheme for a pick-and-place task

We use the costs formulated in the previous subsection
to implement an MPC scheme for reaching two target points
alternately. The horizon is then composed of temporal stages:
initially reaching goal G1, then to the second goal G2 before
returning to G1, and so forth. To simplify the implementa-
tion, we maintain a constant horizon in the OCP solver for a
short duration with goal G1 and then promptly switch to G2,
and so on. This approximation follows a receding horizon
pattern on the cycle G1, G2 while ensuring optimal robot
behavior. The collision constraint is always enforced.

V. EXPERIMENTATION

This section experimentally evaluates the performances of
our approach in comparison to previous methods and on the
real hardware, on a Franka Emika Panda (see Fig. 1).

A. Comparison with penalization

We first propose a comparative analysis in simulation
between two frequently used solvers in MPC, SQP [19]
and Feasibility-driven Differential Dynamic Programming
(FDDP) [28]. We scrutinize their collision-handling capabili-
ties and assess the smoothness of their behaviors—key facets
influencing their efficacy in real-world robotic applications.

1) Comparison setup: To compare the two methods, we
devised a scene where the end-effector is required to reach
one designated target and then another, all while moving
around a stationary obstacle placed in its trajectory, as
illustrated in Fig. 1.

The geometry of the robot is decomposed into capsules
(see Fig. 3). Since only the last three links are in proximity to
the obstacle in the trajectory, we selectively add in the OCP,
as denoted by (1), only the collision constraints between the
obstacle and those last three links.

As mentioned earlier, FDDP and unconstrained SQP
(USQP) cannot incorporate hard constraints. Therefore, we
include the collision term as a quadratic barrier by adding
the following term to ℓt and ℓT :

ℓB(q) =

{
(d(q)− ϵ)2 if d(q) ≤ ϵ ,

0 otherwise .

We used the same collision margin ϵ = 0.5 cm when
including d(q) as a penalty (in FDDP and USQP) or as a
constraint (in our constrained SQP (CSQP)).

Fig. 4: Minimal distance (in meters) between the obstacle
and the closest links of the robot.

Fig. 5: Distance (in meters) between the end effector and the
two targets.

The trade-off between the reaching cost ℓt and the barrier
ℓB is parameterized by a weighting factor whose value is
manually tuned. For the penalization method to accurately
account for collisions, the weights assigned to the collision
cost must be set to a significantly high value. However,
setting those weights too high causes instabilities in the state
and control of the robot. Hence, different sets of weights for
the collision cost are tested (ranging from 10 to 100).

Excluding the collision constraints, the OCP prob-
lem remains identical. Both are implemented using the
crocoddyl OCP library [27], either using the FDDP solver
implemented in the package, or the unconstrained SQP solver
from the add-on mim-solvers [19].

2) Comparison results: We compare the behavior in a
simulation of the two solvers. The results are summarized
by Fig. 4 and 5.

The distances between the robot and the obstacles are
plotted in Fig. 4. While the CSQP manages to enforce a
strict positive distance at all times, the FDDP and USQP
fail and reach a net collision, regardless of the penalty
tuning. If implementing it in a real scenario, more tuning
of the penalty and the security margin would be necessary,
while implementing the avoidance with a strict constraint
immediately provides a safe and guaranteed behavior.

Fig. 5 plots the distance with the two successive targets
during the first pick-and-place cycle. The solutions given
by the penalized MPC overlap because they reach nearly

Fig. 6: Cartesian pose of the end effector.

the same optimal solution. All trajectories are smooth and
efficiently reach the targets, independently of the implemen-
tation of the avoidance. The penalized MPC is marginally
faster to reach the objective, which is explained by the
shortcuts taken by the robot while colliding with the obstacle.
There are no side effects of using the hard constraint in the
quality of the solution found by the CSQP.

B. Experimentation on the real robot

We then experimentally validate the OCP with a con-
strained optimization solver using the following setup.

1) Experimental setup: We used a 7 degrees of freedom
torque-controlled Franka Emika Panda robot. Our MPC
controller was implemented in C++ and we ran it on an
AMD Ryzen 9 5950x @ 3.4 GHz. The constrained solver
used is the same as the simulations in V-A CSQP from mim-
solvers [19]. To characterize the dynamics of the robot, we
use the inertial parameters from [29]. The torque controlling
the robot is computed at 1 kHz but the OCP is only solved
at 100 Hz.

Contrary to previous works [30], we are not using the
Ricatti gains to increase the frequency of the control update,
as (i) manipulator robots are less sensitive to control delays
than legged robots and (ii) the equivalence between Ricatti
gains and policy derivatives exhibited in [30] is not straight
forward enough to generalize to an OCP with inequality
constraints2.

2) Experimental validation: We set up the same configu-
ration as in the simulation (see 1) with the MPC described
in Section IV-B. An obstacle, represented by a half-sphere
on the table, is positioned along the path of the optimal
trajectory without an obstacle, and two targets, G1 and G2,
are placed on each side of the obstacle. In this scenario, the
solver is tasked with finding an alternative trajectory.

The MPC parameters were set to Nh = 20 number
of nodes and a δ = 50 ms, time steps of the solver
(optimization over a horizon of 1 s). The safety margin for

2in particular as the policy becomes nondifferentiable at constraint
saturation.

Fig. 7: Computation time compared to the distance obstacle
/ selected links for five collision avoidance constraints.

the collisions, expressed as the lower bound threshold, for
the distance constraint is fixed at 10 cm. The results are
summarized by Fig. 6, 7, Table I, and the accompanying
video.

Fig. 6 plots the two trajectories of the end-effector, with
and without considering the obstacle. Both trajectories are
smooth but clearly illustrate the disturbance induced by the
obstacle.

Fig. 7 illustrates the minimal distance between the obstacle
and the links designated as collision pairs. Below that, the
corresponding time taken to solve the OCP is presented. Two
distinct phases are observable: the initial phase occurs when
the robot is at the targeted position and stationary, resulting
in solutions in less than 1 ms, as illustrated in Table I. The
second phase starts with the robot receiving the new target.
On average, the solver finds a solution between 3.5 ms to
4ms however, it occasionally extends to 7ms when multiple
links of the robot are close to collision with the obstacle.

Given that the time limit for finding a solution is 10 ms,
and considering the marginal difference in the maximum time
the solver takes to find a solution, increasing the number of
collision pairs might seem feasible.

Nevertheless, as demonstrated in the video [31], adding
more collision pairs is not relevant as only 5 pairs (both
fingers, the hand, and the two parts of the link 7) are in
collision in the optimal trajectory for this problem.

However, we can see in Fig. 7 that the right finger violates
the constraint by 5 mm. At times, the solver reaches its
iteration limits and fails to find a solution that prevents
collisions. Nonetheless, the solution provided by the solver
is sufficiently effective as a suitable warm start, thereby
mitigating further collision risks.

Despite the fast motion of the end effector and the abrupt-
ness of the change of targets, the robot successfully avoids
the obstacle and stays within safe boundaries. In conclusion,
this experiment and the examples presented in the accompa-
nying video demonstrate the potential of obstacle avoidance
with MPC and hard constraints.

Collision
pairs

First phase
(ms)

Second phase
(ms)

Max
(ms)

1 0.75± 0.08 3.54± 0.18 6.58
2 0.73± 0.06 3.53± 0.17 6.47
3 0.76± 0.06 3.74± 0.17 7.11
4 0.79± 0.06 3.73± 0.15 6.95
5 0.83± 0.06 3.97± 0.13 7.38

TABLE I: Computational time statistics.

VI. CONCLUSION

This paper introduces an effective method for controlling
robot motion with strict collision avoidance in a versatile
task and obstacle setting. We relied on an OCP solver able to
enforce hard constraints and formulated collision avoidance
as a smooth signed distance function that we want to keep
positive. After selecting a suitable definition, we provide
analytical derivatives for numerical solver enforcement.

The method is implemented on a torque-controlled manip-
ulator, and an efficient open-source implementation accom-
panies this paper [31]. Experimental trials demonstrate the
efficiency of the approach to achieve a dynamic task while
handling non-modeled perturbations. This work contributes
a practical solution for robot motion control, offering both a
novel methodology and an open-source implementation for
the research community.

Our current endeavor involves expanding the applicability
of our controller to encompass more intricate scenarios,
characterized by an increased number of obstacles and their
varying geometric complexities. This expansion introduces
notable challenges, notably in optimizing the numerical
efficiency of the solver to address the inherent complexity
of nonconvex situations effectively.

REFERENCES

[1] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,”
in IEEE ICRA, 1999. [Online]. Available: https://ieeexplore.ieee.org/
document/770022

[2] C. Samson, “Control of chained systems application to path following
and time-varying point-stabilization of mobile robots,” IEEE transac-
tions on Automatic Control, vol. 40, no. 1, pp. 64–77, 1995.

[3] A. El Khoury, F. Lamiraux, and M. Taı̈x, “Optimal motion planning
for humanoid robots,” in 2013 IEEE ICRA, May 2013. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/6631013

[4] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,”
in 2009 IEEE ICRA, May 2009. [Online]. Available: http:
//ieeexplore.ieee.org/document/5152817/

[5] J. Schulman et al., “Motion planning with sequential convex opti-
mization and convex collision checking,” The International Journal
of Robotics Research, vol. 33, no. 9, Aug. 2014. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364914528132

[6] M. Neunert et al., “Whole-body nonlinear model predictive control
through contacts for quadrupeds,” IEEE RAL, 2018.

[7] S. Kleff, A. Meduri, R. Budhiraja, N. Mansard, and L. Righetti, “High-
Frequency Nonlinear Model Predictive Control of a Manipulator,”
in 2021 IEEE ICRA, May 2021. [Online]. Available: https:
//ieeexplore.ieee.org/document/9560990/

[8] F. Farshidian, M. Neunert, A. Winkler, G. Rey, and J. Buchli, “An
efficient optimal planning and control framework for quadrupedal
locomotion,” in IEEE ICRA, 2017.

[9] R. Verschueren et al., “acados—a modular open-source framework for
fast embedded optimal control,” Mathematical Programming Compu-
tation, vol. 14, no. 1, 2022.

[10] R. Grandia, A. J. Taylor, A. D. Ames, and M. Hutter, “Multi-layered
safety for legged robots via control barrier functions and model
predictive control,” in IEEE ICRA, 2021.

[11] E. Dantec et al., “Whole body model predictive control with a memory
of motion: Experiments on a torque-controlled talos,” in IEEE ICRA,
2021.

[12] M. Gaertner, M. Bjelonic, F. Farshidian, and M. Hutter, “Collision-
Free MPC for Legged Robots in Static and Dynamic Scenes,”
Mar. 2021, arXiv:2103.13987 [cs, eess]. [Online]. Available:
http://arxiv.org/abs/2103.13987

[13] J.-R. Chiu, J.-P. Sleiman, M. Mittal, F. Farshidian, and M. Hutter, “A
collision-free mpc for whole-body dynamic locomotion and manipu-
lation,” in IEEE ICRA, 2022.

[14] B. Sundaralingam et al., “cuRobo: Parallelized Collision-Free
Minimum-Jerk Robot Motion Generation,” 2023, arXiv:2310.17274
[cs]. [Online]. Available: http://arxiv.org/abs/2310.17274

[15] E. D’Elia, J.-B. Mouret, J. Kober, and S. Ivaldi, “Automatic Tuning and
Selection of Whole-Body Controllers,” in IEEE IROS, 2022. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9981058

[16] T. A. Howell, B. E. Jackson, and Z. Manchester, “Altro: A fast solver
for constrained trajectory optimization,” in 2019 IROS, 2019.

[17] G. Frison and M. Diehl, “Hpipm: a high-performance quadratic
programming framework for model predictive control,” IFAC-
PapersOnLine, vol. 53, no. 2, 2020.

[18] W. Jallet, A. Bambade, E. Arlaud, S. El-Kazdadi, N. Mansard,
and J. Carpentier, “Proxddp: Proximal constrained trajectory
optimization,” Subm. IEEE TRO, 2023. [Online]. Available: https:
//inria.hal.science/hal-04332348/document

[19] A. Jordana, S. Kleff, A. Meduri, J. Carpentier, N. Mansard, and
L. Righetti, “Stagewise implementations of sequential quadratic
programming for model-predictive control,” Subm. IEEE TRO, 2023.
[Online]. Available: https://laas.hal.science/hal-04330251v1/document

[20] J. Nocedal and S. J. Wright, Numerical optimization. Springer, 2006.
[21] D. Q. Mayne, “Differential dynamic programming–a unified approach

to the optimization of dynamic systems,” in Control and dynamic
systems. Elsevier, 1973, vol. 10, pp. 179–254.

[22] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd,
“OSQP: An Operator Splitting Solver for Quadratic Programs,”
Mathematical Programming Computation, vol. 12, no. 4, pp.
637–672, 2020, arXiv:1711.08013 [math]. [Online]. Available:
http://arxiv.org/abs/1711.08013

[23] J. Solà, J. Deray, and D. Atchuthan, “A micro lie theory for state
estimation in robotics,” CoRR, vol. abs/1812.01537, 2018. [Online].
Available: http://arxiv.org/abs/1812.01537

[24] B. Faverjon and P. Tournassoud, “A local based approach for path
planning of manipulators with a high number of degrees of freedom,”
in IEE ICRA, 1987.

[25] J. Carpentier et al., “The Pinocchio C++ library – A fast and flexible
implementation of rigid body dynamics algorithms and their analytical
derivatives,” in International Symposium on System Integration (SII),
2019.

[26] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.
[27] C. Mastalli et al., “Crocoddyl: An efficient and versatile framework

for multi-contact optimal control.” IEEE ICRA, 2020.
[28] C. Mastalli, W. Merkt, J. Marti-Saumell, H. Ferrolho, J. Sola,

N. Mansard, and S. Vijayakumar, “A Feasibility-Driven Approach to
Control-Limited DDP,” 2022, arXiv:2010.00411 [cs, eess]. [Online].
Available: http://arxiv.org/abs/2010.00411

[29] C. Gaz, M. Cognetti, A. Oliva, P. Giordano, and A. Luca, “Dynamic
identification of the franka emika panda robot with retrieval of feasible
parameters using penalty-based optimization,” IEEE RAL, vol. PP,
2019.

[30] E. Dantec, M. Taı̈x, and N. Mansard, “First order approximation of
model predictive control solutions for high frequency feedback,” IEEE
RAL, vol. 7, no. 2, 2022.

[31] A. Haffemayer, “Colmpc: Collision Avoidance for MPC.” [Online].
Available: https://gepettoweb.laas.fr/articles/haffemayer2024.html

https://ieeexplore.ieee.org/document/770022
https://ieeexplore.ieee.org/document/770022
https://ieeexplore.ieee.org/abstract/document/6631013
http://ieeexplore.ieee.org/document/5152817/
http://ieeexplore.ieee.org/document/5152817/
http://journals.sagepub.com/doi/10.1177/0278364914528132
https://ieeexplore.ieee.org/document/9560990/
https://ieeexplore.ieee.org/document/9560990/
http://arxiv.org/abs/2103.13987
http://arxiv.org/abs/2310.17274
https://ieeexplore.ieee.org/abstract/document/9981058
https://inria.hal.science/hal-04332348/document
https://inria.hal.science/hal-04332348/document
https://laas.hal.science/hal-04330251v1/document
http://arxiv.org/abs/1711.08013
http://arxiv.org/abs/1812.01537
http://arxiv.org/abs/2010.00411
https://gepettoweb.laas.fr/articles/haffemayer2024.html

	Introduction
	SQP-Based MPC
	OCP formulation
	SQP resolution

	Obstacle avoidance as a hard constraint
	Signed distance
	Derivative of the signed distance
	Derivative with respect to the robot configuration
	Integrating the constraints in the solver

	Implementing a reaching task with collision avoidance
	Goal-reaching task
	Goal-reaching cost
	State regularization cost
	Control regularization cost

	Receding horizon scheme for a pick-and-place task

	Experimentation
	Comparison with penalization
	Comparison setup
	Comparison results

	Experimentation on the real robot
	Experimental setup
	Experimental validation

	Conclusion
	References

