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Learning-Based Road Link Quality Estimation for
Intelligent Alert-Message Dissemination

Raoua Chakroun, Thierry Villemur

Abstract—Accurately assessing the quality of road links is
essential for effectively sharing critical messages in dynamic ve-
hicular network environments. Unfortunately, existing literature
lacks models to estimate the quality of links between infras-
tructure and vehicles due to the complexity and variability of
vehicular communication networks, including channel variations
and interference patterns. To address this gap, we propose a pre-
diction model based on supervised machine learning to estimate
the Packet Reception Rate (PRR) on the road. Our model updates
communication zones dynamically to align with traffic conditions.
We train and evaluate our model using a dataset generated from a
realistic mobility scenario simulated using NETSIM and SUMO.
Our performance tests indicate promising results in terms of
prediction accuracy. This work is an important step toward
establishing an efficient and reliable scheme for disseminating
alert messages, considering the fluctuations in traffic conditions
and vehicular mobility.

Index Terms—Vehicular communications, Quality of Service
assessment, Machine Learning.

I. INTRODUCTION

INTELLIGENT Transport Systems (ITS) [1] have been
developed to provide communication capabilities to all

types of vehicles and transport infrastructures. Specifically,
Cooperative ITS (C-ITS) [2] aims to enable seamless commu-
nication between vehicles (Vehicle-to-Vehicle: V2V), vehicles
and infrastructure (Vehicle-to-Infrastructure: V2I), and overall,
vehicles and all their surroundings (Vehicles-to-everything:
V2X). These systems strive to offer a safer (reducing the
number of accidents on the road), more efficient (reducing
travel time and pollution), and more comfortable (passenger
entertainment: multimedia, infotainment, etc.) mode of trans-
portation.

The integration of communication capabilities with the
sensing and perception capabilities of vehicle sensors paves
the way for the development of numerous Cooperative Intel-
ligent Transport Systems (C-ITS) services and use cases. A
wide variety of C-ITS services have been proposed in the
literature, including dissemination of traffic information and
alert messages between vehicles, traffic guidance, and more.
These services are designed to support the main objectives of
C-ITS.

As a result, the upcoming generation of vehicles will be
equipped with interfaces that allow them to connect and
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communicate with other elements of intelligent transportation
systems, such as pedestrians, other vehicles, and infrastructure
like Base Stations (BS), Roadside Units (RSU), and cloud.
These communication capabilities make it possible for the
next-generation connected vehicles to have centralized net-
work control, and vehicles-to-infrastructure network connec-
tivity that can support traffic control.

To make the most of the various access networks’ capacities
and efficiently manage the network resources, a hybrid multi-
access vehicular network based on a software-defined network
(SDN) is suggested in multiple works. This approach brings
flexibility to the control and management of the network,
which is essential for providing communication services that
meet the requirements of C-ITS services. Therefore, this work
considers SDN-based vehicular networks.

Furthermore, an SDN controller has the advantage of main-
taining visibility of the vehicular network’s current state. This
is particularly important given that vehicle mobility and traffic
conditions can cause connection issues. By identifying areas
with poor or no network connection (gray zones), the SDN
controller can proactively warn network entities to take action
in order to provide the level of performance required for the
various C-ITS services.

Nevertheless, to uphold the demands of the required C-
ITS services that adhere to stringent Quality of Service (QoS)
criteria, even in the face of swiftly changing traffic conditions,
the network should possess the capability to foresee potential
alterations associated with traffic evolution.

This paper presents an extension to our prior research [3],
where we formulated an I2V link quality estimation method
tailored for road applications. Employing Machine Learning
algorithms, this technique gauges packet reception rates (PRR)
within designated 40×40m2 squares. This enables the assess-
ment of reception quality in each square and the identification
of areas where reception quality may be compromised (gray
zones). Utilizing the predicted gray zone positions as input
in the Q-learning-based rebroadcast zone placement algorithm
as described in [4], enables the creation of an efficient alert
message system, detailed in [4]. The approach relies on a
centralized perspective constructed by the network controller
within its coverage and control area, incorporating information
on road traffic, vehicle characteristics, and potentially their
road trip details. We have devised a supervised learning model
that integrates traffic information and ”Hello” default exchange
messages between vehicles and infrastructure, thus minimizing
transmission overhead.

The remainder of the paper is structured as follows: Section
II introduces the general motivations for the link quality esti-



2

mation problem. Subsequently, Section III provides a synthesis
of existing works in the scientific literature. Section IV offers
a general overview of the proposed link quality estimation
model, while Section V delves into the details of the proposed
models. The subsequent section describes the dataset used.
Moving on to Section VII, the focus is on the experimental
part, initially presenting the metrics considered and then ana-
lyzing the evaluation results for the proposed model. Section
VIII details the application framework of the link estimation
model. Emerging discussion points are presented in section
IX. Finally, the concluding section wraps up this work.

II. LINK QUALITY ESTIMATION: MOTIVATION

Within vehicular networks, the radio signal propagation
channel undergoes significant temporal and spatial variations,
impacting the link quality on the road. To ensure robust and
enduring performance in such networks, it becomes imperative
to efficiently estimate the link quality on the road to guarantee
certain dissemination techniques. This enables the adaptation
of link parameters and the selection of relays, facilitating the
choice of an alternative or more reliable route or area for
data retransmission. In essence, the better the link quality
is, the higher the successful reception rate and the more
reliable the communication is. However, challenging factors
like channel fluctuations, send/receive issues, and intricate
interference patterns directly influence link quality, potentially
resulting in unreliable connections.

While it remains challenging to integrate these dynamic
factors into an analytical model, rendering such models less
adaptable to realistic networks given the inherently unpre-
dictable and dynamic nature of the design environment. Con-
versely, accurate link quality prediction holds the potential for
substantial performance enhancements, including augmented
network throughput through minimized packet loss, prolonged
network lifespan by restricting retransmissions, mitigated
topology outages, enhanced reliability, and more. Ultimately,
fluctuations in link quality wield a considerable impact on
the overall network connectivity. Hence, efficient estimation
or prediction of link quality can identify the optimal link from
a pool of candidates for data transmission [4].

In this paper, the link quality is defined by the Packet
Reception Rate (PRR) of vehicles via the road infrastructure.
This approach is employed to identify gray zones on the road
that exhibit poor connectivity with the infrastructure.

III. RELATED WORK

Improving vehicular networks for reliable communications
is a hard challenge [5]–[7]. One of the first steps to solve it is
to assess the wireless link quality. Unfortunately, the statistical
channel models studied during the last decade do not predict
wireless link quality with high accuracy, due to the highly
dynamic nature of the vehicular environment [5].

Most link quality estimation techniques in vehicular net-
works are proposed to estimate reactively the quality of
the V2V links [8]–[11]. These works select the next
hop/broadcaster between the sender and its neighboring nodes.
Node selection is based on the signal’s strength or packet

reception rates over a given link. It is used to characterize
the quality of its forward link. However, such mechanisms
have assumed a fixed communication range among the nodes,
which is not realistic [12], [13]. In addition, the links’ qualities
of the broadcaster can considerably vary for a given node in
time for several reasons, such as varying surrounding node
densities and fading channel effects [14]. Our work completes
the previous ones by allowing proactive estimations that can
be periodically improved by reactive adjustments.

There is no consensus for defining link quality and using
a standard unit of measure for the metric [15], [16]. In our
work, we consider that link quality can be characterized by
throughput or reliability parameters.

Machine Learning (ML) techniques [6] have recently
emerged for predicting link quality in wireless environments.
They supersede former techniques based on predefined models
[17]–[19].

The ML-based algorithms developed in [20], [21] are used
to predict Vehicle-to-Vehicle (V2V) path loss. They prove that
the application of such models offers better performance than
traditional analytical models based on log distance path loss.

To estimate V2V link reception quality, the Benrhaim and
al. [22] method relies on periodic beacons exchanged between
vehicles. They propose a Bayesian network-based scheme at
different locations in the zone covered by the transmission
range of the sender for the estimation. This is the only work
that estimates the road links’ quality. Estimation results show
good accuracy. However, the sample of parameters considered
in all the simulations remains small and limited.

Most of the works proposed in the literature to estimate the
vehicular communication links’ quality assume simplifications
of vehicle mobility. All these works concern V2V links, where
only one is interested in estimating V2V link quality on
the road. Approaches based on machine learning techniques
generally present the best performances for both problems.
Our work is the first one that focuses on I2V wireless quality
links on the road. The proposed method for estimating road
links’ quality excludes any vehicle mobility or communication
range assumption [4].

IV. LINK QUALITY ESTIMATION MODEL OVERVIEW

This work proposes an intelligent link quality estimation
algorithm to predict gray zones in vehicular communication
networks. We have developed a prediction model based on
machine learning techniques to estimate the Packet Reception
Ratio (PRR) of Roadside Units (RSUs) messages for each
zone in a predefined region, depending on the current traffic
conditions. The considered region is divided into small squares
of 40× 40m2 as shown in Fig. 2 and described in [23]. The
squares are used to identify gray zones where the PRR is
less than 90% (a predefined threshold) [24]. The controller
identifies these gray zones. Fig. 1 illustrates the proposed
approach’s network architecture and its key elements. Each
region has an SDN controller, as detailed in [25], to manage
the RSUs providing V2I wireless connectivity in the region.
We assume all vehicles are furnished with a GPS module
capable of transmitting information, including their position
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(P (x, y)) and the packet response to the ”Hello” message
received from the RSU during association and beacon message
exchanges. This data is regularly gathered by each RSU, either
stored in the cloud or directly shared with the network con-
troller. These collected features are then utilized as input for
the model MPRR executed in the SDN controller, facilitating
the estimation of PRR. Additionally, we assume that each RSU
entity reports information regarding newly associated vehicles
to the SDN controller.

Fig. 1: Key elements of the proposed approach.

Fig. 2: Considered geographic map [4].

Therefore, This model helps to identify gray zone positions,
which represent areas with weak communication links. The
positions of these zones are input to a reinforcement learning-
based technique for Vehicle-to-Vehicle (V2V) rebroadcast
zone placement, which optimally adjusts the rebroadcast zone
placement according to the evolution of gray zones caused
by changing traffic conditions, as proposed in [23]. Finally,
the combination of both techniques enables intelligent dis-
semination of Alert Messages (AMs) using the Location Alert
Message Dissemination (LAMD) procedure proposed in [26].

The complete dissemination process is summarized in Fig.
3. First, the SDN controller identifies gray zones on a ge-
ographic map by using the ”Road link quality estimation”
algorithm (1). Next, it uses the location of these zones to place
or update rebroadcast zones using the ”Q-learning rebroadcast
zone placement” technique (2). These zones are then shared
with vehicles proactively during handover. Finally, when ve-
hicles receive an alert message, they utilize the ”LAMD
procedure” (3) with rebroadcast zones as input.

V. SUPERVISED LEARNING-BASED ROAD I2V LINK
QUALITY ESTIMATION

A. Supervised Learning

A Machine Learning (ML) system differs from a regular
computer program. It doesn’t follow a set of instructions to
perform tasks based on inputs. Instead, it learns the best ac-
tions to take, such as making decisions or predictions, usually
by analyzing data or past experiences. These systems are
broadly classified into three categories: supervised learning,
unsupervised learning, and reinforcement learning. [27].

Our study focuses on supervised learning, which involves
using a labeled dataset for training. In this process, a dataset
D is defined as D(x1, y1), ...(xn, yn). The objective is to train
a model M that can establish the best correlation between the
predictors, which are the input variables X , and the labels,
which are the output variable y. The model should be able
to predict the corresponding output ŷn = M(Xn) with high
accuracy for new input data Xn whose outputs are unknown.
We categorize supervised learning into two types: regression,
where the predicted value is a continuous real number denoted
as y ⊂ R, and classification, wherein y is a member of a finite
set C = c1, c2, ..., cn referred to as classes.

Moreover, we explore the so-called ensemble learning tech-
niques as outlined in [28]. These techniques involve training
multiple models, whether of the same or different techniques
and aggregating their predictions. This approach stands out as
one of the most popular and potent methods in supervised
algorithms, facilitating the creation of a generalized model
and mitigating overfitting. Specifically, we adopt the Random
Forest technique [29], which involves training a collection of
decision tree models.
This choice is motivated by several advantages. Firstly, it
enables the handling of problems involving multiple classes,
distinguishing itself from other techniques that concentrate
solely on binary classification. This capability is referred to
as multivariate classification. Additionally, it incorporates a
feature for selecting the most influential predictors, known as
”feature importance.” In the trees constructed, the most critical
features are prone to appear near the root, while others are
typically situated closer to the leaves.

As outlined earlier, our focal issue revolves around estimat-
ing PRR. This predicament has been formulated as a regression
problem, with the variable of interest being the PRR within
each small zone (square) on the map under the coverage of the
SDN controller. Subsequent sections delve into the variables
designated for training (features) to construct our model. These
features are crafted in alignment with specific objectives,
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Fig. 3: Intelligent Link Quality Estimation for an Efficient Alert Message Dissemination Scheme

namely, i) features necessitating minimal information from
the vehicles, and ii) features independent of the used network
technology. Following this, we elaborate on the techniques
employed to train and fine-tune the model parameters.

B. Proposed Framework

Vehicular networks exhibit propagation channel character-
istics that markedly distinguish them from other wireless
systems. The physical environment within vehicular channels
is prone to random variations induced by diverse factors,
encompassing mobility patterns, swift fluctuations in traffic
density, path loss effects, and environmental influences. The
swift temporal variability and non-stationary nature of these
channels warrant the development of a distinct framework for
predicting link quality in vehicular networks. Our objective in
this undertaking is to construct a ML model adept at predicting
PRR on the road with minimal error. ML models are well-
suited for addressing classification and pattern recognition
challenges, making them an ideal choice for this endeavor.

Adhering to the conventional machine learning workflow
outlined in [27] and harnessing the capabilities of SDN [30],
we introduce the SDN-enabled machine learning framework
for PRR prediction, as depicted in Fig. 4. The machine
learning workflow encompasses six stages: Problem Formu-
lation, Data Collection, Data Analysis, Model Construction,
Model Validation, and the final stage involves Deployment
and Inference.

The framework rests on two foundational pillars: SDN and
the potency of well-suited ML algorithms. These algorithms

are designed to glean insights from a historical dataset, utiliz-
ing the acquired knowledge to offer accurate estimations for
new observations.

Based on Fig. 4, the workflow of the framework is as
follows. Initially, the offline construction of the prediction
model is done by training and fine-tuning historical data.
This historical data may consist of a vast number of samples,
where each sample represents a combination of values for
different features and the associated target value. Since we are
working in a supervised learning configuration, the collected
data include the transmission power of RSUs (T ), vehicle
position (P ) (to identify the zone identifier (Zi) and calculate
the distance between the vehicle and the RSU), the distance
between the vehicle and RSU (D) (to identify the average
distance between the concerned zone and the RSU), and packet
status (Status) to calculate the target by zone (whether or
not the vehicle received the ”Hello” messages from RSU).
The features’ description, collection, and processing will be
elaborated in the following section.

The designed model is deployed (1) as the Inference Agent
for PRR inference. Its purpose is to predict gray zones in
the region and update rebroadcast zones for disseminating
alert messages based on traffic needs and conditions. This
proactive approach assumes that the controller has historical
data on traffic conditions (e.g., traffic density at peak hours)
and updates these zones accordingly on a set schedule (e.g.,
every two hours or three times a day).

After processing, each zone has an online input (2) com-
posed of (Zi, T, Ploss, Vd, D), where Vd is the vehicle density
in the zone Zi, calculated according to the real-time number
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Fig. 4: Packet Reception Ratio (PRR) inference framework.

of vehicles in the zone/square, and Ploss is the packet loss in
the zone calculated regarding real-time parameters and traffic
conditions. When the controller launches the updates of gray
zones for the geographic map under its coverage, this input is
obtained. An inference of the PRR in each zone (small square)
is made based on this input, so gray zones are identified (3).
The Q-learning placement Agent uses this information as input
to update rebroadcast zones, as described in [23].

Upon completion of the process, the resulting output is
systematically gathered, and the historical dataset is efficiently
updated with the newly acquired data (4). Maintaining an
up-to-date database is crucial, enabling the consideration of
new dynamics stemming from changes in traffic patterns.
The combination of historical data gathering and the real-
time update of the dataset with newly collected information
constitutes the foundation of our framework. Additionally,
there is the possibility of enriching the historical data from
cloud-based sources.

VI. LEARNING-BASED MODELING

In conformance with standard ML workflow in [27], this
section begins with problem formulation. In the context of
PRR inference, the target metric is a continuous variable,
rendering its prediction a regression problem.

A. Dataset and analysis

By following supervised learning principles, our model
needs to undergo a training phase utilizing a dataset. To assess
the performance of the proposed model in a practical VANET

urban environment setting, we need to have a dataset that
fulfills the following requirements:

• Network Coverage: Contemplate cells exhibiting diverse
communication ranges achieved through the adjustment
of RSUs’ transmission power, encompassing both small
and large coverage areas. Furthermore, it is imperative to
ascertain the geographical positions of these entities for
distance calculation.

• Road Traffic: Acquire data from vehicles, including their
locations, traversing the majority of roads, both main and
secondary, within the coverage area of a designated RSU.

• Size of the dataset: Gathering data over an extended
period involves manipulating vehicle density, transmis-
sion powers, RSU positions, and path loss coefficients.
This approach enables an exploration of the temporal
variations in the measured metrics.

Within vehicular networks, the scientific community has
conducted numerous data collection campaigns to generate
datasets for studying network performance. However, only
a few datasets are publicly accessible. Furthermore, these
datasets often lack a focus on urban mobility and may not
encompass all the parameters essential for our model.

As there is no existing dataset within the scientific
community that entirely meets our requirements, we opted to
create our own dataset. However, technical constraints and
time limitations hinder the execution of a comprehensive data
collection campaign. Consequently, we turn to an approach
centered on simulation tools, mobility emulation, and VANET
networks.
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Fig. 5: Map with geographic locations of RSUs [4].

The dataset utilized in this study was generated through inte-
grating the microscopic road traffic simulator SUMO with the
event-based network simulator NETSIM, as detailed in [31].
NETSIM emulates the Dedicated Short Range Communication
(DSRC) protocol stack, including signal strength, handover,
and connectivity, while SUMO manages vehicle mobility. This
combined framework delivers a realistic simulation of DSRC
connectivity for vehicles. Our simulation setup consists of two
primary components: the first one involves the implementation
of the DSRC network, and the second one involves the simula-
tion of vehicle mobility. For the DSRC network, we selected an
area of 2×2km2 in a European-like city, specifically Toulouse,
France, extracted from Owen Street Maps (OSM). This area
was chosen for its significance, being situated in the city center
with high traffic densities (Urban environment), substantial
buildings affecting signal quality on the road, and irregular
road structures. The random trip application within the SUMO
package was employed to automatically generate trips for
vehicles within the specified map area. We assume all vehicles
are equipped with DSRC wireless communication modules.
Concerning the DSRC network, we strategically place four
RSUs in the selected region, as illustrated in Fig. 5. The
success of wireless transmission hinges on various factors,
including distance, transmitter power, path loss, fading, and
receiver sensitivity. Additionally, the transmission coverage
of an RSU can vary significantly based on the environment
(Highway, Urban, Obstructions, Line of Sight), spanning from
100 to 700 meters for the same transmission power, as
demonstrated in [32], [33].
For our network simulations, we conducted 196 simulations,
where each RSU broadcasted a control message every 100
ms for 500 seconds (27 hours), varying transmission power,
RSU positions, vehicle densities, and path loss coefficients in
each run. Table I provides a listing of different manipulated
parameter values. Path loss refers to the reduction in the power
density of an electromagnetic wave during propagation and
can result from various effects such as free reflection, aperture-
medium coupling loss, and absorption. The path loss exponent
fluctuates between 2 and 5, depending on the coherence band-
width and Doppler shift of the surrounding environment. In our
simulator-based approach, we directly utilize this parameter
from the simulator, although in reality, it can be calculated
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Fig. 6: Number of samples generated for each PRR range [4]

based on several parameters.
An SDN controller, equipped with a global view and knowl-
edge, can calculate this parameter in real-time using informa-
tion shared by the RSUs and the cloud, considering factors
like the distance between RSUs and zones, the environment
(urban or other), weather conditions, etc. [34]. Following each
packet transmission, we record the vehicle position (to identify
the zone identifier), the vehicles that received the message, and
the packet status (success or error). The simulations yield a
dataset comprising 52,007 observations. Fig. 6 illustrates the
number of samples generated for each PRR range. The dataset
generated and collected after each simulation is outlined in
Table II.

TABLE I: Simulation configuration parameters

Parameter Value
Vehicle Density from 5 to 500 vehicles/zone(square)/hour

Path loss coefficient from 2 to 5
Distance from 0 to 2 km

Transmission power from 10 to 50 dbm

TABLE II: Generated and collected data set

Name Feature Description
Packet Id Sent packet identifier
RSU ID Sender RSU identifier

Vehicle ID Receiver vehicle identifier
P(x,y) Vehicle position

Transmission power Transmission power of the sender RSU
Path loss exponent Power density of an electromagnetic wave

Packet status ”received” or ”not-received”

We depict the geographical map as a 50 × 50 grid matrix
of 40 × 40m2 (see Fig. 5). Accordingly, our PRR prediction
focuses on small road zones/squares, considering only those
squares containing road areas. This approach is preferred over
predicting the PRR for an entire road since the link quality
may vary from the beginning to the end and the center of the
road. Predicting the PRR by zone (a specific segment of the
road) enhances precision and accuracy.
To tailor our dataset for our model, we undertake specific
data processing steps, enabling us to predict the PRR in each
zone as detailed in Table III. Initially, we utilize the vehicle’s
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position to identify the relevant zone. For each simulation, we
calculate the vehicle density per zone per hour, the average
distance between the zone and the sender, and the PRR
(comparing the number of packets received by vehicles in the
zone to the number sent by RSUs to those vehicles).

Our model operates as a supervised learning model, utilizing
a labeled dataset in which the training data encompasses
the desired solutions. The value of the predicted variable,
PRR, is derived from the collected ’Packet Status’ values
(Received: 1, Not Received: 0). Therefore, the PRR represents
the average reception packet status collected per vehicle within
each small zone on the road. As the variable to be predicted is
a continuous real number, we employ a regression technique.

TABLE III: Parameters and notations [3]

Name Feature Description
Zi Zone identifier

Vd(i) Vehicle density per hour in a zone
D(i) Average distance between the sender and the zone
T Transmission power of the sender RSU

Ploss(i) Path loss exponent
P̂RR(Zi) Packet Reception Rate in the concerned zone

B. Model training

In the preceding section, we introduced the diverse learning
variables employed by our model MPRR. MPRR primarily
incorporates features such as vehicle density, distance, trans-
mission power, and path loss exponent (Equation 1 [4]). These
features are crafted based on two primary criteria: i) minimiz-
ing the need for extensive information from the vehicles, and
ii) independence from the used network technology.

̂PRR(Zi) = MPRR(Vd(i), D(i), T, Ploss(i)) (1)

Algorithm 1 encapsulates the input information and features
used by the MPRR model for predicting the packet reception
ratio in each road zone within the purview of the SDN
controller. It is pertinent to mention that the zone ID list and
distance from the RSU are inherently stored in the controller
database due to their fixed positions.

Using a dataset comprising various attributes and labeled
with the desired results (PRR), offline training of the models
is conducted to establish the optimal relationship between
features and labels. As previously mentioned, our model is
built upon the Random Forest (R.F) technique, which merges
multiple Decision Tree models (D.T). In a decision tree, data
are organized into a tree structure, and the model leverages
this structure to make predictions for new data. Subsequently,
based on the input data, predictions are generated by crossing
the tree from its root to a terminal node, commonly referred
to as a leaf. These terminal nodes encapsulate the values of
the predictions, specifically the packet reception ratio (PRR)
for the model MPRR. In our scenario, which is a regression
case, the average of the observation values within a node is
employed as the prediction [4].

The tree construction forms the foundation for predictions
and constitutes the primary objective of the training phase.

Algorithm 1: Road PRR Estimation
Input:
Zi, i ∈ 0, .., N List of road zone ID
Ploss(i) per zone: path loss per zone
T (i) : Transmission power of the RSU that covers the
zone
Vd(i) : Vehicle density in the concerned zone
Output:
P̂RR(Zi) : the Packet reception ratio by zone

1 for i = 0 to i = N do
2 D(i) =

√
((xRSU − xi)

2 − (yRSU − yi)
2)

/* distance between the zone i of
coordinates (xi, yi) and the RSU
that covers it of coordinates
(xRSU , yRSU) */

3 P̂RR(Zi) = MPRR (D(i), Ploss(i), T (i) , Vd(i) )

Throughout this phase, the model establishes nodes, deter-
mines the number of observations (samples) per node, and
formulates rules for each node. For every node, the model
seeks the pair (k,tk), where k denotes the attribute to be con-
sidered (such as distance, density, transmitter power, etc.), and
tk represents the value of this attribute. This pair is selected to
minimize the Mean Square Error (MSE) by utilizing the cost
functions outlined in equation 2.

j(k, tk) =
mleft

m
MSEleft +

mright

m
MSEright (2)

Where,
MSEnode =

∑
i∈node(ŷnode − y(i))2

ŷnode =
1

mnode

∑
i∈node y

(i)
(3)

p2i,k: denotes the percentage of observations belonging to
class k among all training observations within the ith node.,
mleft/right: represents the count of instances in the

left/right subset.
Our Random Forest model undergoes training with a col-

lection of decision tree models. Initially, each tree is trained
using a randomly selected subset of the dataset (with the size
specified as a parameter). Additionally, in the training process
of each tree, the attribute k is randomly chosen when making
a node split. Ultimately, the predictions generated by each tree
are aggregated to yield an overall prediction. In the case of
regression, the final prediction is determined by taking the
average of the values estimated by all the trees.

The model establishes a set of parameters, referred to as
hyper-parameters, to guide the construction of trees. Among
these parameters, we highlight:

• n estimators: It determines the number of trees trained
by the model. Typically, a higher number enhances pre-
diction accuracy, but it also increases processing costs,
particularly in large datasets.

• max depth: It establishes the maximum depth of the
tree, representing the number of levels from the root to
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the last terminal leaf node. A greater depth enables the
representation of more information from the dataset, but
it also raises the risk of the model overfitting the data.

• min samples leaf : It sets the minimum number of ob-
servations needed for a terminal node, signifying the
minimum size of leaves. A smaller size allows the model
to capture noise in the data.

• max features: It represents the number of elements in the
list K from which the model selects the pair (k,tk). It
enables the control of model randomness. The maximum
value is the number of features in the dataset (default
value). A higher value introduces less randomness into
the model, but it incurs an additional processing cost
during training (for the selection of the pair (k,tk)),
particularly with a very large number of trees.

In general, these parameters control the growth of the
trees. Opting for deeper trees with small leaves tends to offer
a more comprehensive representation of the data, but there
is a risk of the model overfitting the data. On the other
hand, constraining the growth of these trees results in a more
generalized model, yet small trees with large leaves may lead
to underfitting, where the model excels only on training data
but performs poorly on testing data, ultimately compromising
model performance. Hence, selecting these parameters is a
crucial step in model training to achieve a well-performing,
generalized model.

The only way to adjust these parameters is to train multiple
models with different values and select the combination that
yields the highest accuracy.
To streamline the process of exploring multiple possibilities
and minimize processing overhead, we initially employ a
randomized search using the RandomizedSearchCV technique.
This helps identify initial values for each parameter from a
broad range of input values. Subsequently, we utilize a grid
search through GridSearchCV to explore all potential combi-
nations within smaller ranges, bounding the values previously
identified. This allows us to pinpoint the best combination with
the highest accuracy. Both techniques rely on cross-validation,
using the training set for both training and validation purposes.
Specifically, the training subset is randomly divided into k
distinct blocks. In each iteration (performed k times), the
model reserves a different block for evaluation and undergoes
training using the remaining parts (k-1 blocks). This method
ensures that no dedicated portion of the dataset is exclusively
used for validation (validation set) [4].

VII. PERFORMANCE EVALUATION

The objective is to assess the proficiency of the model
(MPRR) in predicting the packet reception ratio within each
square to pinpoint the gray zones in the region. We scrutinize
the outcomes through data visualization of the examined
scenario, aiming to discern the strengths and limitations of
the proposed model.

We allocate 75% of the dataset for model training and
reserve the remaining 25% for testing, a commonly employed
ratio. Subsequently, for each input i in the test set X , we
calculate the corresponding output ŷi = M(Xi) using the
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Fig. 7: Predicted vs. real observations (K = 10000) [4].

trained model M . We then compare this output with the actual
value yi. This process enables us to compute the prediction
accuracy for each model, utilizing the performance metrics
detailed below.

A. Performance metrics

To assess the accuracy of the proposed ML performance
models, we consider two evaluation metrics:

• The prediction score R2 (Eq. 4): It signifies the portion
of the variance in the dependent variable that can be
anticipated from the independent variables. It reflects
the proportion of accurately predicted samples. A highly
accurate regression model would have a relatively high R
squared, approaching 100 when expressed as a percent-
age. We will express the score in percentage terms.

• Normalized Mean Absolute Error (NMAE) (Eq. 5): It
denotes the average of the absolute differences between
the estimated and observed values of PRR. Our objective
is to minimize the NMAE as much as possible.

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)∑n
i=1(yi − ȳ)

, with ȳ =

∑n
i=1 yi
n

(4)

NMAE(y, ŷ) =

∑n
i=1|yi−ȳ|

n

ȳ
, with ȳ =

∑n
i=1 yi
n

(5)

B. Results

For a subset with 10000 samples, wherein 7500 samples
are utilized for training the random forest model, we achieve
a score of R2 = 90.70% and NMAE = 5.20% on the
remaining 2500 sets. Utilizing all the datasets (52,007 sam-
ples) generated through NETSIM simulations yields scores
around 95%, with an associated NMAE of approximately
5%. These outcomes underscore the capability of the ML-
performance approach to deliver accurate predictions. Fig.
7 displays the actual observed test points alongside their
corresponding predictions made by the random forest model
for K = 10000 samples. However, it is evident that when
the subset encompasses the entire initial dataset (K = 52007
samples), the prediction accuracy improves, with a score
nearly reaching 0.95, as depicted in Fig. 8.
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Fig. 8: Predicted vs. real observations (K = 52007 samples)
[4].

The performance of the proposed model aligns well with
the requirements of proactive network control based on the
estimation of I2V link quality on the road. This capability
enables the periodic definition and updating of gray zones
within the region, facilitating the adjustment of rebroadcast
zones for efficient dissemination of alert messages.
Now, let’s consider the scenario of a network control function
computing routing paths. Some approaches in the literature
consider link quality as a criterion for selecting routing paths.
Errors in estimation (PRR larger or smaller than the estimated
duration) can lead to inefficient link selection, thereby impact-
ing the effectiveness of proactive routing. Many link quality-
based routing approaches aim to eliminate links with low PRR,
necessitating accurate estimation of poor-quality links. The
proposed model adequately addresses this requirement.

Fig. 9 illustrates the importance of features, using the Mean
Decrease in Impurity (MDI) to calculate each feature’s signif-
icance. MDI is computed as the sum over the number of splits
(across all trees) that include the feature, proportionally to the
number of samples it splits. The results indicate that distance
and packet loss coefficient (which encompasses geographic
area, urban/non-urban classification, size and presence of
buildings in the area, weather, etc., influencing communication
channels) are the most critical features. The absence or neglect
of these features would considerably diminish the model’s
accuracy on the test set. For instance, removing path loss from
the features could lead to a decrease in score accuracy of up
to 55%.

VIII. APPLICATION

The intelligent PRR inference framework (refer to Fig.
4) can handle mixed PRR inference alongside Q-learning
rebroadcast zone placement. The separation of the network’s
control plane from its data plane by SDN introduces flexibility
in network management, enabling seamless map updates for
gray and rebroadcast zones. Furthermore, it simplifies the in-
tegration of machine learning techniques into the management
plane.

In this section, we applied the two proposed techniques,
namely MPRR and Q-learning placement, to periodically
update the rebroadcast zones based on changes in traffic

Fig. 9: Feature importance using Mean Decrease in Impurity
(MDI).

conditions. This, in turn, reflects the variations in road link
quality and the emergence of gray zones.

A. Q-learning rebroadcast zones placement

In this technique, the set of gray zones/squares is taken
as input. This method assumes that the controller possesses
both a prior and updated view of the link quality in each
road segment, a capability facilitated by our proposed MPRR

model. The algorithm’s initial step involves the random se-
lection of N feasible rebroadcast points. Subsequently, in
each iteration, t, the position of each rebroadcast zone/square
((xi, yi),∀i ∈ N ) undergoes an exploratory move with a
probability of ϵ, or it selects the best-known action to date
(highest Q value) with a probability of 1− ϵ. Throughout the
learning phase, the algorithm explores different states within
a fixed simulation/iteration run to identify the optimal policy
that maximizes the expected action-value function (Q value)
and, consequently, the total coverage of gray zones. A gray
zone is deemed covered by a rebroadcast zone if the distance
between the center of this zone (square) and the center of the
rebroadcast zone is less than a predefined threshold. For more
details on the Q learning algorithm, the reader is referred to
[4], [23].

B. Application Scenario

We employ the same scenario as presented in [4], involving
8 RSUs (refer to Fig. 10a). In this scenario, the identification
of gray zones in the considered map is achieved through sim-
ulation in the following manner. Initially, RSUs are configured
to broadcast alert messages every 100 ms for a duration of 500
seconds. Subsequently, the PRR is computed for each square,
and squares with a PRR below 90% are categorized as gray
zones (see Fig. 10b). The same RSUs’ positions, transmission
power, path loss model, and traffic density are initially utilized
to measure the PRR for defining the gray zones.

Firstly, we estimate the position of the gray zones using
M PRR, followed by the application of the Q-learning place-
ment algorithm. Consequently, we observe the same number
of rebroadcast zones (15 rebroadcast zones, resulting by real
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(a) Initial RSU placement (b) Q-learning without MPRR (c) Q-learning with MPRR

Fig. 10: Rebroadcast Zones placement.

simulation shown in Fig. 10b), with a slight variation (1 to
2 squares of shift) in the position of six green-circled zones
(refer to Fig. 10c). This discrepancy has practically negligible
impact on the performance of the LAMD procedure (step (3)
in Fig. 3), remaining within a few meters difference due to the
4.63% error prediction rate of our model. This underscores
the success of our model in estimating the PRR, making it
convenient for the SDN controller to update rebroadcast zone
positions based on selected parameters (path loss coefficient,
traffic density, and transmission power) whenever necessary
[4].

IX. DISCUSSION

Estimating link quality on the road lays the foundation
for intelligent and effective network control. In our proposed
approach, we primarily utilized the identification of the road
packet reception ratio as the main learning variable for our
model. Specifically, timing this identification during the update
of the rebroadcast zones ensures the efficient and dependable
dissemination of alert messages, allowing these zones to adapt
to changing traffic and mobility conditions [4]. Importantly,
this process does not add any extra load on the network.
Performance tests yielded outstanding results in the majority
of cases.

The model undergoes offline training utilizing data collected
under diverse traffic conditions, aiming to approximate real-
world mobility and varying traffic scenarios across different
hours each day. However, trends captured by the models
during real-world training may experience further variations
with the introduction of new installations and reconstructions
in the area, such as new buildings, facades, and parking areas.
These changes can impact parameters like the communication
medium and path loss. Consequently, it becomes imperative
for the controller to receive updates reflecting these changes,
ensuring the timely recalibration of road zones and efficient
recalculation of path loss for each zone.

Conversely, the service provider ITS can adjust network
parameters to optimize its network, such as modifying cell
coverage or adding/deleting a cell. Such modifications can

impact the performance of the model. Re-training becomes
a consideration if the prediction error surpasses a predefined
threshold (established based on the service using the predic-
tions) when incorporating new data and accounting for these
altered conditions [4].

X. CONCLUSION

This paper introduces a machine-learning-based I2V quality
link estimation technique on the road, specifically, the Packet
Reception Ratio (PRR) in each small zone to identify gray
zones and dynamically update rebroadcast zones based on
changing traffic conditions. The model was trained and evalu-
ated using a dataset primarily generated through the NETSIM
framework. The results demonstrate a high prediction accuracy
rate, enabling the timely adjustment of rebroadcast zones in
response to regular fluctuations in traffic conditions. This
ensures the reliable dissemination of alert messages.

Due to the lack of datasets in conformance with the speci-
fications of our study environment and incorporating the fea-
tures considered by our model, we opted to create our dataset.
This dataset is derived from a realistic mobility scenario. The
training and evaluation of our models are conducted using this
generated dataset, and the results of performance tests show
promising levels of prediction accuracy.

The current study focuses on a particular urban setting
(Toulouse, France) and relies on simulated data. The sub-
sequent phase involves extending the scope to encompass
additional urban areas and real-world scenarios. The inclusion
of real data is crucial to enhance the model’s applicability.
Fine-tuning network parameters, such as the calculation of
path loss exponent, will be guided by feedback from real-
world data.
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[33] A. Böhm, K. Lidström, M. Jonsson, and T. Larsson, ”Evaluating CALM
M5-based vehicle-to-vehicle communication in various road settings
through field trials, ” IEEE Local Computer Network Conference, pp.
613–620, 2010.

[34] Y. A. Zakaria, E.K.I. Hamad, A.S. Abd Elhamid, and K.M. El-Khatib,
”Developed channel propagation models and path loss measurements for
wireless communication systems using regression analysis techniques,”
Bulletin of the National Research Centre, Vol. 45, No. 54, 2021.

Raoua Chakroun got her Ph.D. in Computer Sci-
ence from the University of Toulouse, France. As
of 2023, she serves as an assistant professor at
INSA Toulouse. Her ongoing research interests span
Vehicular Networks, Software Defined Networks,
Machine Learning, Intelligent Transport Systems,
and Data Science.

Thierry Villemur T. Villemur is full professor at
University of Toulouse (University Institute of Tech-
nology Blagnac), France, and researcher at LAAS-
CNRS Laboratory in networking and communication
technologies. In former years, he was contribut-
ing in distributed systems and middleware layers,
more precisely in collaborative systems and group
communications. Now, he focuses on networking
researches. His current research topics include adap-
tive software architectures, software programmable
networks, and vehicular communications.


