
HAL Id: hal-04452267
https://laas.hal.science/hal-04452267v1

Submitted on 15 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint task sequencing and motion planning for a mobile
manipulator-robot

Hannes van Overloop

To cite this version:
Hannes van Overloop. Joint task sequencing and motion planning for a mobile manipulator-robot.
Operations Research [math.OC]. 2023. �hal-04452267�

https://laas.hal.science/hal-04452267v1
https://hal.archives-ouvertes.fr

Joint task sequencing and motion planning for a mobile

manipulator-robot
Master’s thesis - Master Parisien de Recherche Opérationnelle

Hannes Van Overloop
Christian Artigues, Cyrille Briand, Florent Lamiraux

September 2023

Keywords : Motion Planning, Robotic Task Sequencing, Combinatorial optimisation.

Contents

1 Introduction 3

2 Problem definition 3
2.1 Tasks . 3
2.2 Quaternions . 3
2.3 Configurations . 4
2.4 Complete problem . 4
2.5 Remarks . 5

3 Related work 5

4 Problem modelling 8
4.1 MINLP . 8
4.2 GTSP . 8

5 Discretisation 9
5.1 Naive approach . 9
5.2 T-space metric . 9
5.3 ISODATA . 10
5.4 Configuration generation . 11
5.5 Performances . 12

6 Resolution 14
6.1 C-space metric . 14
6.2 Solving the GTSP . 15
6.3 Performances . 15

7 Issues 16
7.1 Projection of the fictitious tasks . 16
7.2 Orientation of fictitious tasks . 19

7.2.1 Quaternion average . 19
7.2.2 Normal to the surface . 19
7.2.3 Practical behaviour . 20

7.3 GTSP solver . 20
7.3.1 Issues . 20
7.3.2 Concorde . 21
7.3.3 Implementation . 22

8 Conclusion 22

References 24

1

French summary

Mots clés : Planification de mouvements, Séquencement de tâches, Robotique, Optimisation
combinatoire.

Dans le contexte de l’avènement des robots autonomes dans l’industrie, ce stage construit,
implémente et étudie une approche heuristique du double problème de séquencement des tâches
et de planification des mouvements d’un robot mobile effectuant des tâches sur une pièce 3D de
forme libre. Le cas d’étude est l’inspection d’un ensemble de points d’intérêt, chaque inspection
étant assimilée à une tâche.

Du fait du grand nombre de degrés de liberté présent sur un tel robot, le nombre de config-
urations permettant d’effectuer une tâche est infini. Pour pallier ce problème, nous discrétisons
le problème et le modélisons comme un Problème du Voyageur de Commerce Généralisé (GTSP).
Nous tentons alors, au moyen d’une aggrégation, de limiter la taille de l’instance de GTSP
résultante afin de maintenir le temps de résolution à une durée acceptable. Différentes méthodes
sont ensuite implémentées pour pallier les problèmes engendrés par une telle aggrégation. Ceci
nous permet finalement de réduire drastiquement la taille du problème tout en maintenant des
solutions de bonne qualité.

D’autres perspectives sont également présentées mais non implémentées, faute de temps. Fi-
nalement, une prise de recul sur les travaux produits et les résultats obtenus est effectuée, afin
d’orienter les recherches futures vers des horizons prometteurs.

2

1 Introduction

As automation is increasingly adopted in the industry, humanoid-like robots are being designed
in research laboratories in order to perform more specific tasks, which cannot be tackled with
classical and fixed industrial robots [14]. For instance, to perform small tasks such as deburring,
on a three-dimensional free-form surface, one would like a robot able to move through the workshop
while performing precise tasks. Such robots are thus composed of a base, moving on the workshop
floor, and an arm, used to effectively perform the task.

In this context, we want to sequence the tasks, while, at the same time, plan the
motion of the robot. All of this should be done in reasonable computation times while providing
near-optimal solutions. This problem is known as the Mobile-Manipulator Robotic Task-Sequencing
Problem [1] (Mobile-Manipulator RTSP). Our goal is to build a very generic and versatile ap-
proach, i.e. one that is easily applicable to different robots and/or parts. Ideally, it should be
easily usable within softwares for robotic path-planning.

In the case of deburring or drilling, tasks are holes in the part worked on, but other tasks such
as object picking or placing, or product inspection can be considered too.

The remainder of the document is organised as follows. In Section 2, we provide a more in
depth definition of the problem before summarizing the state of the art in Section 3. We then
model the problem in Section 4, detail our discretisation approach in Section 5, and our resolution
method in Section 6. In Section 7, we relate encountered issues and their solutions. Eventually, in
Section 8, we take a critical step back to analyse our work and hint future directions.

2 Problem definition

Let us start by defining specific concepts (tasks, quaternions, configurations) before defining
the full problem.

2.1 Tasks

Tasks are part of SE(3), the Special Euclidian group of rigid body displacements. This algebraic
group allows to describe movements of rigid bodies and thus contains the well-known group of
rotations in three dimensions, denoted SO(3), as a subgroup.

A task t is thus encoded as a 3D position and direction, and is stored as a translation Ot and a
rotation qt in the coordinate system of the environment. This rotation is encoded as a quaternion
[6]. A task is thus stored as a vector of 7 coordinates.

The set of tasks the robot has to execute is the task-space or T-space, and is denoted T .

2.2 Quaternions

The quaternion number system extends the complex numbers. A quaternion is written as
q = (w, x, y, z) = w + ix+ jy + kz = (s,v).

When comparing to complex numbers, w, the scalar part of q, can be seen as the real part,
whereas (x, y, z), the vector part of q, can be seen as the imaginary part. As an extension of the
complex numbers, a quaternion has three indeterminates : i, j, k. They satisfy i2 = j2 = k2 = −1
as well as ij = −ji = k, jk = −kj = i and ki = −ik = j. This implies that ijk = −1.

The last notation must be understood as follows : s = cos θ
2 and v = u. sin θ

2 , where u is a unit
vector defining the axis around which a rotation of θ occurs. As such, quaternions can be seen as
rotations in a three-dimensional space. W.R. Hamilton, who first described quaternions, defined
them as the quotient of two vectors. They can thus be understood as the rotation required to go
from one vector to the other.

3

The conjugate of q is q = (w,−x,−y,−z) and a quaternion is unitary if, seen as a vector of
R4, it satisfies ||q||2 = 1.

It is possible to define a product operator ⊗ for two quaternions q1, q2. The result is equivalent
to applying rotations q1 and q2 consecutively. Although it is associative, it is not commutative. It
is defined as follows :

q1 ⊗ q2 = w1w2 − x1x2 − y1y2 − z1z2

+ (w1x2 + x1w2 + y1z2 − z1y2)i

+ (w1y2 − x1z2 + y1w2 + z1x2)j

+ (w1z2 + x1y2 − y1x2 + z1w2)k

Noting that the scalar part of the product is equal to q1 · q2, it is easy to retrieve θ as follows
: θ = 2arccos (q1 · q2). Nevertheless, for unit quaternions, the dot-product is close to one and the
anticosine operator is very sensitive to errors for small angles.

From q = (s,v), it is obvious that ||vq1⊗q2 ||2 = sin θ
2 , where vq1⊗q2 is the L2 norm of the vector

part of the product q1 ⊗ q2. This allows us to compute the angle θ as follows :

θ = 2arcsin ||vq1⊗q2 ||2 (1)

Alternatively, a quaternion q can be represented as a rotation matrix R(q) expressed as :

R(q) =

1− 2(y2 + z2) 2(xy − wz) 2(wy + xz)
2(xy + wz) 1− 2(x2 + z2) 2(yz − wx)
2(xz − wy) 2(wx+ yz) 1− 2(x2 + y2)


From the above expression, it is obvious that R(q) = R(−q), and hence q and −q encode the

same rotation.

2.3 Configurations

A position c of the robot, called a configuration, is given by the vector of its coordinates as
follows : the position and orientation of the base in the coordinate system of the environment, and
the rotation angle of each joint in its relative coordinate system for the arm. It can thus be seen
as a base configuration cbase and an arm configuration carm.

c is said to be part of the C-space, i.e. the configuration-space, denoted C.

2.4 Complete problem

The problem is fully defined by a model of the robot, the 3D model of the piece to work on,
and the set T of tasks to execute.

The goal is to minimize the total execution time of the tasks, similarly to minimizing the
makespan in a scheduling problem. To do so, the order of execution of the tasks has to be decided,
as well as how each task is executed, through inverse kinematics.

Figure 1 shows, on the left hand side, the robot we will be using for our experiments. On the
right hand side, the robot is shown in a Graphical User Interface (GUI), together with an engine
pylon, which is the part to work on.

Since all tasks have the same nature (drilling and deburring, for instance, will not be mixed),
the movement of the robot will only be considered up until the tool is in front of the task. In-
deed, the execution time from the position in front of the task is considered as a constant. This
hypothesis drastically simplifies the motion planning by reducing the chance of collisions, because
it keeps the robot further away from the part.

To put it in a nutshell, we have to find feasible configurations, i.e. collision-free configurations.
These configurations should allow us to reach and thus perform all the tasks. The last requirement

4

is that there should exist collision-free paths between the chosen configurations. Of course, this
selection should minimize the total time needed to execute all tasks.

Figure 1: An example of a robot1and a piece to work on (in a simulation environment).
The task is to insert a tool into holes in order to perform deburring.

2.5 Remarks

A first remark is the fact that it is costly to move the base because it is slow and subject to high
uncertainties. Moreover, due to safety reasons, the arm and the base cannot move simultaneously.
Therefore, one of the underlying goals is to perform as much tasks as possible from a given base
configuration.

In short, the number of different base configurations should be as small as possible and, for a
given base configuration, a sequence has to be decided, fixing the order of the tasks that can be
reached from it.

A second remark is the fact that exact computation of costs, i.e. movement times, is extremely
costly since it relies on robotics algorithms computing collision-free paths through space [3]. These
algorithms also greatly rely on randomness and hence are not able to provide robust solutions.
It is therefore of great importance to minimize calls to these functions by approximating exact
movement times by as precise as possible metrics.

Last but not least, since space is continuous, the C-space is continuous. Furthermore, due to
the number of degrees of freedom, multiple configurations can be considered to perform a given
task (actually infinitely many, due to continuity). This is illustrated in Figure 2. Section 4 details
how we cope with this issue.

3 Related work

This internship is a continuation of exploratory work performed in [17]. Summarized below are
different heuristics that were tested to address the problem.

To cope with continuity, the C-space is discretized as follows. Given the set T of tasks, |T |
configurations were generated and it was then checked which tasks could be performed from each

1https://pal-robotics.com/robots/tiago/

5

https://pal-robotics.com/robots/tiago/

Figure 2: Three configurations reaching the same task.

resulting base configuration, resulting in O(|T |2) configurations. This provides an instance of the
Symmetric Generalized Traveling Salesman Problem (E-GTSP).

Differently from in the TSP, in the GTSP, vertices of a graph are gathered in clusters and
the goal is to find a path of minimum cost going over at least one vertex per cluster. In our
case, a cluster is composed of configurations completing a given task, as a consequence clusters
are disjoint, and costs consist of the time to go from one configuration to another, hence they are
symmetric since robot movements are assumed to be reversible. The graph is therefore undirected.
Furthermore, the path has to go over exactly one vertex per cluster, hence E-GTSP (where E
stands for equality).

A GTSP solver would then solve the resulting instance of the problem. Since checking feasibility
of a task from a given base configuration requires inverse kinematics, approximating feasibility by
an error metric was considered promising. A threshold would then tell if a task is feasible from a
given base configuration. This was then combined with heuristics aimed at reducing the number
of considered base configurations and thus the size of the GTSP instance.

The first heuristic solves a Set Covering Problem (SCP) selecting base configurations covering
all tasks. Since the error metric is used for feasibility of tasks, set covering is applied multiple
times to ensure all tasks can indeed be performed and tasks feasible from within multiple se-
lected configurations are assigned to the closest one according to a Euclidean-like C-space distance
measure.

The second heuristic applies the K-medoids clustering algorithm (a variant of K-means). The
main issue is then that picking parameters for the algorithm to perform well, such as K, is greatly
problem-dependent, which we do not want. Nevertheless, by reducing the number of considered
base configurations, these methods reduce the number of calls to the inverse kinematics algorithm
as well as the size of the GTSP, resulting in much smaller computation times without deteriorating
the solution too much.

Notably, the GTSPs were solved using the algorithm proposed in [18], used as a black-box,
which did not allow warm start after the update of certain costs, for instance.

A very generic framework to model robotics applications of simultaneous task sequencing and
motion planning is presented in [22]. Here, the GTSP encountered when discretizing the C-space
is translated into an ATSP [16], allowing the use of Google OR-Tools routing algorithms to solve
the problem. Any other, possibly better performing, TSP solver could also be considered.

Another active research area concerns the extension of the rapidly-exploring random trees
(RRT) algorithm for path-planning. The latter is only able to return a feasible path, but was
extended into RRT∗ to take into account a cost to minimize. It is proven to asymptotically find

6

the path of minimum cost [19]. Managing a list of tasks to execute is also done by the extensions
developed in [7], [8].

Because of the slow convergence rate of RRT∗, these algorithms struggle to solve problems with
a lot of tasks, but they have the advantage to manage a wide variety of cost functions and thus
apply to problems very different, at first sight, from the one at stake here, e.g., the simulation and
study of proteins.

Let us go back to a more combinatorial optimisation-like approach now.
One can start by selecting a sequence of the tasks, thanks to a TSP solving algorithm and a

T-space metric that has to be defined appropriately with respect to the robot’s geometry.
Then, given this sequence and configurations for each task, obtained by inverse kinematics,

Dijkstra’s algorithm computes a shortest path over the configurations based on an appropriately
determined C-space metric.

Eventually, the collision-free path can be computed using a motion-planning algorithm. This
was originally done for fixed base industrial robots [20].

Let’s first note that the C-space metric used here, a priori, looks more appropriate than the
L2-like distance used by [17]. Put simply, this method decomposes the problem into two smaller
subproblems, namely a TSP and a shortest path.

Figure 3: Solution obtained by [15] seen in a GUI.

The above method was extended to mobile manipulators [15]. For a mobile manipulator, the
method proposed in [20] is applied to every chosen base configuration. Selecting base configurations
is done by applying a SCP of minimal cardinality to a bipartite graph linking the tasks and the
base configurations from which they can be reached. Those base configurations are easily obtained
by discretizing the workshop floor, and reachability is verified by geometric properties. These
properties rely on heavy hypotheses and computations based on the geometric characteristics of
the considered robot.

The result of the SCP is a partition of the tasks and a base configuration for every part of the
partition. The method for fixed base manipulators is then applied to every part partition and its
associated base configuration.

Although the approach produced promising results, shown in Figure 3, it is difficult to apply it
to another robot, and the hypotheses made restrict the tasks that are considered reachable. In the
illustrated use case, tasks are aggregated into four clusters and the robot is thus given four base
configurations to execute all the tasks.

Gathering the best of both worlds, we believe there is still space for a better performing ap-
proach. First, clustering the tasks in order to generate base configurations on those clusters sounds

7

more promising to us than discretising space and consider all obtained positions because it should
allow more emphasis on areas regarded as more important or promising. Next, solving the GTSP
in two stages, as done in [20], potentially hides good solutions. Eventually, using more appropriate
distance measures will lead to more meaningful costs and thus better solutions, before the exact
collision-free path is computed.

Our approach can thus be synthesized as follows : tasks are clustered in order to generate a
reduced amount of configurations while still ensuring all tasks are reached. This results in a smaller
GTSP instance, which we solve to get the sequence of tasks as well as the configurations executing
every one of them. Eventually we generate the collision-free path associated with the solution.

4 Problem modelling

This section aims at explaining why and how the problem is solved through a discrete model,
whereas some variables are obviously continuous.

4.1 MINLP

Informally, the optimisation model of the problem to be solved roughly looks as follows :

Min execution time

s.t. all tasks are reached

all configurations are feasible

there are no collisions

(2)

This problem is aMixed Integer Non-Linear Problem (MINLP). Indeed integer, or even boolean,
variables would tell whether a task is reached, and continuous variables come from the coordinates
encoding the robot’s configurations. Reachability constraints are far from being linear as they are
projections on manifolds of the C-space. Neither are the feasibility constraints.

Since a single configuration consists of about 20 continuous coordinates, O(20|T |), which is a
lower bound, there are a lot of continuous variables. Adding the O(|T |) integer variables, obviously
the problem is huge and untractable. Therefore, the generally adopted approach tends to discretize
the C-space, so that the continuous variables can be removed, which allows us to get back to
combinatorial optimisation techniques.

4.2 GTSP

As explained in Section 3, discretizing the C-space provides us with a GTSP model of the
problem. The latter is composed of a finite set of configurations, each one reaching one task.

This allows us to build a graph G = (V,E,C, c), forming the GTSP instance I :

• V contains a vertex per configuration.

• C is the set of clusters, and a cluster is composed of vertices reaching the same task. The
clusters form a partition of the vertices.

• E is composed of all edges between vertices of different clusters.

• The cost ce of an edge e is the time needed by the robot to get from one configuration to the
other.

This definition gives an E-GTSP instance with disjoint clusters and symmetric costs. The graph
is therefore undirected. It is obvious that symmetric E-GTSP is NP − hard since it generalizes
to the symmetric TSP when clusters are of size 1. E-GTSP finds applications in various domains
spanning flowshop scheduling [10], airplane control [4] or drone deliveries [21]. In the latter, prob-
lem specific constraints can introduce other variants of the problem [9].

8

As an illustration, Figure 4 shows the case with two tasks A,B, and two configurations per
task. The dotted lines represent the clusters and thus enclose configurations (i.e. vertices) on the
same task (i.e. part of the same cluster). Costs are not specified but are encoded in the the edges.

A1

A2

B1

B2

Figure 4: Graph encoding the GTSP instance for two tasks
and two configurations per task.

The question remaining now is how to discretize the C-space. Indeed, this requires to pick
a finite number of configurations, ideally including the ones providing an optimal solution of the
MINLP problem. Section 5 provides more details.

5 Discretisation

This section details how configurations are selected, in a as smart as possible way, in order to
avoid to lose the ones that can be part of some global optimal solutions.

5.1 Naive approach

To ensure reachability of all tasks, one way to discretize the C-space is to generate, for every
task t ∈ T , nconfig configurations reaching it. We call this the naive method. This results in
B base configurations [17]. By then checking which tasks are reached from every resulting base
configuration, O(B|T |) configurations are obtained, and as many vertices in the GTSP instance.

Our goal is to reduce the amount of configurations considered, while being able to cover every
task.

This means reducing B and/or |T |. The ability to cover all tasks implies it is not possible, for
instance, to consider a random subset of T and apply the naive method to that subset. Doing so
would introduce a significant risk of not being able to perform a task. Reducing nconfig to reduce
B, on the other hand, would seriously reduce the variety of the base configurations and thus the
quality of the final solution.

The size of T has thus to be reduced, while ensuring all tasks are reached. To do so, we partition
the tasks according to their origin and orientation (Section 5.3). The centroids of the clusters form
fictitious tasks supposed to be representative of the real ones. This nevertheless requires to define
a distance measure between tasks, called T-space metric (Section 5.2).

5.2 T-space metric

The T-space metric, referred to as dtasks, is intended to allow the clustering algorithm to
quantify how far apart two tasks are from each other. It should take into account the distance
between the origins of two tasks, as well as the angular difference between their orientations.

This metric is thus a heuristic distance measure on SE(3). Furthermore, it should be defined
in a way allowing it to be easily tuned according to the considered robot, in order for our approach
to remain versatile with respect to the handled instances. This makes the metric robot-dependent.

Recall a task t is encoded as (Ot, qt) where Ot is its origin and qt a quaternion encoding its ro-
tation. We could use [11] for the definition of the metric, as it explores different distance measures

9

for quaternions.

Since both the origin and the orientation have to be taken into account, we define the T-space
metric between two tasks u, v as follows :

dtasks(u, v) =
√
dorigin(Ou, Ov)2 + ktasks.ddirection(qu, qv)2 (3)

The factor ktasks allows to adapt the importance of a difference in direction for the considered
robot. The distance measure is thus tunable according to the robot, and is close to a weighted L2

distance.

For the distance between the origins of the tasks, the most reasonable choice is to take the
Euclidian distance in R3. Hence :

dorigin(Ou, Ov) = ||Ov −Ou||2 (4)

When computing the distance between two directions, it is the angle between these directions
that is interesting. A first definition could thus use equation (1). Hence :

1ddirection(qu, qv) = 2 arcsin ||vqu⊗qv ||2 (5)

The above definition differs from what is presented in [11], where the distance between two
quaternions q1, q2 is defined as follows :

2ddirection(qu, qv) = arccos
(
|qu · qv|

)
(6)

In equation (6), the anticosine of the absolute value of the dot-product of the two quaternions is
taken as the distance between them. Although the conjugate is not considered here, this definition
has to be put in perspective with what is presented in Section 2.2 : cos θ

2 = qu · qv. It is thus a
computation of the angle between the two quaternions.

The dot-product is taken in absolute value in order to eliminate the symmetry between q and
−q, which represent the same rotations.

Since, θ = 2arccos(qu · qv), one issue with equation (6) is the fact that it struggles to cope with
quaternions having very different directions. Indeed, a dot-product close to -1 should represent
very different directions, but since it is taken in absolute value, it is close to 1, which represents
quite similar directions. This issue is discussed in Section 7.2. Furthermore, as mentioned earlier,
the anticosine operator is very sensitive to errors for values close to 1, i.e. small angles.

Both equations (5) and (6) have a limited scope of angles they handle. We therefore opt for
the two-argument antitangent operator, denoted arctan2, and define the distance between two
quaternions as follows :

ddirection(qu, qv) = 2.arctan2(||vqu⊗qv ||2 , qu · qv) (7)

This definition is able to manage angles superior to π
2 and returns an angle in [0, π[, correspond-

ing to the absolute value of the angle between the two tasks u, v. Hence, the distance measure is
positive and symmetric, has value 0 for a pair (u, u), but does not satisfy the triangle inequality.
Although the triangle inequality is a desirable property, it is not an issue not to verify it, since the
distance measure is used as a heuristic to estimate how far apart tasks are for the robot.

5.3 ISODATA

To cluster the tasks, an algorithm with parameters independent of the points to be clusterized
is needed. In our case, the points are the tasks. At the same time, we would like to be able to
tune the algorithm according to the robot.

ISODATA (Algorithm 1) meets the above-defined expectations. Its parameters are robot-
dependent. More precisely, they depend on the T-space metric, which in turn is robot-dependent.

10

The algorithm is given a set of points P that it will gather in kclus clusters S = (Si)i∈[kclus]

of centroids Z = (zi)i∈[kclus], of size at least nmin, and according to the distance dtasks. It starts
with kclus = kinit clusters and iteratively splits one when its variance exceeds σmax or combines
two when the distance between the centroids is less than Lmin. At most Pmax combinations are
performed at each iteration and the algorithm stops after Imax iterations.

Thus, different values are computed:

• ∆i =
1

|Si|
∑

x∈Si
dtasks(x, zi) : the average distance to the centroid within cluster i.

• ∆ = 1
n

∑
i∈[kclus]

|Si|∆i : the weighted average distance between centroids.

• σil =
√

1
|Si|
∑

x∈Si
(xl − zil)2 : the variance according to coordinate l within cluster i.

• dij = dtasks(zi, zj) : the distance between two centroids zi and zj .

In our case, the set of points is the set of tasks, i.e. P = T . The latter are encoded by affine
vectors of 7 coordinates as explained in Section 2.1.

To ensure the algorithm performs well, σmax, dtasks and Lmin must be adapted to the geometry
of the robot. dtasks was defined in Section 5.2, and we fix nmin = 1 to allow isolated tasks to form
their own cluster.

A general description is also provided in [13].

Algorithm 2 details how a cluster S, of centroid z and variance σ, is split. It requires a param-
eter α caracterising the distance to z, as well as the distance measure dtasks between two points.
It returns two clusters S1, S2 of centroids z1 ̸= z2, such that S1 ∪ S2 = S and S1 ∩ S2 = ∅.

Since the clustering algorithm is only given the set of points, it does not take into account that
the tasks, which form the set of points, should be located on the surface of the part. This issue is
discussed in Section 7.1.

5.4 Configuration generation

Gathering all the above knowledge, we can precisely define how to discretise the C-space in a,
let us hope so, clever way.

After having clustered the tasks of T , we obtain a set of fictitious tasks T fict expected to be
representative of T . For every t ∈ T fict, nconfig configurations reaching it are generated. This
results in Bfict base configurations. Since T fict ≤ T , the following inequality holds : Bfict ≤ B.

We then check which tasks t ∈ T can be reached from the resulting base configurations. This
results in O(Bfict|T |) configurations and as many vertices in our GTSP instance.

Although this sounds powerful, it does not ensure all tasks can be reached from the gener-
ated base configurations. Because of this, the configuration generation procedure is a bit more
complicated and goes as follows :

1. Clustering on T . Tasks that could not be reached are put in T ′.

2. Clustering on T ′. Tasks that could not be reached are put in T ′.

3. Naive approach on T ′.

The clustering is applied twice in order to keep the number of configurations as small as possible
but since it cannot be applied infinitely many times, the naive approach is applied after the second
run, hoping T ′ got small by then.

Having generated the configurations, i.e. the vertices of the GTSP instance, we can now further
build that instance.

11

Algorithm 1: ISODATA

INPUT : P, kinit, nmin, Imax, σmax, Lmin, Pmax, dtasks
OUTPUT : A clustering of the tasks
// Initialisation

1 iteration ← 1
2 kclus ← kinit
3 Random selection of k centroids Z = (zi)i∈[kclus] in P .

// Allocation

4 iteration ← iteration + 1
5 Allocation of points of P to the closest centroid according to dtasks to form clusters

(Si)i∈[k].
6 Removing clusters i verifying |Si| < nmin.
7 Updating centroids.
8 Updating kclus.
9 If deletion happened in step 6 : go to step 4.

10 Computation of mean distances (∆i)i∈[kclus] and ∆.
11 if iteration = Imax then
12 Lmin = 0 and go to step 21.

13 if
[
2kclus > kinit

]
AND

[
even iteration OR kclus ≥ 2kinit

]
then

14 Go to step 21.

// Splitting

15 Computation of the variances (σi)i∈[kclus] and σmax
i = ||σi||∞

16 for i ∈ [kclus] do

17 if
[
σmax
i > σmax

]
AND

[
[∆i > ∆ and ni > 2(nmin + 1)] OR kclus ≤ kinit

2

]
then

18 Split Si in two new clusters close to zi (cf. Algo 2).
19 kclus ← kclus + 1

20 If a cluster was split, go to step 4.
// Combining

21 Computation of (dij)i,j∈[kclus].
22 Order (i, j)[kclus]×[kclus] by ascending dij .
23 Take the Pmax first pairs verifying dij < Lmin. Combine the associated Si, Sj . Update

kclus.
24 If iteration ≤ Imax, go to step 4.
25 return (Si)i∈[kclus]

5.5 Performances

Before moving on to the final computations necessary to generate the GTSP instance, let us
take some time to study the performances of the discretisation method.

Supposing that the number of clusters is proportional to the number of tasks, both the naive
approach and our clustering approach produce a number of configurations of the order of mag-
nitude of O(|T |2). Nevertheless, compared to the naive method, the clustering method produces
drastically less base configurations. When the naive method produces exactly |T | base configu-
rations, the clustering allows to divide this quantity by roughly 10. Unfortunately, the Landau
notation hides these gains.

Since the problem is scarcely studied, very few instances are available in the litterature. We
work with a Tiago robot (Figure 1) and had two parts at our disposal. One was given to us by
Airbus and is an engine pylon (in red on the right hand side image of Figure 1), and the second
one is an airfoil used as use case in [15] (left hand side of Figure 5).

The engine pylon instance contains 18 tasks, all located on the same surface which means

12

Algorithm 2: Splitting a cluster

INPUT : S, z, σ, α, dtasks
OUTPUT : Divides a cluster into two
// Initialisation

1 pos← argmaxl σl

// Creation

2 Creation of S1, S2 of centroids z1 = z2 = z.
3 zpos1 ← zpos − αzpos

4 zpos2 ← zpos + αzpos

// Allocation

5 for x ∈ S do
6 k ← argmini∈[2] dtasks(x, zi)

7 Sk ← x

// Caracterisation

8 Update of the centroids z1, z2 and the variances σ1, σ2.
9 return S1, S2

Figure 5: Tiago robot and the airfoil (in the GUI)

they all have the same orientation. Since the piece is not that big, and considering the geometric
properties of the robot, the clustering algorithm can be expected to put all tasks in one single
cluster. Furthermore, a configuration on a given task almost always allows the robot to reach all
17 other tasks.

On one hand, the naive method almost always produces 18× 18 = 324 configurations. On the
other hand, the clustering puts all tasks in a single cluster, as expected. Taking nconfig = 2, this
reduces the number of base configurations down to 2, compared with 18 with the naive method.
In the end, the clustering method almost always produces 18× 2 = 36 configurations.

The use of the clustering method thus resulted in a reduction of the number of generated con-
figurations by a factor of 324/36 = 9 for the engine pylon. Since the distance matrix of the GTSP
instance is of size the square of the number of configurations, this reduces the size of that instance
by a factor of 92 = 81, which is a non-negligible gain.

The airfoil instance contains 336 tasks and is thus consequently bigger than the one of the
engine pylon. The naive approach would produce around 105 configurations. It is more challenging

13

not only because of the increased size, but also because of the fact that the tasks have different
orientations since they are not all located on the same side of the part. This will challenge the
quality of the clustering algorithm.

As can be seen in Figure 3, applying the method of [15] (detailed in Section 3) to the airfoil
and a Denso VS-087 robot with 6 degrees of freedom (DOF), results in four clusters and thus
four base configurations. Three allow to reach the tasks on the angled side of the part whereas a
fourth one makes sure all tasks on the vertical side are reached. Considering the abilities of the
Denso robot and the fact that one base configuration sufficed to reach all the tasks on one side,
we expect a best-case scenario where all tasks can be reached from within as little as two different
base configurations. For nconfig = 2, this would give around 103 configurations.

In our case, the Tiago robot’s arm has a slightly smaller range than the Denso. Nevertheless,
when applying the clustering algorithm with correct parameters, we manage to generate as little
as 2.103 to reach all tasks (with nconfig = 2). This is a reduction by a factor of 105/2.103 = 50
compared to the naive method. This gain reduces the size of the GTSP instance by a factor of
502 = 2500.

6 Resolution

To complete the instance, the costs of its arcs need to be computed. Recall that exact cost com-
putation is extremely time consuming because it relies on collision-free path planning algorithms.
We therefore approximate this cost through a C-space metric defined in Section 6.1.

Once the costs computed, Section 6.2 explains how the resulting GTSP instance is solved.

6.1 C-space metric

Recall a configuration is given by the configuration of the base cbase and the configuration
of the arm carm. This section defines the metric dconfig measuring the distance between two
configurations c1 and c2.

This metric should be robot-dependent to be as precise and realistic as possible. It will there-
fore have to take into account both some planar distance, related to the more costly movement of
the base, as well as a distance related to the movement of the arm. For the latter, [20] tests diverse
metrics.

We define the distance measure as follows. The difference in order of magnitude of the time
needed to move the base compared to moving the arm is taken into account through the constant
kconfig.

dconfig(c1, c2) = kconfig.dbase(c1, c2) + darm(c1, c2) (8)

We define the distance for the base as the L1 distance between its planar coordinates, also
called manhattan distance, multiplied by a factor depending on the variation of its direction. The
importance of a variation of the direction is encoded in kbase.

dbase(c1, c2) =
∣∣∣∣cbase2 − cbase1

∣∣∣∣
1

(
1 + kbase|θbase2 − θbase1 |

)
(9)

For the distance between arm configurations, multiple definitions are possible. We consider the
two following ones :

d′arm(c1, c2) = max
i

∣∣∣∣ci2 − ci1
vmax
i

∣∣∣∣ (10)

d′′arm(c1, c2) =

√∑
i

(ci2 − ci1
vmax
i

)2
(11)

The first one, (10), is the maximal motion time of the different joints when omitting the
acceleration phase. The second one, (11), is an L2 norm of the angular differences, weighted by
the joint speeds.

14

Eventually, in equation (8), when two configurations differ in base configuration, the distance
between them is composed of the distance between the base configurations and two arm configu-
ration distances corresponding to the folding and unfolding of the arm before and after the base
is moved. If only the arm has to move: dconfig = darm.

This metric allows us to compute the costs of the edges of the graph G encoding our GTSP
instance. Section 6.2 explains how the latter is solved.

6.2 Solving the GTSP

Following [22], we attempt to solve the problem using Google OR-Tools, an open-source software
suite for optimisation that incorporates heuristics to solve the TSP. This requires to transform the
GTSP instance into an ATSP one [16].

Given a GTSP instance of our problem I = G = (V,E, c), an equivalent ATSP instance
J = G′ = (V,A, c′) can be built as follows :

1. Orientation of the edges by doubling them, as our problem is originally symmetric.

2. Within each cluster ck, arbitrarily number the vertices: ck1 , ...c
k
|ck|.

3. Within each cluster, add arcs of cost 0 to form a cycle over the vertices according to their
numbering, as our problem originally contains no inner-cluster arcs.

4. Every arc (cki , c
l
j) between two clusters ck ̸= cl is replaced by an arc (cki−1, c

l
j) of same cost

(with the convention that if i = 1, then i− 1 = |ck|).

G and G′ have the same set of vertices V , the set of arcs in G′ satisfies |A| = 2|E| + |E| − k,
and the cost function c is trivially extended to A with steps 3 and 4.

Figure 6 shows the TSP instance obtained after applying the transformation to the GTSP in-
stance from the example depicted in Figure 4.

A1

A2

B1

B2

0 0 00

cA1B2

cB
1A

2

cA2B1

cB2
A1

cA2B2

cB1
A1

cA1B1

c
B
2A

2

Figure 6: TSP instance associated with the GTSP from the previous example.

From an optimal solution of the TSP instance J , an optimal solution, of same cost, of the
GTSP problem can easily be retrieved.

Indeed, when the TSP solution first visits a vertex cki of a cluster k, it visits all other vertices
of that cluster by going over the cycle of cost 0 until vertex cki−1. Then, it leaves the cluster by
going over edge (cki−1, c

l
j), which is a clone of the edge (cki , c

l
j) used by the optimal GTSP solution

after visiting vertex cki .

6.3 Performances

As mentioned earlier, the GTSP problem obtained for the engine pylon instance contains ap-
proximately 36 vertices. They correspond to two base configurations, both allowing the robot to
reach all tasks. This allows to easily find a solution, of which we will describe the quality now.

15

The solution is shown in Figure 7.

Figure 7: Solution obtained with OR-Tools for the engine pylon.

Let us first say that the resolution was able to select configurations all corresponding to the same
base configuration. Since, changing the position of the base is very costly, if one base configuration
is sufficient, it is of great value to select it, and no other ones.

The tour depicted in Figure 7 thus shows the order in which the tasks are performed. At first
glance, the tour does not look too bad. The algorithm performs reasonably well. Nevertheless,
when taking a closer look, one can see that at least one task is missing, which forces the robot to
come back to it at the end of the tour. This task is circled in yellow on Figure 7.

For a small instance like the one of the engine pylon, OR-Tools is thus able to find a near
optimal solution. The latter required 10s of running time, which is reasonable. Nevertheless, the
heuristic nature of OR-Tools leads to a few issues when running bigger instances. This is discussed
in Section 7.3.

7 Issues

While presenting our approach, we already pointed out a few possible issues. This section
details theses issues and explains how they were fixed.

7.1 Projection of the fictitious tasks

Since the clustering algorithm is only given the set of points, it does not take into account that
the tasks forming the set of points should be located on the surface of the part. This can result in
fictitious tasks being located above the part, or, more annoyingly, inside the part, as illustrated in
Figure 8.

Indeed, since the goal of the fictitious tasks is to generate configurations on them, if the latter
are inside the part, any configuration reaching it will collide with the surface of the part and will
not be considered valid.

Below, two methods aimed at fixing this issue are presented, one of which we implemented.

16

Figure 8: Example of a fictitious task inside the part, here the airfoil.
White : origins of the real tasks.

Blue : limit of the cluster.
Red : origin of the centroid (inside the part).

In a quite straightforward way, the fictitious tasks can be projected on the surface of the part.
Since the latter is encoded as a mesh, the projection is done by looking for the node of the mesh
that is closest to the origin of the fictitious task, with respect to the L2 norm in R3. That node is
then considered as the origin Ot of the fictitious task t.

The projection is a relatively heavy task, since it requires the computation of the distance to
every node of the mesh. Therefore it is done only once : after the clustering procedure. This
possibly deteriorates the solution returned by ISODATA in terms of representation quality of the
real tasks, but a compromise has to be found.

Another, more complicated, idea, called double projection, was elaborated but not implemented.
It is illustrated in Figure 9 and is summarized below. First, denote E, the ellipsoid hull of the
part, and S the surface of the workshop floor. Define the closed curve ϵ as : ϵ = E ∩S. Define l as
the maximum distance between the robot and a task it is able to reach from its current position.
The method then goes as follows :

1. Project the origin of every real task t ∈ T on the ellipsoid hull of the part, with respect to
the Euclidian distance on R3. The projections are directed such that they are normal to the
surface of E, and are denoted ptE .
This breaks down to computing, for every t ∈ T , the following quantity :

ptE ∈ argmin
p∈SE

||t− p||R3

2. Further project these projections on the closed curve ϵ, also with respect to the Euclidian
distance on R3. The orientation is unchanged. These second projections are denoted ptϵ.
This breaks down to computing, for every t ∈ T , the following quantity :

ptϵ ∈ argmin
p∈ϵ

||ptE − p||R3

Note that p = (x, y, z) ∈ ϵ implies z = 0 and (x, y) is on the closed curve ϵ.

3. Regarding l as the length of a segment of ϵ, apply a 1D clustering on the (ptϵ)t∈T with
σmax = l. The used distance measure should define the distance between two points as the
distance to travel on ϵ to go from the first point to the other one.

These steps allow to generate fictitious tasks supposed representative of the real tasks. It then
remains to generate base configurations for the robot. This can be visualised as follows : place

17

the robot at the position of the fictitious task, move it in the direction normal to ϵ over a distance
depending of the robot (far enough to reach as many real tasks as possible, but not too far either
or the robot will not reach any real task at all). Direct the base along this same direction, such
that the robot is facing the part. This is illustrated in Figure 10.

This ensures that configurations are not in collision with the part.

Figure 9: Visual representation of the double projection method.
Black : real tasks t ∈ T , Green : projections ptE on the ellipsoid hull E, Red : projections ptϵ on

the closed curve ϵ.

Figure 10: Visual representation of the base configuration generation after the double projection.
Black : origins of the fictitious tasks, Red : resulting base configurations.

Due to the complexity of computing the ellipsoid hull of a mesh, as well as the good perfor-
mances and simplicity of the first method, the double projection method was not implemented.
Nevertheless, we expect it to perform well on parts having a volume approaching convexity. The
performances could be much more disappointing if that hypothesis were not satisfied.

18

7.2 Orientation of fictitious tasks

The metrics defined on the T-space in Section 5.2, are useful for an algorithm such as ISODATA
that requires a lot of distance computations, because they are easy to compute.

To compute the centroids, ISODATA averages every one of the seven coordinates of the vector
encoding a task. Since these centroids represent fictitious tasks, the four coordinates of the vector
that correspond to the quaternion, i.e. the direction, are also simply averaged. This does not,
unfortunately, provide something like an average direction, as one would expect.

The following subsections present how an average direction can be computed.

7.2.1 Quaternion average

To solve this problem, a quaternion barycenter can be computed through the Frobenius-norm
and the rotation matrix [5] associated to the quaternion.

This method can be implemented efficiently as it breaks down to computing the eigenvector
associated to the maximum eigenvalue of some 4x4 matrix derived from the sum of the rotation
matrices. Taking the eigenvector of unit norm gives us a unit quaternion qt for the barycenter,
which is the direction of fictitious task t.

However great sounding, this method showed poor empirical performances with fictitious tasks
still having orientations far from the expected average. Indeed, it is not rare to have all real tasks
directed to the same region (not the same point, as that would mean they have the exact same
direction), but still obtain an average direction going the opposite way. This is possibly due to
the nature of the matrix of which the eigenvector is computed : it is not clear what this matrix is
supposed to represent.

This method is thus not satisfying. A more basic approach eventually solved the problem of
the orientation of the fictitious tasks.

7.2.2 Normal to the surface

Rather than looking for some kind of average, the most robust, and perhaps easiest, approach
was to simply direct the fictitious task such that it is normal to the surface of the part. This
ensures the ability to generate configurations on the task, and is in line with the fact that, in the
studied cases, all real tasks are also normal to the surface. Furthermore, regarding the nature of
practical use cases (drilling, deburring, quality checking, etc ...) tasks being normal to the surface
is a sound hypothesis.

Retrieving the normal to the surface is not straightforward since the latter is encoded as a mesh,
and thus a set of vertices. Nevertheless, since the fictitious tasks are projected on the surface, two
points are available : the centroid of the cluster, and its projection on the surface. The direction
d (a vector of size 3) defined by these two points should be close to normal to the surface at
the location of the projection and can thus be used as the direction of the fictitious task. Since
directions of tasks are encoded as quaternions, the quaternion has to be derived from its rotation
matrix, which itself is derived from the vector d.

Note that the direction defined by the centroid and its projection is not, in the general case,
exactly normal to the surface. This, in turn, is due to the discretisation of the surface to encode
it as a mesh.

Deriving the rotation matrix R from the vector d goes as follows.
Recall that a task t is given by its origin Ot and its direction qt. Now, for any task in T , the

coordinate system associated to it has Ot as origin, and the direction defined by qt as X-axis. It is
such a coordinate system that the rotation matrix is expected to define.

One first has to apply the Gram-Schmidt orthonormalisation process to orthonormalise the
following set of three vectors : {d, (0, 1, 0), (0, 0, 1)} into {e1, e2, e3}. R is then defined as follows,
where ∧ is the cross product :

R =
(
eT1 eT2 (e1 ∧ e2)

T
)

19

Starting the Gram-Schmidt process with d ensures e1 has the same orientation as d, and using
the cross product for the third column of R ensures det(R) = 1, which ensures that R is a rotation
matrix associated to a right-handed coordinate system. R is thus the rotation matrix associated
to the right-handed coordinate system with X-axis corresponding to d. The wanted quaternion
can then be retrieved from the matrix.

7.2.3 Practical behaviour

Let us first pin the importance of having det(R) = 1. If it were equal to −1, R would define
a left-handed coordinate system. But, the computation of the quaternion associated to a rotation
matrix makes the hypothesis of a right-handed coordinate system. A left-handed one would pro-
duce some quaternion, rather uncorrelated to the computations.

Combining the solutions of Sections 7.2 and 7.1, the obtained fictitious tasks are well posi-
tioned, i.e. with an origin on the surface of the part, and well oriented, i.e. normal to the surface,
as is the case for every real task.

Although configurations can be generated on the fictitious tasks, the randomness of the robotics
algorithms limits the performances of the base configuration generation. This is detailed below.

Let us first state what is wanted. A fictitious task t is representative of a set T t ⊆ T of real
tasks. The configurations generated to reach t should thus allow us to reach all the real tasks
t ∈ T t. Most importantly here : the origin Ot of the fictitious task is the average of the origins of

the real tasks t ∈ T t (up to the projection). To reach all t ∈ T t, the configurations on t should
thus be in front of Ot. By this we mean that the base should be close to Ot.

Now, because the robotics algorithms are not aware of our underlying goal when generating
configurations on the fictitious tasks, these configurations are often not as wanted. Indeed, the
algorithm first generates a random base configuration, and then checks (through inverse kinematics)
if there is a full configuration able to reach the task from that position. When such a configuration
is found, the algorithm stops and returns it. Because of the randomness of the base configuration,
it is not rare to obtain a configuration on t with the base far from Ot.

One way to cope with this issue is to force the configuration to have a certain arm position,
i.e. a certain value for every joint, or at least every joint within a given range. Since finding a
configuration is done by solving a non-linear problem, this can be done by putting the associated
constraints into the objective function as a penalty. Another solution would be to build a hierar-
chical solver. The latter would first try to find a configuration as is done now, and in a second
phase modify the solution to push the joints into the enforced ranges, while maintaining respect
of the constraints of the first phase.

7.3 GTSP solver

Generating a reduced amount of configurations in order to decrease the size of the GTSP
instance does not, unfortunately, solve all of our problems.

7.3.1 Issues

As mentioned in Section 6.3, since OR-Tools is a heuristic solver, there is no guarantee that
it returns an optimal solution. Recall that, from an optimal solution of the TSP instance, an
optimal solution, of same cost, of the GTSP instance it is derived from can easily be retrieved.
Unfortunately, a feasible solution for the TSP instance, when it is not optimal, is not necessarily
feasible for the GTSP problem it is derived from. Indeed, any tour is admissible for the TSP,
whereas, for the GTSP, every cluster is expected to be visited, and thus entered, only once.

A tour entering and leaving a cluster more than once, does not provide a sequence of the tasks,
as is expected from a GTSP solution. Furthermore, there is no unique sequence associated to it.
Retrieving a GTSP solution from such a tour is therefore not possible, but OR-Tools could very

20

well return such a tour.

This is illustrated in Figures 11 and 12 with a small example consisting of two tasks, A and B,
and two configurations per task. The graph associated to the GTSP instance I of this example is
simply the complete undirected graph over four vertices (often denoted K4). The resulting TSP
instance J is visually represented in Figure 11. The violet path is a GTSP-admissible solution
and the blue path is the TSP-solution associated to it. It is clear that the TSP solution visits
all vertices of every cluster before leaving it. The resulting solution is thus to perform task A in
configuration A1 before performing task B in configuration B2.

Now, in Figure 12, the represented tour is indeed TSP-admissible, since it is a tour. Neverthe-
less, after visiting A1, the tour leaves cluster A for node B1. It thus leaves cluster A before all
of its vertices have been visited. The same problem occurs with cluster B. The latter is entered
through vertex B1, but, after visiting that vertex, the path goes to A2 rather than B2. From this
tour, one could derive GTSP solution (A1, B1) as well (B1, A2) or (A2, B2), which have different
costs and are thus not of same quality.

A1

A2

B1

B2

Figure 11: Violet : GTSP solution, Blue : associated TSP solution.

A1

A2

B1

B2

Figure 12: Admissible TSP solution that is not a valid GTSP solution.

7.3.2 Concorde

On top of the above problem, and for the sake of solution quality, it is natural to want an
optimal solution of the GTSP, since the latter is already a discretisation of the original MINLP.
This requires a more powerful solver such as Concorde [2]. It relies on state of the art theory of
the symmetric TSP which often allows it to find an optimal solution of a problem, even though it
is known to be NP − hard.

Concorde cannot solve the ATSP instance derived from the GTSP instance, because it is asym-
metric. But, an ATSP instance can be transformed into a symmetric TSP instance [12]. Given
a distance matrix D, encoding the asymmetric instance, the matrix D′ encoding the associated

21

symmetric instance is built as follows :

D′ =

(
∞ D

T

D ∞

)
with D =

{
Di,j if i ̸= j

−d if i = j

Where d is a sufficiently large positive constant.
This has the disadvantage of doubling the number of vertices, and thus requiring four times

more space to store the associated distance matrix.

7.3.3 Implementation

When trying to implement Concorde into our solver, various problems were encountered. The
main issue was the fact that Concorde was released during the 1990’s and was not updated since
2003, whereas CPLEX continually evolved since then. As Concorde relies on CPLEX to compute
lower bounds through the continuous relaxation of the problem, we ran into segmentation fault
error messages during calls to CPLEX functions. As CPLEX is not open-source, modifying or
correcting these functions was not possible.

Luckily, Concorde can also be used with the QSopt linear solver, which we eventually used.
Unfortunately, this did not allow us to find the optimal solution of the TSP instance derived from
the GTSP model of the problem for the airfoil instance, even after an entire day of computations.
Those instances typically had 3000 nodes, as 1500 different configurations were considered to reach
all the tasks. On top of that, the intermediate solutions found by the solver did not provide GTSP
admissible solutions.

Using a GTSP specific solver thus seems the only way to try to solve the problem, as this would
ensure that intermediate solutions are also admissible for our problem, the RTSP.

8 Conclusion

The use of the clustering algorithm ISODATA produced promising results. The versatility of the
approach and the good results it showed make it a very flexible and practical method to approach
RTSP instances without requiring strong hypotheses. It allows to consider generic applications
where neither the robot, nor the part, are known in advance. Applying it allows to drastically
reduce the size of the GTSP intance one has to solve, compared to using the naive method or an
a priori discretisation of the workshop floor i.e. the set of base configurations.

The results obtained for the engine pylon, thanks to OR-Tools, show good performances of
the heuristic distance measure between configurations. Nevertheless, to obtain a solution for the
airfoil instance, or any other larger instance, one needs a more powerful solver, more adapted to
the problem : a GTSP solver.

To extend what was achieved during this internship, an interesting direction to go into would
indeed be the development of a GTSP solver. The latter could be a generic solver for the GTSP,
or one adapted to the specifics of robotics. This would allow using specific heuristics, and a better
integration of the robotics algorithms into the solving process.

As part of the building of such a solver, time should be put into picking the best way to model
the problem. Such a model should be able to manage extra features, enabling it to model a wider
range of problems. Indeed, the RTSP is very close to problems where one wants to cover a surface.
This can be for painting, abrasion or simply hoovering. Another application is inspection of a
surface with a camera-equipped drone. These different applications all have similarities as well as
different singularities, but one would like them to fit into the same generic model.

Due to a lack of instances for the problem, it would be interesting to test the proposed approach
on a wider range of problem instances, with parts of various forms, and a wider range of number
of tasks. Such instances could be highly valuable for the robotics research community.

22

Besides promising results for the clustering, but no big results for the global approach, this
internship has been very enriching and filled with important lessons.

First of all, it was a great immersion into academic research. The publication of a paper treating
the exact same problem [15], with an approach close to the one we were implementing, showed me
how one can differentiate its work from other publications and must keep motivation to attempt
things. It also taught me to regularly take a step back from work in progress, in order not to lose
the bigger picture. This allows to consider different solutions rather than locking oneself up in the
one currently tried.

Due to the complexity of collision-free motion planning, and the very applied nature of the
considered problem, it was necessary to dive into the specifics of robotics. This allowed me to
broaden the scope of my scientific knowledge and fresh up some previously learned theorems. It
also led to brainstorming sessions on problems not directly related to optimisation. This showed
me that it is not always easy to integrate the specifics of another field into the tools and ideas of
combinatorial optimisation. This is all the more true when one relies on already existing tools and
is thus enforced a model, e.g. the quaternion for directions.

Another important lesson of this internship is the fact that the difficulty rarely lies where it
is expected to be. Indeed, despite plenty of ideas, the implementation of those ideas was often
the limiting factor. Of course, some ideas were not tractable, computationally speaking, but even
things with pre-existing solutions were often not straightforward to implement. The best example
is probably Concorde, but it would be dishonest to cite only that example. More details are given
in the below paragraph.

This brings me to what I was able to learn from a more informatics, and thus practical, per-
spective.

During this internship, we wanted to take advantage of existing algorithms and programs
as much as possible, believing there was a way to fit the appropriate ones together into a well
performing solver for the RTSP. The accomplished work did not prove us wrong, but it highlighted
the difficulty of such an approach. For a given subproblem, although there is a program solving
it, it is not said that it is easy, or even possible, to fit the program or the solution into the rest of
the work.

It is at my expense that I learned how difficult it can be to use an algorithm found online.
The example of the implementation of ISODATA is surely relevant. Thinking it was a good idea,
an off-the-shelf implementation was first used. although it ran trouble-free, it turned out to be
subtly different from the expected algorithm. Furthermore, it was quite ill-written and did not
take advantage of better performing and more robust data structures. To integrate it into the rest
of our solving routine, we have thus had to completely change the data structures it relied on.
Eventually, the program was even better performing, but the time put into correcting the code
almost surely surpassed the time that would have been needed for an implementation from scratch.

Another issue, better illustrated by Concorde, is the sustainability of a code through time.
First of all, code downloaded as a binary package is concealed and thus leaves no possibility for
modifications to the users. Then, code downloaded from source allows to make modifications and
could thus be adapted in order to fit into another software suite. Nevertheless, as is the case for
Concorde, although the code is open-source, it is not open to global modifications or updates from
end users, as is possible with code on GitHub. This results in code unchanged for 20 years, not
compatible anymore with current versions of dependencies it has. Hence the importance to look for
code that has been sustained over time, kept up-to-date when changes occurred in dependencies,
and ideally has no dependencies at all.

Using an already existing software containing the robotics algorithms, and having as goal to
integrate my work into that software, it was of great importance to work consistently regarding the
structure of the software. Inconsistencies could lead to the entirety of my work being abandoned
in the future, because it could not be sustained, understood or further developed. Sticking to
an imposed strucutre was a good exercise and a good training towards working in and on bigger
projects.

23

References

[1] S. Alatartsev, S. Stellmacher, and F. Ortmeier. Robotic Task Sequencing Problem: A Survey.
Journal of Intelligent & Robotic Systems, 80(2):279–298, Nov. 2015.

[2] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Concorde TSP solver, 2006.

[3] J. Canny. The Complexity of Robot Motion Planning. MIT Press, 1988.

[4] N. Ceccarelli, J. J. Enright, E. Frazzoli, S. J. Rasmussen, and C. J. Schumacher. Micro UAV
Path Planning for Reconnaissance in Wind. In 2007 American Control Conference, pages
5310–5315, July 2007.

[5] Y. Cheng, Markley, F. Landis, Crassidid, John L., and Yaakov, Oshman. Quaternion Aver-
aging. 2007.

[6] C. A. Deavours. The Quaternion Calculus. The American Mathematical Monthly, 80(9):995–
1008, Nov. 1973.

[7] D. Devaurs, T. Simeon, and J. Cortés. A multi-tree extension of the Transition-based RRT:
Application to ordering-and-pathfinding problems in continuous cost spaces. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), page 6 pages, Sept. 2014.

[8] D. Devaurs, T. Simeon, and J. Cortés. Optimal Path Planning in Complex Cost Spaces With
Sampling-Based Algorithms. IEEE Transactions on Automation Science and Engineering,
13(2):pp.415, 2016.

[9] A. Di Placido, C. Archetti, C. Cerrone, and B. Golden. The generalized close enough traveling
salesman problem. European Journal of Operational Research, 310(3):974–991, Nov. 2023.

[10] N. G. Hall, G. Laporte, E. Selvarajah, and C. Sriskandarajah. Scheduling and Lot Streaming
in Flowshops with No-Wait in Process. Journal of Scheduling, 6(4):339–354, July 2003.

[11] D. Q. Huynh. Metrics for 3D Rotations: Comparison and Analysis. Journal of Mathematical
Imaging and Vision, 35(2):155–164, Oct. 2009.

[12] R. Jonker and T. Volgenant. Transforming asymmetric into symmetric traveling salesman
problems. Operations Research Letters, 2(4):161–163, Nov. 1983.

[13] N. Memarsadeghi, D. M. Mount, N. S. Netanyahu, and J. Le Moigne. A FAST IMPLE-
MENTATION OF THE ISODATA CLUSTERING ALGORITHM. International Journal of
Computational Geometry & Applications, 17(01):71–103, Feb. 2007.

[14] C. Möller, H. C. Schmidt, P. Koch, C. Böhlmann, S.-M. Kothe, J. Wollnack, and W. Hintze.
Machining of large scaled CFRP-Parts with mobile CNC-based robotic system in aerospace
industry. Procedia Manufacturing, 14:17–29, 2017.

[15] Q.-N. Nguyen, N. Adrian, and Q.-C. Pham. Task-Space Clustering for Mobile Manipulator
Task Sequencing, May 2023.

[16] C. E. Noon and J. C. Bean. An Efficient Transformation Of The Generalized Traveling
Salesman Problem. INFOR: Information Systems and Operational Research, 31(1):39–44,
Feb. 1993.

[17] Réot, Antoine. Robotic task scheduling for industrial applications. Master’s thesis, Ecole
Nationale de l’Aviation Civile, Aug. 2021.

[18] S. L. Smith and F. Imeson. GLNS: An effective large neighborhood search heuristic for the
Generalized Traveling Salesman Problem. Computers & Operations Research, 87:1–19, Nov.
2017.

24

[19] K. Solovey, L. Janson, E. Schmerling, E. Frazzoli, and M. Pavone. Revisiting the Asymptotic
Optimality of RRT. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 2189–2195, May 2020.

[20] F. Suárez-Ruiz, T. S. Lembono, and Q.-C. Pham. RoboTSP - A Fast Solution to the Robotic
Task Sequencing Problem, Oct. 2017.

[21] S. Yu, J. Puchinger, and S. Sun. Two-echelon urban deliveries using autonomous vehicles.
Transportation Research Part E: Logistics and Transportation Review, 141:102018, Sept. 2020.

[22] L. Zahorán and A. Kovács. ProSeqqo: A generic solver for process planning and sequencing in
industrial robotics. Robotics and Computer-Integrated Manufacturing, 78:102387, Dec. 2022.

25

	Introduction
	Problem definition
	Tasks
	Quaternions
	Configurations
	Complete problem
	Remarks

	Related work
	Problem modelling
	MINLP
	GTSP

	Discretisation
	Naive approach
	T-space metric
	ISODATA
	Configuration generation
	Performances

	Resolution
	C-space metric
	Solving the GTSP
	Performances

	Issues
	Projection of the fictitious tasks
	Orientation of fictitious tasks
	Quaternion average
	Normal to the surface
	Practical behaviour

	GTSP solver
	Issues
	Concorde
	Implementation

	Conclusion
	References

