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Integrating Dynamics into Motion Planning for Humanoid Robots

Fumio Kanehiro, Wael Suleiman, Florent Lamiraux, Eiichi Yoshahl Jean-Paul Laumond

Abstract— This paper proposes an whole body motion plan-
ning method for humanoid robots in which dynamics is in-
tegrated. The method consists of two stages. A collision-free
and statically stable path is planned in the first stage and it is
transformed into a dynamically stable trajectory in the second
stage. Contributions of the method is summarized as follows.
(1) A local method plans aC* path while avoiding collisions
between non-strictly convex objects. (2) The second stage
gives the minimum time trajectory by time parameterization
under dynamic balance constraints. (3) Any path reshaping for
recovering collision-freeness is not required since the second
stage doesn’t change shape of the path. Effectiveness of the
method is examined by applying it to scenarios of a humanoid
robot HRP-2.

I. INTRODUCTION Fig. 1. Whole body reaching with avoiding collisions and keggstability

An whole body motion planning of a humanoid robot is
a challenging problem mainly from the following reasons.
(1) Most of humanoid robots have more than 30 degrees gf
freedom. (2) The whole body motion must satisfy constraintg

collision-freeness, physical capabilities and dynamabiiity 305 4 collision-free path at first by approximating a robot

at the same time. Beca_us_e of these reasons, it is diff_imHgl a parallelepiped and then a trajectory is generated by
to solve the problem within reasonable time by applyingne \yalking pattern generator. If collisions are caused by
existing motion planning techniques in straightforwardywa dynamic effects, the initial path is reshaped. Methods Jn [5

Several challenges have already been done on this topigt 4 161 are applied to passing motion under obstacles. [5
[1] proposes a whole-body control framework which pro- [6] pp P g - Bl

. L R , X regards a robot as a height adjustable box and plans its
vides joint torques by projecting operational tasks inte thy iion orientation and height. Then the planned path is
constraint null-space. We prefer to generate motions in t

o loci B ¢ oxisting h "tfansformed into a trajectory by a walking pattern generato
joint velocity space. Because most of existing umanmﬂa] generates a walking pattern at first with monitoring

rok.Jots.a-re position controlled a”?' its difficult t(? conttoem collisions and then colliding parts are modified while kegpi
using joint torques from a practical point of view. the horizontal position of the center of mass.

[2] proposes a motion planning method under obstacles Our strategy is also one of two stages strategies. A

and dynamic balance constraints. It consists of o stagegy|jision-free and statically stablpath is planned in the

In the first stage, it finds a collision-free path by explorang first stage and it is transformed into a dynamically stable
set of pre-computed statically stable postures. In thermecotrajectoryin the second stage. Contributions of the method

stage the path is transformed into a dynamically stablgre summarized as follows. (1) A local method plan§’a

trajectory by applying a dynamics filter. Since the dynamicBath while avoiding collisions between non-strictly coxve
filter modifies shape of the path, it possibly cause collision objects. (2) The second stage gives the minimum time

Ther_efore, the trajectory IS ponfir_med o be COIIiSion'freqrajectory by time parameterization under dynamic balance
and its duration is extended if collisions are found. [3Joals . straints. (3) Any path reshaping for recovering cadisi
proposes a two stages approac_h for passing undgr ObStaCifgs ness is not required since the second stage doesngi€han
It plans a statically stable path in the first stage like [2{ buShape of the path

the path is transformed into a dynamically stable trajgctor  rpig \york is a continuation of [7] and integrates dynamics
without changing shape of the path. into a local method in [7]
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[4], [5] and [6] propose methods that integrate motion
anning techniques and a bipedal walking pattern generato
he method of [4] is applied to a bar carrying task. It



humanoid robot HRP-2[8]. In section VI, we summarize and
conclude the paper.

Il. TwWO STAGES APPROACH

An whole body motion of a humanoid robot must satisfy
the following constraints to be feasible for the real robot.
1) There is no self-collision and collision with the envi-

ronm?nt- o Fig. 2. Collision avoidance: Faverjon and Tournassoud’shout
2) All joint angles stay within joint movable ranges.

3) All joint velocities don't exceed their limits.
4) ZMP stays inside of the support polygon. Requirements for a path planned in the first stage is
We propose a method which consists of two stages. Ttgimmarized as follows.

first stage plans a collision-fregath and it is transformed 1) There is no self-collision and collision with the envi-

into a dynamically stablérajectory in the second stage like ronment.
[2]. Here, path is a series of configurations arithjectory 2) All joint angles stay within joint movable ranges.
associates time and these configurations. In that spatieis 3) The path is composed of statically stable postures.

a projected image dfajectory onto the configuration space. 4) The path isC!.

the path, its collision-freeness might be broken. In theecasgecong stage. The second stage transforms the path under
we need to go back to the first stage and iterate these tyge following constraints.

stages until a collision-free and dynamically stable t#jey

is obtained. In order to prevent this iteration, we plan a

statically stable path in the first stage and transform @ nt

dynamically stable trajectory without changing shape @f th ||| ¢/ 1s1O0N-FREE AND STATICALLY STABLE PATH

path by timing planning. By using a statically stable path ]

as an input of timing planning, the second stage can alwafs Local Based Path Planning Method

obtain a dynamically stable trajectory by slowing down[9]. In order to plan a collision-free and statically stable path
The timing planning problem is an old problem in roboticwe use a local based path planning method proposed by

research. In the research works on manipulators, the ma#averjon and Tournassoud[12]. The method produces the

objective was to reduce the execution time of the tasksgelocity of the robot under constraints. In the method, anon

thereby increasing the productivity. Most of these appneac constrained initial velocity to achieve a task is computed a

is based on time-optimal control theory (see [10] for anhis initial guess is projected over the subspace of vetsit

overview). In the framework of mobile robots, the timingsatisfying linear equality and inequality constraints.

planning problem arises also to transform a feasible path toLet g denote the configuration and the velocity of

a feasible trajectory [11]. The main objective, in this gasehe robot. The projection is formulated as an optimization

5) All joint velocities don't exceed their limits.
6) ZMP stays inside of the support polygon.

is to reach the goal position as fast as possible. problem described as follows.
However, in our case the application of time optimal
control theory is a difficult task. This is because not only th min ||J,(q)q — 7
dynamic equation of the humanoid robot motion is very com- ) a . @
plex, but also applying time optimal control theory regsire subject to Ag+b=0,
the calculation of the derivative of the configuration space Cqg+d<0.

vector of humanoid robot with re_:spect to the parameterlzevglhere J.(q) and # denote Jacobian matrix of the task
path. Although such a calculation can be evaluated from

differential geometry, it is a very difficult task in the case and the desired task velocity respectively. The path under

high dimensional degree of freedoms and branched kinemaﬁ%ﬁlst;aégfﬁ'Su?ai:;ir%ti?cﬁézgg;gs( ﬂ)“i %r?glsgza:ﬁggﬁtedl
chains, which is the case of humanoid robot. For that, we g = '
propose to solve the timing planning problem numerically constraints

using finite difference approach as it will be explaineddate . . . . . :
in the sequel. 1) Collision Avoidance:A linear inequality constraint to

In order to get a short trajectory by timing planning, theavoid collision is also _proposed in [12]. It.is calleglocity
first stage plans &' path. If the path is notC! at some damper Letd be the distance between points, andp; on

points, the robot must stop at those points. Because if WO objects,0; and Oy(Fig. 2). Whend is smaller than

robot doesn't stop, discontinuous velocities and infindiat a threshold callednfluence distanceand denoted byd;,

accelerations are applied to joints and it is impossible t4€/OCity dampeis activated for velocity oti:

keep dynamic stability. Therefore@' path is preferable to . d — d
prevent such a “stop-and-go” trajectory is generated. d= _gdi —d,

)



where¢ is a positive coefficient for adjusting convergence A
speedds(< d;) is a positive value calledecurity distance
d is constrained not to be smaller thdn d is computed by
the following equation. : . Vol

. -
d = (p1 — p2|n) /Ifl Vs

wheren is the unit vector(p; — p2)/d and notation(u|v)
refers to the inner product of vectots and v. The region "
whered is smaller tharinfluence distancés calledinfluence
zone velocity dampeexpresses that must not decrease too
fast when it is smaller thad,.

The velocity ofp;(i = 1,2) can be expressed as:

face y edge y vertex

2 Pairs 3 Pairs 3 Pairs

Fig. 3. Constraints generated between an edge and a triangle

pi = J(q,pi)q

; ; : ] (@) > ¢ > gming(g;),forie {1,..,n}. (4
where J(q, p;) is a Jacobian matrix ob); at p;. Inequal- gmaz;(¢;) = ¢i > gming(q;),fori € {1,...,n}.  (4)

ity (2) thus becomes a linear inequality constraint over the

robot velocityq: (q;r @) —qs .
d—d imar(a)={* q—q W THET )
. T T s \Ye) — 1~ UYs
— > — .
(@lJ(q.p1)" n—J(g,p2)" n) > Edi —d. 3 i otherwise
If O, and O, are strictly convex objectsp; and ps B

are the closest points on them. In order to use non-strictly ¢ (% —ai ) — s if g — g <q
convex polyhedra as geometric models of the robot and thegmin;(¢;) = qi — qs E e (5]
environment, several pairs of points must be selected to get q; otherwise

continuous velocities as solutions of Problem (1).

The interaction between polyhedra is decomposed intd
a set of interactions between faces. Polygonal faces 0k . "
assumed to be decomposed into triangl@he interaction 3) I—!orlzontal Position of the Qenter of Masg':he robot
between triangles is managed by the combinatorics betwels Statically stable when a projected point of the center
edges of the triangle and Voronoi regions of the otheP! Mass(CoM for short) is in the support polygon. CoM
triangle. Let us recall the definition of Voronoi region. is allowed to move as far as the projected point is in

Definition: Voronoi regionVR(X) for feature X. A Voronoi the polygon. Th|§ can be expregsgd as a §et of mequa}llty
region associated with a featur¥ of a triangle is a set of constraints. But in order to maximize margin for dynamic
points that are closer toX than any other feature effect and minimize the duration of trajectory in the second

Pairs of points are selected as follows stage, we constrain the horizontal position of CoM on the
Casel : The edge is VR (F) ' line which is orthogonal to the ground. This constraint is
: expressed as an equality constraint as follows.

hereq;” andg; are physical upper bound and lower bound
joint angle ofi‘" joint respectively.

Two pairs, (V;, V!)(i = 1,2) are constrained, wherg;(i =
1,2) are end points of the edgéa,b) denotes a pair of

points,a andb and V/(i = 1,2) denotes a projection of; Jeq = pe ()
onto 7 along its normal vector. whereJ.. andp. are Jacobian matrix of CoM and a desired
Case2 : The edge is IVR(E) velocity of CoM respectivelyp. is used to switch supporting

Three pairs,(V;, V{)(i = 1,2,3) are constrained, where |ggs,
VI(i =1,2) is a projected point of the end poim onto €.

Vs andVj are the closest points between the edge &nd IV. DYNAMICALLY STABLE TRAJECTORY
Case3d : The edge is iVR(V) A. Dynamic Stability and ZMP
Three pairs,(V;,V)(: = 1,2,3) are constrained, where

S 4 0o f the ed is the ol Dynamically stable trajectory is a trajectory for which the
Vi(.z _b 1,2) arehen de'mS of the edge; Is the closest 75 trajectory is always inside of the polygon of support
point between the edge and (i,e, the convex hull of all points of contact between the-sup

For more details on continuous constraints generatio&)rt foot (feet) and the ground). Theoretically, any sttjc

betweer_1 ponhedra_, please_ refer [7]. .. . . stable trajectory can be transformed into a dynamicallylsta
2) Joint Angle Limits:Joint angles can stay within joint one by slowing down the humanoid robot's motion.

movable ranges by constraining those velocities usieg yoyever, our objective is to find a minimum time and
|OCI.ty damper velocity damperfor joint angles limits are dynamically stable trajectory from a statically stable .one
defined as follows. In order to obtain a motion within the humanoid robot

1in the following, featuresof a triangle are the triangular (open)face, the Capacities, the joint velocity limits of the humanoid robot
three edges and the three vertices. should be taken into account.



Finally, the timing planning problem can be seen as an

optimization problem under inequality constraints. In order to obtain a causal motion, the functiSnshould
Let the ZMP on the horizontal ground be given by thebe a strictly increasing function, that mea# > 0.
following vector . Therefore we will expressS; as the integral of a strictly
p=[p. Dy (8) positive functions; > 0, as follows
To computep, one can use the following formula t
S = / s, dr (17)
nXxT
p= N ——— (9) =0
(Fln) Let ite th tities in Egs (15 d (16) with
where IV is a constant matrix et us rewrite e quantities in £qs (15) and (16) wi
respect to the mapping functiaf
1 0 0
Vel 1o A%
the vectorn is the normal vector on the horizontal ground Vs, = w0 ~ Ao (18)
(n = z). The operatorx refers to the cross product. Recall a5, % AL
that (f|n) is the inner product of the vectops andn.
The vectorf is the result of the gravity and inertia forces Ve — dVs, 1 (V V. )
n STAS, A VT T
f=Mg—-) mé (11) AXp, A%
; ° sfsltflA? (19)
whereg denotes the acceleration of the gravigy-€ —gz), ~ Ao, 20,4
and M is the total mass of the humanoid robot. The quanti- BT
tiesm;, ¢; are the mass of thé” link and the acceleration ’
of its center of masg; respectively. C. Minimum Time and Dynamically Stable Trajectory

Finally, 7 denotes the moment of the forgeabout the origin
of the fixed world framepo. The expression of is the
following

Let us suppose that the first stage provides a path which
consists ofL points. At first, we transform this path to a tra-
jectory by considering a uniform time distribution fungctio

. . In other words, we suppose that = 1 : V¢ in (17). We
(mi cix(g—&)— ch) (12)  denoteT = L At.
In our case, we would obtain a minimum time trajectory
which is not only dynamically stable but also it should
Z:ci = R; (I,w; — (I,w;) x w;) (13) respect the joint yel_ocit_y limits of the humanoid robot.
Therefore, the optimization problem can be formulated as
R; is the rotation matrix associated to tifé link. I.., w;  follow

n
T =

i=1

where L., is the angular momentum at the poist

and w; are its inertia matrix, angular velocity and angular _ T
acceleration respectively. min St = min / st dt
St Jt=0
B. Timing planning formulation subjectto s >0 (20)
Generally speaking, the timing planning problem of a Ds, < Ps, gp;t

function f (z,), wheret denotes time, consists into finding a

real functionS; in such a wayf (xs, ) verifies some temporal

constraints, e.g, wherep;, is the ZMP vectorp,, andp/ design the polygon
of support for the humanoid robot.

MS) < flws) < US) 14 The \F/)epctorqst denotes the joint velocity of the humanoid
robot, andg— and g™ design its upper and lower limits.
Definition: The spatial velocity vectoV; € R is defined Let us writep,, as function ofs;
as follows

g <qgs, <g"

dX; nXxXT
Ut dt Ds, = N — (21)
V.= = (15) (fln)
Wi 46,
dt where
Definition: The spatial acceleration vectoV; € RS is n _
defined as follows F=) (mi X7 x (g — &1) — Z:Cz.)
dvy i=1

at di (22)

V; = = o (16) f:Mg—ZmiEi
i=1

Wi dt =



in which E. Implementation Algorithm of Second Stage

AXCE AXCE The algorithm of the second stage can be summarized as
3 = A St-1 — —pxg St follows
R st%si-1A 1) Given a path.
L‘q =R, (Ici‘:’i — (I, @;) x @L> 2) Transform the path to a trajectory by considering a
Aot AQ° (23) uniform time distribution function.
5 — Ay St—1— —a7 St 3) CalculateAg:, AX;* and A@;* from the obtained
e $:28p_1 At trajectory.
AR 4) ChooseAt, e,g,At = 5.1073[s].
= s AL 5) Calculate the cubic B-spline functions.
6) Split the path into verious sections depending on the
In similar way we obtain place and shape of support polygon during the motion.
The support polygon for each section is fixed and
. Aqy . .
4s, = (24) independent from the time.
stAl 7) Solve the optimization problem (27) for each path with
Itis clear that the optimization problem (20) is polynoniral the initial solution obtained from the above steps.
s¢, SO the gradient and Jacobian functions can be calculated V. SIMULATION

easily. . . . .
Y In this section, we confirm effectiveness of our strategy

. — . using two examples.
D. Discretization of solution space

A. Toy World Scenario

In real fact, the space of the admissible solutions of ) . . . L
the minimization problem (20) is very large. In order to The first example is a collision-free reaching motion in
cluttered environment. In this example, the task of the

transform this space to a smaller dimensional space, we ¢ X its left h h i .
use a basis of shape functions (e,g cubic B-spline func)tion§0b0t IS to.move |t§ eft hand to the speci led positiog
Let us consider a basis of shape functidisthat is defined 1 N€ Objective function of Problem (1) is given as follows.

as follows

1 T1g — pa*
B,=[B! B ... BY" (25) —
where
where B} denotes the value of shape function numbet p = @WM (28)
the instantt, the dimension ofB; is [ defines the dimension —h lpn — Pr(q)ll
of the basis of shape functions. _ Inequality (3),(4) and Equality (7) are used as constraints
The projection ofs; into the basis of shape functio& can  over joint velocities.¢, d; and d, of Inequality (3) are set
be given by the following formula to 0.5[m/s], 0.05[m] and 0.03[m] respectively. Those of
. Inequality (4) are set to 0.5[rad/s], 0.2[rad] and 0.05]rad
s, = Zs% B! = s B, (26) respectively. In this example, since the robot is standing o

the right leg from the beginning. is set to0.
The reaching motion is obtained by solving Problem (1)
Thus, the optimization problem (20) can be written as folowuntil the hand reachep,. Figure 4 shows the initial con-
figuration and the final one. Figure 1 also shows the final
o e [T configuration from another viewpoint. Red lines show pairs
mn Z 5B /t:O By dt of points to be constrained. The robot is standing on itstrigh
k=1 27) leg with surrounded by a torus, a cylinder and a box in
the initial configuration. The reaching target is placedhat t
Psp S Psp < ij other side of the torus. In the final configuration, the lefbar
G <dqs, <q* and the head are avoiding collisions with the torus and the
left leg and the right arm are with the cylinder and the box
The optimization problem has been transformed into findingespectively.
the vectorsp € R, and, in its new form, it can be solved The computational time of the first stage is mainly decided
using C-FSQP [13]. by the number of constraints for collision avoidance and
Note that the support polygon is a function ©f, and it depends on the number of pairs of trianglesirifluence
it depends on the horizontal position of CoM. However, agone The computational time can be saved by reducing the
the path provided by the first stage is a statically stable oneumber of pairs. The reduction can be done by the following
the path can be split into various sections. Each section istao methods. The first one is to makafluence zonehin
statically stable path which has a fixed support polygon angly making the difference betweefy and d, small. But it
it is independent fronsp. leads to big accelerations since the velocity of constrhine

i=1

subjectto s5B; >0



Fig. 4. Initial and final configurations of whole body readjitn the final dipsis Sl
configuration, the left arm and the head are avoiding coliisiwith the

torus and the left leg and the right arm are with the cylinded &he box Fig. 5. Precise model(left) and simplified model(right)
respectively.
TABLE |
AVERAGES OF THE COMPUTATIONAL TIME[S] AND THE NUMBER OF

points are decreased quickly. This is not preferable toiobta CONSTRAINTS
a short trajectory in the next stage. The second method is to
simplify geometric models of the robot and the environment. torus
If the simplified model contains the precise one in it, thenpat , precise | simplified
obtained using simplified model is also valid for the precise HRP-2 precise | 1.47(3460) | 0.45(1803)

Inéd using simplim ! vall preci simplified | 0.10(698) | 0.05(375)
one.

Figure 5 shows a precise model and a simplified one of
HRP-2. The precise one consists of 20858 triangles and t 1
simplified one does of 1140 triangles. The computation:
times and the number of constraints are compared while cor 17
bining these models and models of torus. The precise tor
consists of 800 triangles and the simplified one does of 2¢

triangles. Table | shows averages of the computational tirr 08
in [s] and the number of constraints (the number betwee -
parentheses) for one computational step. The computéatior 04

time can be drastically reduced by using a simplified mode

Once the collision-free path is available, this path i *
converted to a trajectory using a uniform time distributior od
function. The obtained trajectory is then used to initializ
Problem (27). Solving Problem (27) yields a minimum time 5 10 20 30 a0 50 60 70 80

Time [s]

and dynamically stable trajectory. The computation tim
of the second stage is obviously depends on the length
of the path and the dimension of the basis of cubic B-
spline functions. For this scenario, we have chos&n:=
5.1073[s], and a basis of 120 cubic B-spline functions.
The function s; is given in Figure 6. The duration of
minimum time dynamically stable trajectory is aroudus]
instead of77[s] for the original uniform time distribution
trajectory. That means the optimized trajectory is around
times faster than the original one. However it's not alway: ~  keoozeoemeoes fromoromoromegmenemeirocey Fallleledetelellet
the case, for example if the original trajectory is fast an
dynamically unstable, then the optimized trajectory wil b
slower. Though the optimized trajectory is the minimun
time trajectory of the dynamically stable trajectories.eTh
trajectory of ZMP is given in Figure 7.

Fig. 6. Time parameterization function{

=
(@]

|
=
o

ZMPX (mm)
T L T

=
(]
1

ZMPy (mm)
¢ o o

B. In a Room Scenario

The second example is on HRP-2 in its room. Figure ° Tinig[s] 1 20
shows snapshots of this scenario. Each row shows snapshots
along time-line and each column does from different viewrig. 7. ZM P, andZM P, trajectories in solid lines, and the safety zones
points. In the first frame, HRP-2 is sleeping but there is n§r dynamical stability are designed by the dashed lines

|
N
or?




contacts among HRP-2, the chair and the table. We inserted
gaps which are bigger thafy since constraints for collision [1]
avoidance don't work correctly if distances are smallentha

ds. And then it stands up(b), gets out of a gap between th

table and the chair(c—e) and tries to grasp something on th
shelf(f).

The scenario is split into three parts, (A) stretching, (B) 3
stepping and (C) reaching to switch objective functions anc{ ]
constraints in Problem (1). In part (A) the task is to going to
a goal configuratiory and the objective function is defined [
as follows. B

2]

51
g — 4||*

where [6]

g

max;=1,... .n ‘& - QZ‘

g’ = 5qmar

The part (B) is split into two parts again, (B-1) moving [7]
CoM and (B-2) moving foot. Multiple steps can be done by
repeating these two parts. Since the first stage must genergg;
a statically stable path, a resultant walking is a static. one
In part (B-1),p. is computed in the same way with Eq.(28).
Paths for the part (B-2) and (C) are generated in the samg]
way with the previous example. Goal configurations and
points of feet and the hand are selected by hand.

VI. CONCLUSIONS AND FUTURE WORKS (o]

In this paper, we proposed a collision-free and dynamically
stable whole body motion planning method. The method and
its contributions are summarized as follows. [12]

« The method consists of two stages. A collision-free stat-
ically stable path is planned in the first stage. The path
is transformed into a minimum time and dynamically[13]
stable trajectory in the second stage.

« A local method in the first stage can generate a dif-
ferentiable path while avoiding collisions between NON4)
strictly convex objects.

« Since the first stage plans a statically stable path and
the second stage doesn't change shape of the path, Etﬂﬁ
trajectory can be always obtained without iterating two
stages.

Since the path is generated using a local method, the
planner might be trapped by local minima. We are woking on
integration with a global method like PRM[14] or RRT[15].

The followings are limitations of our strategy and future
works.

« Since the first stage of the method must plan a statically
stable path, this method can't be applied to faster
motions where CoM goes out of the support polygon
like a biped walking.

« The robot might slip or jump. Because forces and the
moment around the vertical axis are not constrained.
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Fig. 8. Snapshots of in a room scenario



