
HAL Id: hal-04458346
https://laas.hal.science/hal-04458346v1

Submitted on 14 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

LAAS internship report - Heitor
Heitor Abreu de Andrade

To cite this version:
Heitor Abreu de Andrade. LAAS internship report - Heitor. Engineering Sciences [physics]. 2024.
�hal-04458346�

https://laas.hal.science/hal-04458346v1
https://hal.archives-ouvertes.fr

LAAS internship report - Heitor

ABREU DE ANRADE Heitor

With guidance from

FLAYOLS Thomas SAUREL Guilhem MANHES Jérôme

Summary

Summary 2

Introduction to temperature estimation 3

Thermal Model 3

Introduction 3

Mathematical Model 3

Running the experiment 4

Calculating model variables 7

Finding constants K1 and K2 8

Calculating the temperature with the thermal model 9

Results 9

Resistive model 11

Introduction 11

Non-linearity 11

Mathematical model with the engine stopped 12

Finding constants 13

Results 13

Mathematical model with the engine running 14

Kr calculation 15

Considering the non-linearity of the voltage 17

Results 19

Kalman filter 20

Results 22

Conclusion 23

Introduction to cogging 24

Setup 24

Algorithm 24

Implementing position control 26

Generating the anti-cogging current vector 27

Applying the anti-cogging chain 29

Results 30

Instructions for mapping or testing anticogging 30

Estimating the Resistance and Inductance of an Induction Motor 32

Introduction 32

Setup 32

Resistance Estimation 33

Equivalent circuit 33

Non-linearities in the controller 34

Algorithm for calculating resistance 34

Results 35

Inductance estimation 35

Applied signal 35

Calculating the new impedance 36

Calculating inductance 36

Results 36

Next steps 38

Annexes 38

Temperature estimation code 38

Kalman Filter Code 41

Introduction to temperature estimation
This report describes the development process for estimating the temperature

of a three-phase motor. Our approach involves using two different models: a thermal
model, which is based on the relationship between the energy consumed and the
current supplied to the motor, and a resistive model, which deduces resistance and
temperature based on speed and current measurements. Finally, we apply a Kalman
filter to combine the estimation of the two models. The specific motor in focus is the
MN4004-25 (KV: 300), however, it is worth noting that the algorithm developed can
be replicated on other motors that are equipped with encoders and current sensors.

Thermal Model

Introduction

The thermal model is used to calculate the rate of temperature change based
on the electric current and the temperature difference in relation to the environment.
The mathematical calculations for deriving the thermal model, the method used to
determine the constants and the results obtained will be presented below. The
thermal model is based on the method in Ben Katz's blog.

Mathematical Model

Temperature difference between motor and environment∆𝑇:
Thermal energy received by the motor𝑄𝑖𝑛:
Thermal energy released by the motor𝑄𝑜𝑢𝑡:

Thermal capacity of the motor𝐶𝑡ℎ:
Thermal resistance of the motor𝑅𝑡ℎ:

Current fed into the motor𝑖:
Motor resistance𝑅:

Using a 1st order thermal model:∆𝑇 = 𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡𝐶𝑡ℎ𝐼. ∆𝑇' = 𝑄'𝑖𝑛 − 𝑄'𝑜𝑢𝑡𝐶𝑡ℎ𝑄𝑖𝑛 = 𝑖 2 * 𝑅 * 𝑡

𝐼𝐼. 𝑄'𝑖𝑛 = 𝑖 2 * 𝑅𝐼𝐼𝐼. 𝑄'𝑜𝑢𝑡 = ∆𝑇𝑅𝑡ℎ𝐼𝐼, 𝐼𝐼𝐼 → 𝐼 ∆𝑇' = 𝑖 2𝑅 𝐶𝑡ℎ − ∆𝑇𝑅𝑡ℎ*𝐶𝑡ℎ ∆𝑇' = 𝐾1 * 𝑖2 + 𝐾2 * ∆𝑇
Also,∆𝑇' = (𝑇𝑚𝑜𝑡𝑜𝑟 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡)' = 𝑇'𝑚𝑜𝑡𝑜𝑟 𝑇'𝑚𝑜𝑡𝑜𝑟 = 𝐾1 * 𝑖2 + 𝐾2 * ∆𝑇
Running the experiment

Fig. 1: Setup with motor, Omodri and connectors C232HM

The experiment consists of a voltage source, limited to 5A, a MN4004-25
motor, an Omodri motor controller (Open Motor Drive Initiative), a MAX31855
temperature sensor and two C232HM DDHSL-0 cables (one connecting the Omodri
to the computer and the other connecting the sensor to the computer).

Fig. 2: Temperature sensor in stator motor

The temperature sensor is positioned in the middle of the motor's stator, and
we've modified the Omodri's communication so that we can obtain the speed,
position, id, iq, ud and uq of our motor.

Fig. 3: "q" and "d" rotor axis

The brushless motor has two axes, the quadrature rotor, "q", and the direct
rotor, "d". The current id mentioned above means the projection of the current
passing through the motor on the "d" axis. Note that as id is aligned with the rotor
axis, it does not generate torque and we can use it to heat the motor without it
moving.

For the experiment in question, we calculated the error in the motor's position, and
set iq to be proportional to the error. In this way, we can control the current by turning
the motor by hand. Note: When the code starts, it assumes the position of the motor
at that moment to be 0.

error = ud.position1 - 0 kp=5/28
I = (error*kp)

In this setup, we collect temperature data (from the sensor) and motor current data
(from the Omodri) over time.

Fig. 4: Motor temperature and current data

Calculating model variables ∆𝑇' = 𝐾1 * 𝑖2 + 𝐾2 * ∆𝑇
We created a code that computes the variables every 5 seconds. ∆𝑇', 𝑖2 𝑎𝑛𝑑 ∆𝑇
Basically, at each time interval, we calculate as the average of the currents𝑖2
passing through the motor. and the motor temperature at the end of the interval∆𝑇'
minus the temperature at the beginning of the interval, divided by 5 seconds. Finally

is the motor temperature at the end of the interval minus the ambient∆𝑇
temperature.

"""
Compute the arrays variables needed to the thermal modelΔT' =K1*i**2+K2*ΔT
ΔT' = deltas_temperature_derivative
i**2 = is_squared_mean

ΔT = deltas_temperature
"""

Initialize variables
is_squared_mean, deltas_temperature,deltas_temperature_derivative = [], [], []
time, is_squared, count = 0, 0, 0

Initialize variables with temperature initial of the motor
T_AMB = temps_measured[0]
motor_temperature = T_AMB

Time interval to compute and store the data
dt=5 # seconds

for i in (range(len(times))):
Add current squared to do the mean after 5s
is_squared += ids[i]**2 + iqs[i]**2
count += 1

if(times[i]-time>=dt):

Compute and Store i**2,ΔT and ΔT'
is_squared_mean.append(is_squared/count)
deltas_temperature.append(temps_measured[i] - T_AMB)
deltas_temperature_derivative.append((temps_measured[i] - motor_temperature)/dt)

Reinitialize variables
is_squared = 0
count = 0
time=times[i]
motor_temperature = temps_measured[i]

Finding constants K1 and K2

Our model is linear so we can do least squares to find the constants. To do this, we use the
statsmodels library.

import pandas as pd
import statsmodels.api as sm

Creating data frame with data
x = pd.DataFrame({'is_squared_mean': is_squared_mean, 'deltas_temperature':

deltas_temperature})
y = deltas_temperature_derivative

Fitting the model
model = sm.OLS(y, x).fit()

Getting constants
K1 = model.params["is_squared_mean"]
K2 = model.params["deltas_temperature"]
print(f"ΔT' = {K1}*i**2 + {K2}*ΔT")

Calculating the temperature with the thermal model

The temperatures are calculated at each iteration of the two-step code:

1. Calculate the temperature derivative: 𝑇'𝑘 = 𝐾1 * 𝑖𝑘2 + 𝐾2 * ∆𝑇𝑘
2. Integrate the derivative over time: 𝑇𝑘+1 = 𝑇𝑘 + 𝑑𝑡 * 𝑇'𝑘
Getting data from the experiments
times, ids, iqs, vds, vqs, velocities, temps_measured, positions =

get_data(filename)

Initializing the estimation with the temperature of the motor measured
by the sensor

temps_thermal=[temps_measured[0]]

Computing temperatures with the thermal model
for i in range(len(times) - 1):

current = ids[i]*ids[i]+iqs[i]*iqs[i] # i**2
delta_t = temps_thermal[-1] - T_AMBIENT # ΔT
temperature_derivative = (current * K1) + (delta_t * K2)# ΔT'
DT = times[i+1] - times[i] # dt

temp_thermal = temps_thermal[-1] + ((temperature_derivative) * DT) #
T[k+1] =T[k] + dt*T'[k]

temps_thermal.append(temp_thermal)

Results

The model was trained with the data shown in Figure 4, and below we present the
results of the tests in which it was trained, as well as the results of other tests carried out
with the engine. A crucial point to note about the thermal model is that it is unable to

estimate the initial temperature on its own. Therefore, in the tests carried out, the first
temperature of the thermal model is obtained from the temperature sensor. Later on, we'll
discuss how we deal with this initial estimate in the thermal model. In summary, the thermal
model follows the measured temperature, especially during temperature increases, with a
maximum difference of 10 degrees during cooling.

Fig. 5: Estimation of the thermal model and its error (1)

Fig. 6: Estimation of the thermal model and its error (2)

Fig. 7: Estimation of the thermal model and its error (3)

Resistive model

Introduction

The resistive model starts from the premise that variations in temperature are
proportional to variations in resistance. We can therefore obtain an indirect measure of
temperature by measuring resistance.

Non-linearity

Ben Katz warns in his blog about the non-linearity between motor voltage and
current. This non-linearity is caused by the dead time in the motor driver's commutation, and
it generates a limitation in the resistance calculation.

Fig. 8: Command and current ratio at different temperatures

The graph above shows the relationship between the command/PWM applied to the
motor and the current generated. We observed this relationship at different temperatures,
and each temperature results in a different curve on the graph. This graph shows two
important things. Firstly, we can differentiate between temperatures based on voltage and
current, as the curves have different slopes. However, this is only safe from about 2
amperes; below this value, the curves start to overlap. Secondly, we note that the resistance
does not strictly follow the relationship . This is evidenced by the fact that, when we𝑅 = 𝑈/𝑖
project the red line further to the right, it does not intersect the origin. Therefore, for a more
accurate approximation, we will use the expression .𝑅 = (𝑈 + 𝐵)/𝑖
Mathematical model with the engine stopped

Considering that temperature is an affine function of resistance, we can derive
our first resistive model.𝑅 = 𝑈−𝐵𝑖𝑇 = 𝑎𝑅 + 𝑏𝑇 = 𝑎𝑈𝑖 − 𝑎𝐵𝑖 + 𝑏𝑇 = 𝑘1 𝑢𝑖 + 𝑘2 1𝑖 + 𝑘3

Finding constants

Once again, we will use the least squares method to determine the model's
constants. The data used to train the model is voltage, current and temperature, shown in
the graph in Figure 8.

Computate resistance(u/i) and inv_current(1/i)
resistance = [tension[i]/current[i] for i in range(len(i))]
inv_current = [1/current[i] for i in range(len(i))]

x = pd.DataFrame({'Resistance': resistance, 'inv_current': inv_current})
x = sm.add_constant(x)
y = temperatures

Fit the Model
model = sm.OLS(y, x).fit()

Get Constants
k1 = model.params["Resistance"]
k2 = model.params["inv_current"]
k3 = model.params["const"]

With this, we obtained the following mathematical model𝑇 = 490 𝑢𝑖 +− 125 1𝑖 − 97. 5
Results

Fig. 9: Estimation of the resistive model and current used in the test

In the upper graph, we show the engine temperature captured by a
thermocouple in green, the temperature estimate calculated by the resistive model in
red and an average of the estimates in yellow.

The lower graph shows the current applied to the motor. Each time we
measure the temperature, we vary the current by 0.5 Amps up or down. During the
motor's heating process, the current remains between 3 and 6 A until the motor
reaches 70 degrees Celsius. On the other hand, during the cooling of the motor, we
send currents between 0 and 3 A.

We noticed that the resistive model tracks the temperature measurement well when
the currents are above 3 A. While the results are more inaccurate with currents
below 3 A. In the worst case, the average of the model has an error of 11 degrees.

Mathematical model with the engine running

Fig. 10: Motor wiring diagram

To model the engine running we assume the following:

1. The voltage on the inductance is 0, because the temperature bandwidth𝐿 𝑑𝑖𝑑𝑡
is very low compared to the dynamics of the current control 𝑑𝑖𝑑𝑡

2. The applied voltage, V, has the effects of dead time, so we can express V as𝑉 = 𝑈𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑒𝑑 + 𝐵
Thus:𝑈 − 𝐵 = 𝑅𝑖 + 𝐾𝑤

𝑅 = 𝑈− 𝐵− 𝐾𝑤 𝑖𝑇 = 𝑎𝑅 + 𝑏𝑇 = 𝑎𝑈𝑖 − 𝑎𝐵𝑖 − 𝑎𝐾𝑤𝑖 + 𝑏𝑇 = 𝑘1 𝑢𝑖 + 𝑘2 1𝑖 + 𝑘3 𝑤𝑖 + 𝑘4
This is the original modeling of the rotating motor, however, the least squares

method did not converge on an adequate result with this model. Next, we will present
the modifications that allow the least squares method to find the desired constants.

Kr calculation

Fig. 11: Motor current, voltage and "resistance"

The graph above shows the current in blue, the voltage command sent to the
motor in orange, and the motor's "resistance at standstill" (u/i) in green. Naturally,
there is a lag between the voltage applied to the motor and the current, caused by
the counter-electromotive force. On the other hand, we know that the voltage across
the resistor must be in phase with the current. With this premise, we will try to find
one of the model's constants.

Ignoring the non-linearity of the voltage, U, we can find the following equation:𝑈𝑟 = 𝑅𝑖 = 𝑈 − 𝐾𝑟𝑤𝑖 = (𝑈 − 𝐾𝑟𝑤)𝑅𝑖 = (𝑈 − 𝐾1𝑤)𝐾2

With this equation, we'll perform a curve fit to find out Kr and k2 and use the
equation to calculate the resistance.𝑅 = (𝑈 − 𝐾𝑟𝑤)/𝑖

Fig. 12: Fitting the equation (U-k1*w)*k2 to the current

In the graph above, we have the current in blue, the result of the curve fit in
orange and the calculation of the resistance with the equation mentioned above.

Fig. 13: Approximate graph at the estimated resistance

The graph above shows the details of the resistance calculated in the
previous step. We can see that the calculated resistance, in green, still has a lot of
variation, so we applied a low-pass filter. The low-pass filter is calculated as follows:

filtered[i+1] = 0.01 * measured[i] + 0.99 * filtered[i]

Where "filtered" are the new filtered values and "measured" are the raw
resistance values.

Considering the non-linearity of the voltage

After finding Kr, we had to consider the non-linearity of the voltage in our
model, so we used voltage = U - B.𝑇 = 𝑎 (𝑈−𝐵)− 𝐾𝑟𝑤 𝑖 + 𝑏𝑇 = 𝑎 𝑈− 𝐾𝑟𝑤 𝑖 − 𝑎 𝐵𝑖 + 𝑏𝑇 = 𝑘1 𝑈− 𝐾𝑟𝑤 𝑖 − 𝑘2 1𝑖 + 𝑘3

Thus, a new term emerged, 1/i. This term initially faced the same noise
problem as the resistance, however, we can't simply apply a low-pass filter because,
as it is an AC signal, the filter would have a point centered on 0. To resolve this
issue, we start working with the absolute value of the current and then apply the
low-pass filter.

With the model we have so far, the temperature depends only on our
resistance and the inverse of the current. However, this model presented a problem
which can be seen in the image below.

Fig. 14: Motor parameters after filtering

In the first graph we can see the speed in blue, the inverse of the current in
orange and the commanded voltage in green. The lower graph shows our
resistance. We noticed that at around the second 140, there was a considerable
drop in speed, which led to a drop in the voltage applied and consequently a drop in
the resistance as well.𝑇 = 𝑘1 𝑈− 𝐾𝑟𝑤 𝑖 − 𝑘2 1𝑖 + 𝑘3

According to our model, this drop in speed ended up resulting in a sudden
drop in temperature, which didn't happen in the real engine. To solve this, we added
speed as a separate term in our model, so that it is sensitive to these variations.
Speed is also treated in the same way as the inverse of current, i.e. it is taken as its
modulus and passed through a low-pass filter.

So our final model is of the form𝑇 = 𝑘1 𝑈− 𝐾𝑟𝑤 𝑖 − 𝑘2 1𝑖 + 𝑘3𝑤 + 𝑘4

Results

Fig. 15: Estimation of the resistive model (1)

Above, we see the temperature measured by the sensor in green, and the
temperature estimated by the resistive model in red. When the current is less than 1.7
Amperes, the resistive model is unable to correctly estimate the temperature because of the
non-linear relationship between voltage and current. Thanks to this, we have these empty
sections in the graph. We can see that the resistive model follows the temperature, but it has
a very high variation, reaching errors of more than 10 degrees.

Fig. 16: Estimation of the resistive model (2)

In the test graph above, we used high currents to turn the motor, [5, -5] Amps.
And we forced the motor to stop close to 90 seconds which caused a jump in the
temperature estimate. This jump shows that our model is still disturbed by the
change in speed, but manages to maintain an error of less than 10 degrees if the
current is high.

Kalman filter

Fig. 17: Diagram of how the Kalman Filter works

The Kalman filter operates in two distinct steps: the prediction of the state and
the subsequent updating of the state based on an observed measurement. In this
document, my main focus will be to explain the application of the Kalman filter.
However, if you would like a more in-depth understanding of how it works, I
recommend visiting the website available at this link.

To apply the Kalman filter, we define the following variables:

x State variable 2x1 Output

A State transition
matrix

2x2 System Model

P State covariance
matrix

2x2 Output

z Measurement 1x1 Input

R Measurement 1x1 Input

covariance

We define our state as the temperature and its derivative x = [T , T']. The dynamics
of the state are:𝑇𝑘+1 = 𝑇𝑘 + 𝑑𝑡 * 𝑇’𝑘 𝑇'𝑘 = 𝐾1 * 𝑖2 + 𝐾2 * (𝑇𝑘 − 𝑇𝑎𝑚𝑏)
The first equation is a discrete integration of the temperature, while the second is
taken from the thermal model.𝑥𝑘+1 = 𝐴𝑥𝐴 = [[1, 𝑑𝑡], [0, 1]]

The first line of A is derived from the dynamics equations of x. On the other
hand, the temperature derivative does not depend solely on x. Therefore, just for the
sake of defining A, we assume that the temperature derivative is constant, and we
define the second line of A as [0, 1].

The state covariance matrix was defined as . The𝑃 = [[10, 0], [0, . 01]]
initial estimate is that the engine is at room temperature and this is not always the
case. To indicate this lack of confidence in the initial value, it is necessary to put a
high value on the variance of the temperature, the first element of the P matrix,
which is why we chose 10. The last term in the P matrix is the variance of the
temperature derivative and we put 0.01, as this is the average value of the variance
of the temperature derivatives observed in the tests.

As the resistive model does not work at low currents, below 1.7 A, z is the
temperature estimation of the thermal model. When the current is above this value, z
is defined by the resistive model.

To define R, we calculated the temperature error of the resistive model in
relation to the measured temperature and took the variance of this error. This left R
with a value of 20.

Results

Fig. 18: Estimation of the Kalman Filter and its error (1)

The upper graph shows the measured temperature from the thermal model and the
resistive model, and the temperature calculated by the Kalman filter. The lower graph shows
the error of the temperature estimated by the Kalman filter and the measured temperature.
We can see that the filter performs satisfactorily, showing an error of less than 7 degrees
throughout the experiment and being able to follow the temperature both when the engine is
heating up and when it is cooling down.

Fig. 19: Estimation of the Kalman Filter and its error (1)

In this other experiment, we show the behavior of the system when the estimation is
started with the engine hot. The thermal model, orange curve, only works with the
temperature derivative and a fixed initial estimate. So it doesn't notice that the engine
temperature is too high. On the other hand, when we supply the measurement from the
resistance model to the Kalman filter, it is able to perceive the temperature divergence and
achieve an error of less than 10 degrees Celsius in around 5 seconds.

Conclusion

In this work, we developed two models for estimating temperature that had their
limitations, but we managed to combine the two with the Kalman filter to obtain an accurate
and fast estimate. Finally, since this method uses only two common sensors in motors, a
current sensor and an encoder, it can be applied at no additional cost.

Introduction to cogging
The phenomenon known as cogging refers to the unwanted torque caused by the

interaction between the permanent magnets of the rotor and the stator of a permanent
magnet machine. At lower frequencies, this phenomenon can trigger oscillations in the
speed control, undermining the stability and precision of the control in position.

The purpose of this report is to address and mitigate the cogging present in the motor
of the Solo quadruped robot. To achieve this compensation, we implemented a
position-based algorithm, as detailed in the article entitled "Cogging Torque Ripple
Minimization via Position-Based Characterization".

Setup

Fig. 20: Setup with motor, Omodri and connectors C232HM

Our test bench consists of a motor, MN4004-KV300, the Omodri driver controller and
a C232HM-DDHSL-0 cable (used to communicate the Omodri with the computer).

Algorithm

The main purpose of the algorithm is to determine the current that keeps the motor at
rest for each angular position. To achieve this, we use proportional-integral (PI) control
based on the motor's position. When the motor position coincides with the desired position
and the speed is zero, we record both the current and the current position of the motor.

Subsequently, we set the desired position, which varies from 0 to 2π before making a
complete turn in the opposite direction, oscillating between 2π and 0. The graphical
representation of this data is shown in the following chart.

Figure 21: Position and currents of cogging torque mapping at standstill

Figure 22: Figure 2 Magnified

We can see that the currents acquired during the first "forward" turn show a positive
deviation from the currents of the second turn. This deviation is attributed to friction in the
motor, known as stiction. When seeking stability in the commanded position, the required
current can be expressed as the sum of . It is important to note that the𝐼𝑠𝑡𝑖𝑐𝑖𝑜𝑛 + 𝐼𝑐𝑜𝑔𝑔𝑖𝑛𝑔

friction force is associated with the direction of the motor's movement, while the cogging
torque depends exclusively on the position.

In this context, we can calculate the cogging current for a given position, represented by
If you want to calculate this is equivalent to half the𝐼𝑐𝑜𝑔𝑔𝑖𝑛𝑔θ = (𝐼𝑓𝑜𝑟𝑤𝑎𝑟𝑑θ + 𝐼𝑟𝑒𝑣𝑒𝑟𝑠𝑒θ)/ 2 . 𝐼𝑠𝑡𝑖𝑐𝑡𝑖𝑜𝑛

difference between the two currents, i.e, . It should be noted𝐼𝑠𝑡𝑖𝑐𝑡𝑖𝑜𝑛 = (𝐼𝑓𝑜𝑟𝑤𝑎𝑟𝑑θ − 𝐼𝑟𝑒𝑣𝑒𝑟𝑠𝑒θ)/2
that, in our application, was not used.𝐼𝑠𝑡𝑖𝑐𝑖𝑜𝑛
Implementing position control

We implemented position control with the following equations:𝑒𝑟𝑟𝑜𝑟 = θ𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − θ𝑎𝑐𝑡𝑢𝑎𝑙𝑖𝑒𝑟𝑟 += 𝑒𝑟𝑟𝑜𝑟𝐼 = 𝑘𝑝 * 𝑒𝑟𝑟𝑜𝑟 + 𝑘𝑖 * 𝑖𝑒𝑟𝑟
Initially, the control was developed in a Python code with a communication frequency

of 1 kHz with Omodri. However, due to the need for extreme precision and the rapid
occurrence of small variations, the 1 kHz frequency was not enough to stabilize the motor in
the desired position. Therefore, the control was subsequently implemented directly on the
Omodri, which operates at a frequency of 40 kHz.

The controller originally took a long time to position the motor exactly on the
reference. To mitigate this problem, the control condition has been relaxed, now requiring the
position error to be less than 0.002 radians and the speed to be equal to 0 to achieve
stability. In addition, the encoder data is not obtained at the full resolution available. Although
the encoder is divided into 20,000 intervals with a resolution of radians, the reference
position is incremented by 0.002 radians with each piece of data obtained.

As for the controller constants, Kp and Ki were set to 30 and 20, respectively, to
ensure that the motor reacts effectively to small position errors. However, starting operation
with such a high value for Kp can make the controller unstable. It is therefore recommended
to start with Kp = 3, allow the motor to get closer to the reference and gradually increase Kp
to 30. The value of Kd was kept at 0.006, which is a standard value in other controllers in the
project.

It's important to mention that, to make it easier to adjust the constants, we used
Pygame in the computer code, mapping the above constants. In the specific case of
mapping the cogging chain, this process took 26 minutes.

Figure 23: Motor data during the experiment. Note that the final time was 26 minutes.

Generating the anti-cogging current vector

To calculate the current that will compensate for the effects of the cogging torque, , it𝐼𝑐𝑜𝑔𝑔𝑖𝑛𝑔
is necessary to average the forward and reverse currents. In addition, we want this current to
be evenly spread out in space, since we will be modeling the cogging current with Fourier
sequences. The algorithm for generating the desired cogging current behaves as follows:

1. Divide the space into intervals of 0.002 radians, we'll call each interval .θ𝑖
2. Calculate the average forward current in this interval, 𝐼𝑓𝑖
3. Calculate the average reverse current in this interval, 𝐼𝑟𝑖
4. Calculate by computing the average of the two currents above,𝐼𝑐𝑜𝑔𝑔𝑖𝑛𝑔𝐼𝑐𝑜𝑔𝑔𝑖𝑛𝑔 = (𝐼𝑓𝑖 + 𝐼𝑟𝑖) / 2

Figure 24: Forward, reverse and anticogging currents

The graph above shows e e calculated, respectively in blue, orange and𝐼𝑓 𝐼𝑟 𝐼𝑎𝑛𝑡𝑖𝑐𝑜𝑔𝑔𝑖𝑛𝑔
green. The next step was to model the cogging current with fourier functions and increase
the number of points. I used 7200 points and obtained the data in the graph below.

Figure 25: Fourier fit in the anticoggin current

Figure 26: Figure 6 Magnified

Applying the anti-cogging chain

At this stage, is represented by 7200 floats between -03 and 0.3, and this𝐼𝑎𝑛𝑡𝑖𝑐𝑜𝑔𝑔𝑖𝑛𝑔
is a problem because it takes up a lot of space. To solve this, I multiplied the values by216
and used a vector of 16-bit signed integers to store the values. This strategy halved the
space needed compared to floating point storage.

The resolution of a 16-bit signed integer to represent an amplitude interval of 0.6 is

equivalent to . As the resolution of the current is in the milliampere0. 6/216 = 0, 000009155
range, we won't suffer any loss in resolution when using this integer representation. It's worth
noting that the smallest packet size supported by our microcontroller, the F28388DZWTS, is
precisely 16 bits.

Figure 27: Diagram of PI control of Uq with anticogging current

As for where the cogging current is applied, it must be added to the desired reference
current value just before it is applied to the PI control that will generate Uq, as shown in the
diagram above.

Results

Figure 28: Comparison of the effects of anti-cogging on speed control

To evaluate the effectiveness of the anti-cogging system, we carried out a test with a
proportional speed control, . The upper graph shows the𝐼 = (𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑉𝑎𝑐𝑡𝑢𝑎𝑙) * 𝑘𝑝
reference speed, in green, the motor speed over time without anti-cogging (in blue), and2π
the motor speed with anti-cogging (in orange). The bottom graph shows the speed errors for
each test.

It is clear from the graph that the oscillations are significantly reduced with the
implementation of anti-cogging. Calculating the squared error from the second graph shows
a reduction from 14 to 1.3 (rad/s)².

In addition, another notable effect, although not possible to visualize in this report, is
the tactile experience when manually turning the motor. Normally, we notice the oscillations
caused by cogging. However, by activating anti-cogging, we observed a clear reduction in
these effects during manual rotation of the motor.

Instructions for mapping or testing anticogging

Accessing the cogging repository we have the following folder structure
● codes

○ Mapping
■ get_data_stopped.py
■ generate_tableau.py
■ cogging_tableau.txt

○ Testing
■ test_anticogging.py

● open_motor_drive_initiate_master

To carry out the mapping:
1. Access the code from the folder "open_motor_drive_initiate_master" m
2. Change the MAPPING_COGGING_ENABLE variable to 1 in the foc.h file
3. Pass the code to uOmodri
4. Open the file get_data_stopped.py in the Mapping folder
5. Launch this python code
6. Turn the motor by hand until the encoder is indexed
7. Increase the constant Kp to a value of 30
8. Wait for the code to finish running and create the "stopped_data/stopped_data.txt"

file. It takes about 30 minutes
9. Launch the code generate_tableau.py
10. Copy the vertor declaration from the file "cogging_tableau.txt" and insert it at the end

of the FOC.H file.

To carry out the anticogging test:
1. Access the code from the folder "open_motor_drive_initiate_master" m
2. Change the MAPPING_COGGING_ENABLE variable to 0 in the foc.h file
3. Pass the code to uOmodri
4. Open the test_anticogging.py file in the Testing folder
5. Launch this python code
6. Turn the motor by hand until the encoder is indexed
7. At this point, you should feel that the anticogging has been applied and the engine

turns smoothly

Estimating the Resistance and Inductance of an
Induction Motor

Introduction
The Omodri motor controller code incorporates a proportional-integral (PI) controller

to modulate the voltage applied to the motor, based on a desired reference current. The
constants of this controller, represented by Kp and Ki, are directly proportional to the motor's
resistance (R) and inductance (L). Initially, the resistance and inductance values are defined
statically in the program. However, the main aim of this task is to automate the calculation of
the R and L parameters, providing a more efficient approach in motor replacement
situations.

Setup

Fig. 29: Setup with motor, Omodri and connectors C232HM
Our test bench consists of a motor, MN4004-KV300, the Omodri driver controller and

a C232HM-DDHSL-0 cable (used to communicate the Omodri with the computer). The
codes used can be found at the following link.

Resistance Estimation

Equivalent circuit

In order to calculate the resistance and inductance, we will apply a constant duty
cycle to phases b and c, working in a similar way to a ground, while varying the voltage of
phase a. We can visualize our motor as equivalent to the following circuit.

Fig. 30: Equivalent circuit and resistance when setting dtc_b = dtc_c = 0.5

Rp is defined as the equivalent resistance of the phase and Req as the equivalent

resistance of the motor, . To calculate the resistance we will take the voltage𝑅𝑝 * 32 = 𝑅𝑒𝑞
and current at two different points (duty cycle, current) and then determine the ratio between
the voltage variation and the current variation.𝑅 = ∆𝑉∆𝐼

Non-linearities in the controller

Fig. 31: Duty cycle and current ratio for different SAMPLING_WNIDOW values

The graph above illustrates the non-linearity present in our motor driver at low
currents due to SAMPLING_WINDOW. This parameter indicates the number of system
clocks the ADC capacitor will be connected to the signal to be converted. The exact formula
for the acquisition time is (ADC_SAMPLING_WINDOW + 1) * PERIOD_SYSTEM, and our
system works at 200 MHz, so a period of 5 ns.

The omodri configuration has a sampling window of 119, i.e. 600 ns of acquisition
time. For these reasons, and in order to avoid non-linearities at low currents, we set the
omodri's duty cycle operating range between 0.1 and 0.9. With regard to calculating the
resistance, we initially set our 3 phases to 0.5, and then increased the duty cycle of phase a
only.

Algorithm for calculating resistance

The resistance calculation algorithm consists of the following steps:
1. Starting the Phases: Start the motor's three phases with a duty cycle of 0.5.
2. Gradual Duty Cycle Increase: Gradually increase the duty cycle until the

current exceeds a defined value, called . The duty cycle at which𝐼𝑙𝑖𝑚𝐼𝑛𝑓𝑒𝑟𝑖𝑜𝑟
this occurs is called .𝑑𝑡𝑐 𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟

3. Duty Cycle Maintenance: Keep the duty cycle applied to the motor𝑑𝑡𝑐 𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟
and set to the average of 20 measured currents.𝐼𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟

4. Return to Duty Cycle Increase: Again, increase the duty cycle from
until the current exceeds another value, , allowing𝑑𝑡𝑐 𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 𝐼𝑙𝑖𝑚𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟
to be set.𝑑𝑡𝑐 𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟

5. Maintaining the Upper Duty Cycle: Keep the duty cycle applied to𝑑𝑡𝑐 𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟
the motor and set to the average of 20 measured currents.𝐼𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟

6. Resistance calculation: Calculate the resistance as𝑅 = (𝑑𝑡𝑐 𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟 − 𝑑𝑡𝑐𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟) * 𝑉𝑆𝑢𝑝𝑝𝑙𝑦 𝐼𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟 − 𝐼𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟
Results

The calculated line-to-line resistance was 480 mΩ. Assuming that the resistance
reported on the MN4004-KV300 motor website is also the line-to-line resistance, we have a
reported resistance of 0.452 mΩ, thus concluding a measurement with an error of 0.03mΩ,
i.e. less than 7%.

Inductance estimation

Applied signal

The impedance of an inductance is expressed by indicating that it varies𝑍 = 𝑗ω𝐿
proportionally to the frequency of the signal applied to the circuit. According to Ohm's Law (U
= Z * I), where U is the voltage amplitude and I is the current, we can infer that for a constant
voltage amplitude and increasing frequencies, the impedance will increase, resulting in a
corresponding decrease in the current amplitude.

Fig. 32: Current amplitude and frequency during inductance calculation

For the data in the image above, a sinusoidal voltage was applied with constant
amplitude but increasing frequencies. In this way, the upper graph shows the mentioned
behavior of increasing impedance and consequent reduction in current amplitude.

Calculating the new impedance

We have seen that applying a frequency can cause a gain in the initial current,ω 𝐾 𝐼0
. To calculate the new impedance of the circuit with the applied frequency, we can follow the
equations:𝐼1 = 𝐼0 * 𝐾𝑍0 = 𝑈0𝐼0𝑍1 = 𝑈0𝐼1 𝑍1 = 𝑈0𝐼0*𝐾 𝑍1 = 𝑍0 * 1𝐾

We can see that with a gain of K in the current, we can calculate the new impedance
of the circuit by multiplying the original impedance by 1/K.

Calculating inductance

It is possible to calculate the inductance from the alternating current impedance (Z𝑎𝑐
= with a frequency applied) from the following equations:𝑍 ω𝑍𝑎𝑐2 = 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 + 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒2𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 = 𝑍𝑎𝑐2 − 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒2𝐿 = 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 / (𝑓𝑟𝑒𝑠𝑠𝑜𝑛𝑎𝑛𝑐𝑒 * 2 * π)
The algorithm for calculating impedance is as follows:

1. Applying a Sinusoidal Voltage: Initially, we apply a sinusoidal voltage with a low
frequency and define as the generated amplitude.𝐼0

2. Progressive Frequency Increase: We progressively increase the frequency until

the gain in current, represented by , reaches or exceeds the value of .𝐾 = 𝐼ω𝐼0 12
3. Calculating the New Impedance: We calculate the new impedance as the inverse

of the gain in current, i.e., .𝑍𝑎𝑐 = 1𝐾
4. Calculating reactance and inductance: Finally, we calculate the reactance and

inductance of the circuit using the equations mentioned above.

Results

The motor's RL parameters are used to calculate the Kp and Ki of the uOmodri
current controller. Thus, observing the frequency and time response of this controller can
give us an idea of the usefulness of parameter estimation.

First, we set the passband to 1kHz, and then we calculate the controller constants
with the equations below. You can find demonstrations of this formula at the following link:

𝐾𝑝 = 𝐿𝑠 * 2 * π * 𝑓−3𝑑𝑏𝐾𝑖 = 𝑅𝑠 * 2 * π * 𝑓−3𝑑𝑏

Fig. 33: Frequency response of the current controller

The graph above illustrates the frequency response of the current controller. The PI
calculated from the old constants is represented by the blue curve and has a gain of -3db
around 1090 Hz. Meanwhile, the controller with the new calculated constants achieves a
gain of -3db at 800 Hz.

Fig. 34: Time response of the current controller

The graph above illustrates the response of the current controller over time. The
current reference is represented by the green curve, the controller calculated from the old
code constants by the blue line, and the controller derived from the computed constants by

the orange line. We can see that we have a smaller overshoot with the new constants, going
from around 38% to 25%. However, the rise time has increased significantly compared to the
old controller, being approximately 0.25 ms.

Next steps

A desirable next step is to study whether we should take into account the influence of
preserving the current amplitude in the Clark transformation. To be more precise, when
converting the current from the phase frame ia, ib and ic, to the rotor angle reference, id and
iq, we choose to preserve the amplitude of the magnitudes, multiplying the clarke
transformation by 2/3. You can find more details about this preservation at this link. So, as
the current controller acts in the d and q frame, and the calculated resistance and inductance
are in the a, b and c frame, we need to study the need to perform the reference
transformation before calculating the current controller parameters.

Annexes

Temperature estimation code

/**

* @brief Initialize all necessary variables.

* @param[inout] *obs Pointer on the Temperature structure associated

to the motor.

*/

void TEMP_initialize(obs* ob){

ob->temperature = T_AMBIENT;

// RESISTANCE MODEL

ob->resis_K1 = 636;

ob->resis_K2 = -161;

ob->resis_K3 = -0.224;

ob->resis_K4 = -125;

ob->resis_kv = 0.01821;

ob->TEMPERATURE_CURRENT_THRESHOLD = 1.7f;

ob->alpha_flt = 0.01;

ob->velocity_flt = 0;

ob->inv_current_flt = 1/ob->TEMPERATURE_CURRENT_THRESHOLD;

ob->resis_flt = 0.36;

// THERMAL MODEL

ob->thermal_K1 = 0.010382;

ob->thermal_K2 = -0.001252;

ob->thermal_temperature = 25;

// KALMAN FILTER

ob->X[0] = T_AMBIENT;

ob->X[1] = 0;

}

/**

* @brief Update temperature estimation.

* @param[in] *p_foc Pointer on the FOC motor control structure.

[inout] *obs Pointer on the Temperature structure associated

with the motor.

*/

void TEMP_update(foc_t* p_foc, obs* ob)

{

// Initialize variables for themal and resistance models

static bool started = false;

if (started == false){

TEMP_initialize(ob);

started = true;

}

// Compute derivative temperature

double current = (p_foc->id*p_foc->id) + (p_foc->iq*p_foc->iq);

float dif_temperature = ob->temperature - T_AMBIENT;

float dif_thermal_temperature = ob->thermal_temperature - T_AMBIENT;

double temp_derivative = (current * ob->thermal_K1) +

(diff_temperature * ob->thermal_K2);

double temp_derivative_thermal = (current * ob->thermal_K1) +

(dif_temperature_thermal * ob->thermal_K2);

ob->thermal_temperature = ob->thermal_temperature +

temp_derivative_thermal*LOOP_PERIOD;

// Compute temperature measured by Thermal or Resistance Model

double temperature_measured;

if (fabs(p_foc->iq) < ob->TEMPERATURE_CURRENT_THRESHOLD)

{temperature_measured = ob->temperature +

temp_derivative*LOOP_PERIOD;}

else

{

// Get module of current, velocity and resistance

float iq, velocity, resis;

iq = fabs(p_foc->iq);

velocity = fabs(p_foc->motor_enc.speed.speedMech[0]);

resis = fabs((p_foc->uq -

ob->resis_kv*p_foc->motor_enc.speed.speedMech[0])/p_foc->iq);

// Compute low pass filter

ob->velocity_flt = ob->alpha_flt * velocity + (1 -

ob->alpha_flt) * ob->velocity_flt;

ob->resis_flt = ob->alpha_flt * resis + (1 - ob->alpha_flt) *

ob->resis_flt;

ob->inv_current_flt = ob->alpha_flt / iq + (1 - ob->alpha_flt) *

ob->inv_current_flt;

// Compute temperature by Resistance Model

float tr = ob->resis_K1*ob->resis_flt +

ob->resis_K2*ob->inv_current_flt + ob->resis_K3*ob->velocity_flt +

ob->resis_K4;

if (tr > 200){tr = 200;}

if (tr < 0){tr = 0;}

ob->resis_temperature = tr;

temperature_measured = ob->resis_temperature;

}

// Compute Kalman Filter

TEMP_kalman_filter(temperature_measured, temp_derivative, ob->X);

ob->température = ob->X[0];

// Indicates if the maximum temperature has been reached

if(ob->temperature > TEMP_MAX)

{ob->otw flag = 1;}

else

{ob->otw_flag = 0;}

return;

}

Kalman Filter Code
/**

* @brief Apply Kalman filter on temperature estimation

* @param[in] temperature is the measured estimated by thermal or

resistance model,

temperature_derivate is T' estimated by thermal model,

x[2] is an array composed by the temperature estimated

by the kalman filter and its derivative x=[T, T']

*/

inline void TEMP_kalman_filter(double temperature, double

temperature_derivate, double x[2]) {

// Kalman filter parameters

static float R = 20;

static double P[2][2] = {{10, 0}, {0, 0.01}};

static float A[2][2] = {{1, LOOP_PERIOD}, {0, 1}};

static float AT[2][2] = {{1, 0}, {LOOP_PERIOD, 1}};

// Predict State Forward

double x_p[2] = {x[0] + x[1] * LOOP_PERIOD, temperature_derivate};

// Predict Covariance Forward

double P_p_aux[2][2] = {{0, 0}, {0, 0}};

// P_p_aux = A P

int i, j, k;

for (i = 0; i < 2; i++) {

for (j = 0; j < 2; j++) {

for (k = 0; k < 2; k++) {

P_p_aux[i][j] += A[i][k] * P[k][j];

}

}

}

double P_p[2][2] = {{0, 0}, {0, 0}};

// P_p = A P AT

for (i = 0; i < 2; i++) {

for (j = 0; j < 2; j++) {

for (k = 0; k < 2; k++) {

P_p[i][j] += P_p_aux[i][k] * AT[k][j];

}

}

}

// Compute Kalman Gain

double S = P_p[0][0] + R;

double K = P_p[0][0] * (1 / S);

// Estimate State

double residual = temperature - x_p[0];

x[0] = x_p[0] + K * residual;

x[1] = x_p[1];

// Estimate Covariance

for (i = 0; i < 2; i++) {

for (j = 0; j < 2; j++) {

P[i][j] = P_p[i][j] - K * P_p[i][j];

}

}

return;

}

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42

