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Rounding Error Analysis of an Orbital Collision Probability Evaluation Algorithm

We present an error analysis of an algorithm due to Serra et al. (Journal of Guidance Control and Dynamics, 2016) for computing the orbital collision probability in the short term encounter model. The algorithm reduces the numerical computation of the collision probability to that of the sum of a series whose coecients are produced by a linear recurrence relation, and is specically designed to avoid cancellation issues in the evaluation of the sum. The authors derived a bound on the method error arising from the truncation of the series, and observed experimentally that the computation of the terms of the sum is numerically stable, but did not study the evaluation error. Here we give a rigorous bound on the accumulated rounding error when Serra et al.'s algorithm is implemented in oating-point arithmetic. For a unit roundo u and a truncation order N , the bound is of the form (N + A)u + o(u) where A is an explicit constant depending on the problem parameters and o(u) stands for explicitly bounded small terms compared to u. Our analysis is based on the observation that the generating series of the errors aecting each individual term is solution to a perturbed form of a dierential equation satised by the Laplace transform of a function related to the collision probability.
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Introduction

Due to the drastic increase in the space debris number during the last decades, collision avoidance has become a usual and necessary procedure for many active satellites. The uncertainty aecting the measured data characterizing an encounter is a strong incentive to rely on a probability of collision as the decision variable to trigger a possible avoidance maneuver. When modeling conjunctions, two main paradigms the short-term and the long-term encounters are widely accepted and implemented in the eld of orbital collision risk assessment [START_REF] Chan | Spacecraft Collision Probability[END_REF]. The rst one is most frequently used in practice and assumes that the relative velocity between the two objects is suciently high, so that the encounter time is short. In this framework, the orbital collision probability is modeled as a 2-D integral on a disk, which can be eciently evaluated using an approximation by a power series. The corresponding algorithm of Serra et al. [START_REF] Serra | Fast and accurate computation of orbital collision probability for short-term encounters[END_REF] was implemented in Floating Point (FP) arithmetic and has been used in practice by the French Space Agency (CNES) for ground space surveillance operations. More recently, an on-board implementation was successfully tested on an experimental satellite [START_REF] Thomassin | Asteria : Autonomous collision risks management[END_REF].

While the parameters of this algorithm are only estimations of physical quantities, it is however important to provide guaranties about the accuracy and reliability of its numerical implementation. This can be seen by analogy to the need for accurate implementations of special functions (like erf, Airy, Bessel, etc.) used in calculations of other physical phenomena. One would like to estimate and bound independently the numerical evaluation and truncation error for such a mathematical function, compared to other model errors.

With this in mind, the mathematics for this problem were well-studied (truncation error bounds, positivity of the coecients), but the round-o error analysis was so-far ignored. This was probably due to the diculty of the task, since it involves a loop, which implements the evaluation of a linearly recursive sequence.

It is known that the naive rounding error analysis of such recurrences can result in overestimation of the bounds [START_REF] Mezzarobba | Rounding error analysis of linear recurrences using generating series[END_REF] because rounding errors generated in the evaluation of the loop typically cancel out to a large extent, instead of purely adding up. Taking into account this phenomenon usually involves a careful study of the propagation of local errors in following steps of the algorithm, implying complicated manipulations of nested sums and yielding opaque expressions. To alleviate this issue, the main idea of the recent work [START_REF] Mezzarobba | Rounding error analysis of linear recurrences using generating series[END_REF] is to encode as generating series both the sequence of local errors committed at each step and that of global errors resulting from the accumulation of local errors. While far from classical in the context of rounding-error analysis, this technique proves to be very adequate for studying algorithms which originate from numerical methods implementing truncated series approximations, with coecients satisfying linear recurrences.

Dierent alternative methods are now briey recalled. Firstly, unrolling a linear recurrence can be seen as a special case of solving a triangular (banded Toeplitz) system of linear equations. Therefore, a rst result based on [START_REF] Higham | Accuracy and stability of numerical algorithms[END_REF]Chap. 8], bounds the maximum relative error for evaluating n terms of an order m recurrence by the product of mu

1-mu

with the condition number of the associated n by n matrix. In this sense, in [START_REF] Barrio | [END_REF], a more rened analysis gives a rst-order bound (meaning that the terms of order O(u 2 ) are omitted). However, one has to resort to more complicated formulas, expressed in terms of quantities that may be dicult to estimate (inverting the associated triangular matrix, computing the so-called reverse homogeneous recurrence for instance).

A complementary class of approaches concerns the use of static error analyzers, which automatically provide sound (and often formally-proven) error bounds on FP rounding errors (see for instance [START_REF] Appel | Vcoat2: Floating-point error analysis in coq[END_REF][START_REF] Solovyev | Rigorous estimation of oating-point round-o errors with symbolic Taylor expansions[END_REF][START_REF] Titolo | An abstract interpretation framework for the round-o error analysis of oating-point programs[END_REF] and references therein for existing software). While these tools are aimed at generic numerical codes, they are not very ecient for handling a very large number of loop iterations due to the intrinsic high depth of the expression graph.

For instance, one of the currently fastest tools, SATIRE [START_REF] Das | Scalable yet rigorous oating-point error analysis[END_REF], reports a minimum execution time of 50s for unrolling 70 iterations of the Lorenz system.

By comparison, the algorithm analyzed in this article sometimes requires hundreds (or even thousands) of iterations. Furthermore, the parameters involved have rather high ranges and we would like an error bound which depends explicitly on these parameters, without additional runs of the program.

Finally, let us also mention that a basic automatic evaluation in interval arithmetic highly overestimates the bounds as the iterations directly reuse the previously-computed values.

All in all, we believe that the adaptation of [START_REF] Mezzarobba | Rounding error analysis of linear recurrences using generating series[END_REF] to this particular algorithm, oers a good remedy to these limitations and that the mathematical tools employed herein may be of interest to the rounding-analysis spectrum of methods.

The structure and contributions of this article are as follows. Firstly, we recall in Section 2 the description of a Laplace transform technique from [START_REF] Serra | Fast and accurate computation of orbital collision probability for short-term encounters[END_REF],

which proves that the terms of the recursive sequence implemented as the main loop of the algorithm are the coecients of a series solution to a simple rst-order Linear Dierential Equation (LDE). From that, the main contribution of this article is to make heavy use of this equation to interpret the individual rounding errors on each term as the coecients of another series whose analytic behavior is essentially similar, up to a factor proportional to the roundo unit. This is the key point for deriving realistic total relative error bounds. To do that, a preliminary step in Section 3 is a classical rounding error analysis for the loop-independent parameters and the body of the loop (local errors).

Then, we bound the global errors accumulating when executing the main loop in Section 4. There, we make the key observation that the generating series in the Laplace plane associated to global errors is solution to the same previously mentioned LDE, but with an inhomogeneous term generated by the local errors. Working with series in the Laplace plane allows for suciently simple closed-form formulas, even if it sometimes means performing some crafty term-by-term majorizations. This technique allows for the computation of explicit a priori rounding error bounds depending on the input parameters, without any additional runs or restrictive imposed ranges on the parameters. Given a unit roundo u and a truncation order N , the bound proposed in Theorem 1 is of the form (N + A)u + o(u), where A is an explicit constant depending on the parameters and o(u) stands for explicitly bounded small terms compared to u.

Finally, practical aspects are considered: in Section 5 we comment on how the analyzed implementation simulates an increased exponent range, as to avoid overows in practice; then, a numerical validation of the quality of the bound is provided on a range of examples in Section 6.

Computing the Orbital Collision Probability

In this section, the main steps of the mathematical derivations used to build the reviewed algorithm are briey reminded. This is particularly useful since the proposed rounding error analysis partly exploits the very same ingredients.

The short-term encounter model

The short-term encounter model (whose complete set of assumptions is recalled in detail in [START_REF] Chan | Spacecraft Collision Probability[END_REF] or [START_REF] Serra | Fast and accurate computation of orbital collision probability for short-term encounters[END_REF]) for the computation of the probability of collision between two spherical objects mainly consists in assuming that the relative trajectory is a straight line during the encounter and in projecting it onto the encounter plane dened to be perpendicular to the relative velocity vector. Let (x, y) denote the mean coordinates of the relative position of the secondary object with respect to the primary object in the encounter frame (see [START_REF] Serra | Fast and accurate computation of orbital collision probability for short-term encounters[END_REF] for its denition). The relative position uncertainty is described by the following bivariate Gaussian density function

ρ(x, y) = 1 2πσ x σ y exp - 1 2 (x -x m ) 2 σ 2 x + (y -y m ) 2 σ 2 y ,
where (x m , y m ) is the mean position of the secondary object relative to the primary object in the covariance frame and σ x , σ y ∈ R + * are the standard deviations of the relative coordinates in the encounter plane. The probability of collision is then given by a two-dimensional integral parameterized by the radius R of the combined spherical object:

P(R) =
x 2 +y 2 ⩽R ρ(x, y)dxdy.

(

) 1 
This integral is the cumulative density function of the random variable Ξ =

X 2 + Y 2 (i.e., P(R) = Pr {Ξ ⩽ R 2 }) where X ▷ N (x m , σ 2 
x ), Y ▷ N (y m , σ 2 y ) are independent normal random variables. By rescaling Ξ, we get P(R) = g [START_REF] Appel | Vcoat2: Floating-point error analysis in coq[END_REF] where the function g : R + → R + is dened as g(ξ) = P(R √ ξ).

Several methods for computing the integral (1) have been proposed in the aerospace literature (see for instance [START_REF] García-Pelayo | Series for collision probability in short-encounter model[END_REF][START_REF] Serra | Fast and accurate computation of orbital collision probability for short-term encounters[END_REF] and references therein). Here we focus on the algorithm of [START_REF] Serra | Fast and accurate computation of orbital collision probability for short-term encounters[END_REF], where one obtains a convergent series expansion of g(ξ) by considering its Laplace transform. Various versions of this idea have been applied to both central and non-central quadratic forms; see for instance [START_REF] Mathai | Quadratic forms in random variable: Theory and Applications[END_REF]Chapter 4] and references therein.

Algorithm

Due to the cancellation phenomenon occurring when summing the terms of a series of dierent signs and similar magnitude, the direct evaluation of the power series expansion of g(ξ) is only practical for small values of R 2 . The idea of [START_REF] Serra | Fast and accurate computation of orbital collision probability for short-term encounters[END_REF] to remedy this, inspired by [START_REF] Gawronski | Reduced cancellation in the evaluation of entire functions and applications to the error function[END_REF], is to introduce a preconditionner of the form Π(ξ) = exp(pξR 2 ) and consider the expansion of the function f = Πg, which then has nonnegative coecients. Assuming without loss of generality that 0 < σ y ⩽ σ x , a good choice is p = 1/(2σ 2 y ).

We now summarize how the authors of [START_REF] Serra | Fast and accurate computation of orbital collision probability for short-term encounters[END_REF] obtain a linear-time algorithm for computing the rst N terms of the series f . We use the following notation:

p = 1 2σ 2 y , ϕ = 1 - σ 2 y σ 2 x , ω x = x 2 m 4σ 4 x , ω y = y 2 m 4σ 4 
y , and observe that 0 ⩽ ϕ < 1, ω x ⩾ 0, ω y ⩾ 0.

The rst step is to compute the Laplace transform of the preconditioned function in closed form. For |λ| > p, one has

L f (λ) = L g (λ -pR 2 ) = πR 2 ρ(0, 0) exp ωyR 2 λ + ωxR 2 λ-pϕR 2 λ(λ -pϕR 2 )(λ -pR 2 ) .
The power series expansion of f (ξ) is the termwise inverse Laplace transform of the expansion at innity of L f (λ) (see [START_REF] Widder | An introduction to transform theory[END_REF]Chap. 9], [16, Chap. 2.14]), and the coecients of the latter are the same as those of the Taylor expansion of

L f (λ -1 ) = πR 2 ρ(0, 0)λ 2 exp ω y R 2 λ -ωx pϕ - ωx pϕ(pϕR 2 λ-1) 1 -pϕR 2 λ(1 -pR 2 λ) . Since the rst two coecients of L f (λ -1 ) are zero, let f (λ) = λ -2 L f (λ -1 ). Letting f (ξ) = ∞ n=0 c n ξ n+1 (note the n + 1), the series expansion of f reads f (λ) = ∞ n=0 c n (n + 1)!λ n .
(

) 2 
The second step is to derive a linear recurrence relation satised by the coecients c n . For this, one uses the fact that f (λ) is solution to a LDE. Indeed, starting from the denition of f and taking logarithmic derivatives, one has

f ′ (λ) = φ(λ) f (λ), f (0) = πR 2 ρ(0, 0), (3) 
φ(λ) = ω y R 2 + pϕR 2 2(1-pϕR 2 λ) + pR 2 1-pR 2 λ + ω x R 2 (1-pϕR 2 λ) 2 = P (λ) Q(λ) with Q(λ) = (1-pϕR 2 λ) 2 (1-pR 2 λ). (4) 
The coecients of the polynomials P and Q alternate in sign: we write P (λ) = P 0 -

P 1 λ + P 2 λ 2 -P 3 λ 3 and Q(λ) = 1 -Q 1 λ + Q 2 λ 2 -Q 3 λ 3 where P i , Q i ⩾ 0.
Lemma 1. The sequence (c n ) satises the linear recurrence

nc n - Q 1 (n -1) + P 0 n + 1 c n-1 + Q 2 (n -2) + P 1 (n + 1)n c n-2 - Q 3 (n -3) + P 2 (n + 1)n(n -1) c n-3 + P 3 (n + 1)n(n -1)(n -2) c n-4 = 0, (5) 
for n ⩾ 4, with initial terms c 0 , . . . , c 3 given in Algorithm 1.

Proof sketch. The LDE (3) is equivalent to

Q(λ)λ f ′ (λ) -P (λ)λ f (λ) = 0. (6) 
One can check that, for any series f satisfying (2), one has

λ k f (λ) = +∞ n=k c n-k (n + 1) . . . (n -k + 2) (n + 1)!λ n , λ( f ) ′ (λ) = +∞ n=0 (nc n )(n + 1)!λ n . (7) 
Using these identities repeatedly, one obtains

Q(λ)λ f ′ (λ) -P (λ)λ f (λ) = ∞ n=0 F n (c)(n + 1)!λ n ,
where F n (c) is exactly the left-hand side of ( 5), with the additional convention that c -1 = c -2 = c -3 = 0 and terms whose denominator vanishes are ignored. It follows using ( 6) that F n (c) = 0 for all n ⩾ 0. For n ⩾ 4, this gives the desired recurrence. For n = 1, 2, 3, one obtains the expressions for c 1 , c 2 , c 3 appearing in the algorithm, and similarly for c 0 since c 0 = f (0) = πR 2 ρ(0, 0).

Summarizing, we have

P(R) = g(1) = exp -pR 2 ∞ n=0 c n ,
where the coecients c n are given by Lemma 1. Algorithm 1 is a procedure for evaluating this expression. Our next goal is to analyse the eect of rounding errors on this procedure.

Local Rounding Error Bounds

In this section, we describe the employed FP setting and provide the local error analysis.

FP arithmetic setting

We assume that Algorithm 1 is implemented in radix- Input: Parameters: σ x , σ y , x m , y m ; combined object radius: R; number of terms: N . Output: P 0:N truncated series approximation of P.

1: p = 1 2σ 2 y ; ϕ = 1 -σy σx 2 ; ω x = x 2 m 4σ 4 x ; ω y = y 2 m 4σ 4 y ; 2: Q 1 = pR 2 (2ϕ + 1); Q 2 = p 2 R 4 ϕ(ϕ + 2); Q 3 = p 3 R 6 ϕ 2 ; 3: P 0 = p ϕ 2 + 1 + ω x + ω y R 2 ; 4: P 1 = pϕ(ϕ+5) 2 + ω x + ω y (2ϕ + 1) pR 4 ; 5: P 2 = 3 2 p + ω y (ϕ + 2) p 2 R 6 ϕ; 6: P 3 = p 3 ω y R 8 ϕ 2 ; 7: c 0 = 1 2σxσy exp -1 2 x 2 m σ 2 x + y 2 m σ 2 y R 2 ; 8: c 1 = P 0 2 c 0 ; c 2 = Q 1 +P 0 6 c 1 -P 1 12 c 0 ; 9: c 3 = 2Q 1 +P 0 12 c 2 -Q 2 +P 1 36 c 1 + P 2 72 c 0 ; 10: s = c 0 + c 1 + c 2 + c 3 11: for n = 4 to N -1 do 12: c n = Q 1 (n-1)+P 0 (n+1)n c n-1 -Q 2 (n-2)+P 1 (n+1)n 2 c n-2 + Q 3 (n-3)+P 2 (n+1)n 2 (n-1) c n-3 - P 3 (n+1)n 2 (n-1)(n-2) c n-4 ; 13: s = s + c n ;
14: end for 15: return P 0:N = exp -pR 2 s. tie-breaking rule). In particular, our arithmetic obeys the standard error models

[8, Chap. 2.2.] RN(x) = x(1 + r 1 ) = x/(1 + r 2 ), with |r 1 |, |r 2 | ⩽ u, (8) 
with rounding unit u = 2 -t . In addition, multiplications by powers of two are exact. This setting correctly models real-life IEEE-754 arithmetic provided that no overows or underows occur. It turns out that, when implemented in binary64 arithmetic, Algorithm 1 can easily encounter overows for realistic values of the input. We comment in Section 5 on how the implementation by the authors of [START_REF] Serra | Fast and accurate computation of orbital collision probability for short-term encounters[END_REF] simulates an increased exponent range, making the assumption of an unbounded exponent range legitimate for the error analysis.

For deniteness, we also assume that composite expressions are evaluated from left to right: for instance, a + bcd is computed as RN(a + RN(RN(bc)d)), the power operation is implemented according to the formulas

x 2 = x•x, x 3 = x • x 2 , x 4 = (x 2 ) 2 , x 6 = (x 2 ) 3 , and x 8 = (x 4 ) 2 ,
the exponential function used at steps 7 and 15 is faithfully rounded, implying that the corresponding relative error is bounded by 2u.

These assumptions are not critical and our bounds easily adapt to slightly dierent implementations.

We denote by x the computed value of a quantity x. To express the relation between x and x, we use the θ k and γ k notation of [START_REF] Higham | Accuracy and stability of numerical algorithms[END_REF]Chap. 3]. In short, each occurrence of the symbol θ k denotes a potentially dierent quantity of the form θ k = k i=1 (1 + r i ) ±1 -1 with |r i | ⩽ u for all i. Assuming ku < 1, one has |θ k | ⩽ γ k where γ k is dened as ku/(1 -ku) and satises in particular γ k = ku + O(u 2 ) as u → 0.

Bounds for loop-independent parameters

Let us rst bound the rounding errors occurring in lines 17 of Algorithm 1.

For instance, using Equation ( 8), one has

p = RN(1/RN(σ y • σ y ))/2 = p(1 + θ 2 ), (9) 
which gives an absolute error bound of |p -p| ⩽ γ 2 p. Similar bounds for the other parameters are summarized below.

Param. p ω x ω y ϕ Q 1 Q 2 Q 3 Abs. Err. γ 2 p γ 5 ω x γ 5 ω y γ 4 γ 9 Q ♯ 1 γ 18 Q ♯ 2 γ 24 Q ♯ 3 Param. P 0 P 1 P 2 P 3 c 0 e -pR 2
Abs. Err. 1, where

γ 10 P ♯ 0 γ 18 P ♯ 1 γ 27 P ♯ 2 γ 32 P ♯ 3 e 0 c 0 τ e -pR 2
P ♯ i := P i {ϕ ← 1}, Q ♯ i := Q i {ϕ ← 1} denote the values for ϕ = 1 of the P i and Q i : Q ♯ 1 = 3pR 2 , Q ♯ 2 = 3p 2 R 4 , Q ♯ 3 = p 3 R 6 , P ♯ 0 = 3 2 p + ω x + ω y R 2 , P ♯ 1 = (3p + ω x + 3ω y ) pR 4 , P ♯ 2 = 3 2 p + 3ω y p 2 R 6 , P ♯ 3 = p 3 ω y R 8 , e 0 = exp 1 2 x 2 m σ 2 x + y 2 m σ 2 y γ 4 (1 + γ 6 ) -1, τ = exp pR 2 γ 2 (1 + γ 2 ) -1. (10) 
Proof. Similarly to Equation ( 9) one obtains ωx = ω x (1 + θ 5 ) and ωy = ω y (1 + θ 5 ).

Concerning ϕ, rstly observe that since 0 < σ y ⩽ σ x , one has 0 < σ y /σ x ⩽ 1 and because RN preserves inequalities, 0 < ã := RN(RN(σ y /σ x )

• RN(σ y /σ x )) ⩽ 1, implying that 0 ⩽ b := 1 -ã < 1. Now, φ = RN(b), so that 0 ⩽ φ ⩽ 1 and |ϕ -φ| ⩽ |ϕ -b| + |b -φ| ⩽ |σ 2 y /σ 2 x -ã| + u ⩽ γ 3 + γ 1 ⩽ γ 4 .
Regarding Q 1 , one has Q1 = pR 2 (2 φ + 1)(1 + θ 6 ), and hence, using the previous bounds on ϕ and |ϕ -φ|,

|Q 1 -Q1 | = |pR 2 (2ϕ + 1) -pR 2 (2 φ + 1)(1 + θ 6 )| ⩽ 2pR 2 |ϕ -φ| + pR 2 |(2 φ + 1)|γ 6 ⩽ 2pR 2 γ 4 + 3pR 2 γ 6 ⩽ 3pR 2 γ 9 .
The last inequality is readily obtained by applying the rules given in Lemma 

Local error analysis

Let us now turn to the computation of c n (steps 7 12 of Algorithm 1). We denote by cn the computed value of c n , and we call local absolute error on c n the absolute rounding error ε n generated at the corresponding step of the algorithm. In other words, for n ⩾ 4, we set

ε n := cn - Q 1 (n -1) + P 0 (n + 1)n cn-1 - Q 2 (n -2) + P 1 (n + 1)n 2 cn-2 + Q 3 (n -3) + P 2 (n + 1)n 2 (n -1) cn-3 - P 3 (n + 1)n 2 (n -1)(n -2) cn-4 (11) 
(where all operations are mathematically exact). We then have the following bound on |ε n |.

Proposition 2. The local error introduced at iteration n at step 12 of Algorithm 1 satises

|ε n | ⩽ γ Q ♯ 1 (n -1) + P ♯ 0 (n + 1)n |c n-1 | + Q ♯ 2 (n -2) + P ♯ 1 (n + 1)n 2 |c n-2 | + Q ♯ 3 (n -3) + P ♯ 2 (n + 1)n 2 (n -1) |c n-3 | + P ♯ 3 (n + 1)n 2 (n -1)(n -2) |c n-4 | ,
where γ = γ 40 .

Proof. The coecient c n is computed as cn = (((t

1 + t 2 )(1 + θ 1 ) + t 3 )(1 + θ 1 ) + t 4 )(1 + θ 1 ) with t i = (-1) i+1 ( Qi (n -i)(1 + θ 1 ) + Pi-1 )(1 + θ 1 ) d i (n)(1 + θ i ) -1 cn-i (1 + θ 2 ), where d 1 (n) = (n+1)n, d 2 (n) = (n+1)n 2 , .
. . are the denominators appearing in [START_REF] Mezzarobba | Rounding error analysis of linear recurrences using generating series[END_REF], and Q 4 = 0. We thus have

cn = 4 i=1 ( Qi (n -i)(1 + θ 9 ) + Pi-1 (1 + θ 8 ) d i (n) .
Substituting into [START_REF] Mezzarobba | Rounding error analysis of linear recurrences using generating series[END_REF], we obtain

ε n = 4 i=1 (-1) i+1 cn-i d i (n) ( Qi -Q i + Qi θ 9 )(n -i) + ( Pi-1 -P i-1 + Pi-1 θ 8 ) . According to Table 1, we have | Qi -Q i | ⩽ Q ♯ i γ 24 (with the convention that Q ♯ 4 = 0) and | Qi θ 9 | ⩽ (1 + γ 24 )Q ♯ i γ 9 , so that | Qi -Q i + Qi θ 9 | ⩽ Q ♯ i γ 33 . Similarly, we have | Pi-1 -P i-1 + Pi-1 θ 8 | ⩽ P ♯
i-1 γ 40 , and the result follows.

Since the formulas used for computing c 1 , c 2 , c 3 correspond to truncated instances of the recurrence, (11) also applies for ε 1 , ε 2 , ε 3 , if terms with a zero denominator are ignored. With this convention the bound from Prop. 2 holds for all n ⩾ 1.

Global Rounding Error Bounds

Let us apply the generating series approach of [START_REF] Mezzarobba | Rounding error analysis of linear recurrences using generating series[END_REF] to the rounding error analysis of the main loop.

Global error modeling

The local errors ε n build up and lead to a global (absolute) error

δ n := c n -cn ,
that is the main quantity we need to control. For doing so it is convenient to encode the sequences (δ n ) and (ε n ) as coecients in the generating series δ(λ) = +∞ n=0 (n + 1)!δ n λ n and ε(λ) = +∞ n=0 (n + 1)!ε n λ n in the same manner as (2).

From Equations ( 5) and ( 11), we have

nδ n = Q 1 (n -1) + P 0 (n + 1) δ n-1 - Q 2 (n -2) + P 1 (n + 1)n δ n-2 + Q 3 (n -3) + P 2 (n + 1)n(n -1) δ n-3 - P 3 (n + 1)n(n -1)(n -2)
δ n-4 -nε n .

After multiplying this relation by λ n and summing over n, we obtain, using the identities [START_REF] Gawronski | Reduced cancellation in the evaluation of entire functions and applications to the error function[END_REF], a LDE satised by the series δ:

Q(λ)( δ) ′ (λ) -P (λ) δ(λ) = ε′ (λ). (12) 
Comparing with Equation ( 6), we see that δ satises the same rst-order LDE as the generating series f of the (exact) coecients c n , except for the right hand side which now depends on the local errors ε n . Only bounds are available for these, so we need to work with dierential inequalities. 

ε′ (λ) ≪ γ Q ♯ (λ)φ(λ) + P ♯ (λ) f (λ)+ Q ♯ (λ)| δ| ′ (λ) + P ♯ (λ)| δ|(λ) , (13) 
with

Q ♯ (λ) = Q ♯ 1 λ + Q ♯ 2 λ 2 + Q ♯ 3 λ 3 and P ♯ (λ) = P ♯ 0 +P ♯ 1 λ+P ♯ 2 λ 2 +P ♯ 3 λ 3 +P ♯ 4 λ 4 .
Proof. It follows by using the inequality |c n | ⩽ c n + |δ n | in the bound on ε n obtained from Proposition 2, which is to be multiplied by nλ n , and summed over n.

Located in the Laplace plane, Eqs. ( 12) and ( 13) allow for deriving bounds on δ(λ). They are obtained as solutions of order-1 LDE. But there is still a need to bound the inverse Laplace transform δ(ξ) = ∞ n=0 δ n ξ n+1 . In particular, we need to bound the total sum of absolute rounding errors |δ|(1). This is done by an ad-hoc majorization of convolution terms. For clarity, we provide in Table 2 a synthesis of forthcoming notations in this twofold view.

A simplied bound

For the sake of exposition, we rst prove a simplied, not fully rigorous error bound obtained by neglecting the terms involving γ δ(λ) in [START_REF] Solovyev | Rigorous estimation of oating-point round-o errors with symbolic Taylor expansions[END_REF], which are of order O(u 2 ):

Q(λ) δ′ (λ) -P (λ) δ(λ) ≪ γ Q ♯ (λ)φ(λ) + P ♯ (λ) f (λ).
To further simplify this equation, we denote φ ♯ (λ) := φ(λ){ϕ ← 1} and use 0

≪ φ(λ) ≪ φ ♯ (λ) and 0 ≪ Q(λ) -1 ≪ Q(λ) -1 {ϕ ← 1} = (1 -pR 2 λ) -3
(this follows directly from Equation ( 4)) to obtain

| δ| ′ (λ) ≪ φ(λ)| δ|(λ) + γ ψ(λ) f (λ), with ψ(λ) := Q ♯ (λ)φ ♯ (λ) + P ♯ (λ) (1 -pR 2 λ) 3 ≫ 0. ( 14 
)
Solving this dierential inequality gives rise to the following simplied bound.

Proposition 4. Under the simplied model above, the total rounding error accumulated while computing f (1) satises

+∞ n=0 |c n -c n | = |δ|(1) ⩽ (e 0 + γC)f (1), 'Real' (ξ)
'Laplace at ∞' (λ) with e 0 given in [START_REF] Mathai | Quadratic forms in random variable: Theory and Applications[END_REF] Proof. Since all the series on the right-hand side of ( 14) have nonnegative coecients, Lemma 6.5 in [START_REF] Mezzarobba | Rounding error analysis of linear recurrences using generating series[END_REF] implies that | δ|(λ) ≪ ∆(λ) where ∆(λ) is the solution with ∆(0) = e 0 f (0

f (ξ) = ∞ n=0 c n ξ n+1 f (λ) = ∞ n=0 c n (n + 1)!λ n f (λ) = λ -2 L f (λ -1 ) Q f ′ -P f = 0 δ(ξ) = ∞ n=0 δ n ξ n+1 δ(λ) = ∞ n=0 δ n (n + 1)!λ n δ(λ) = λ -2 L δ (λ -1 ) |δ|(1) = ∞ n=0 |c n -cn | Q δ′ -P δ = ε′ ε(ξ) = ∞ n=0 ε n ξ n+1 ε(λ) = ∞ n=0 ε n (n + 1)!λ n ε′ ≪ γ Q ♯ f ′ + P ♯ f + Q ♯ δ′ + P ♯ δ δ(ξ) ≪ ∆(ξ) δ ≪ ∆ ∆′ = φ ∆ + γ Q Q ♯ f ′ + ∆′ + P ♯ f + ∆ ∆ = e 0 f + ∞ k=0 γ k k! Ψ * . . . * Ψ k times * f ∆ = ê f ê = e 0 + (1 + e 0 ) ∞ k=0 γ k k! Ψk Ψ(ξ) ⩽ W (ξ)e pR 2 ξ ∆ = e 0 f + γΨ * f Order 1 approx of ê ê = e 0 + γ Ψ |δ|(1) ⩽ ∆(1)
) ⩾ |δ(0)| of the LDE ∆′ (λ) = φ(λ) ∆(λ) + γ ψ(λ) f (λ). (16) 
Using f as a solution of the homogeneous part of ( 16), shows that the series Ψ(ξ) can be bounded as Ψ(ξ) ≪ W (ξ)e pR 2 ξ , where W (ξ) is an explicit polynomial of degree 3 in ξ with nonnegative coecients and 1 0 W (τ )dτ is equal to the constant C dened in [START_REF] Titolo | An abstract interpretation framework for the round-o error analysis of oating-point programs[END_REF]. It follows that

∆(λ) = e 0 + γ Ψ(λ) f (λ), Ψ(λ) := λ 0 ψ(σ)dσ.
(Ψ * f )(1) ⩽ 1 0 W (τ )e pR 2 τ e pR 2 (1-τ ) g(1 -τ )dτ ⩽ e pR 2 g(1) 1 0 W (τ )dτ = Cf (1),
(where the second inequality uses the fact that g is nondecreasing), and therefore |δ|(1) ⩽ ∆(1) = e 0 f (1) + γ (Ψ * f )(1) ⩽ (e 0 + γC)f (1).

1 Maple worksheet used for these computations given in Appendix A.3.

A rigorous bound

For a fully rigorous bound on δ(λ), we consider again the dierential inequalities ( 12) and ( 13). Reasoning as in the previous section, we have

| δ| ′ (λ) ≪ γ Q ♯ (λ) Q(λ) | δ| ′ (λ) + φ(λ) + γ P ♯ (λ) Q(λ) | δ|(λ) + γ Q ♯ (λ)φ(λ) + P ♯ (λ) Q(λ) f (λ),
where the coecients of |δ| and |δ| ′ as well as the inhomogeneous term are series with nonnegative coecients. Since Q ♯ (0) = 0, Lemma 6.5 in [START_REF] Mezzarobba | Rounding error analysis of linear recurrences using generating series[END_REF] applies again and shows that δ(λ) ≪ ∆(λ), with ∆(λ) ≫ 0 satisfying the LDE

∆′ (λ) = φ(λ) ∆(λ) + γ Q(λ) Q ♯ (λ) f ′ (λ) + ∆′ (λ) + P ♯ (λ) f (λ) + ∆(λ) .
Let us write ∆(λ) = ê(λ) f (λ) and use ( 3) to obtain a LDE satised by ê,

where the right-hand side is a positive series:

1 -γ Q ♯ (λ) Q(λ) ê′ (λ) = γ Q ♯ (λ) Q(λ) φ(λ) + P ♯ (λ) Q(λ) (1 + ê(λ)).
Since a(λ) := γQ ♯ (λ)/Q(λ) satises a(0) = 0 and a(λ) ≫ 0,

1 1 -a(λ) = Q(λ) Q(λ) -γQ ♯ (λ) ≫ 0,
by composition of two series with nonnegative coecients. After multiplication by this series, we obtain

ê′ (λ) = γ Q ♯ (λ)φ(λ) + P ♯ (λ) Q(λ) -γQ ♯ (λ) (1 + ê(λ)). ( 17 
)
This LDE has several poles due to the perturbation γQ ♯ (λ) of the denominator in the right-hand side. To overcome this additional diculty, we use the following lemma, proved in Appendix A.2, to obtain a unique pole, at the price of a slight increase in the parameter p. This is a key point for adapting the proof of Proposition 4 to the current setting.

Lemma 2. Assuming 7γ < 1, we have

1 Q(λ) -γQ ♯ (λ) ≪ 1 (1 -p + R 2 λ) 3 with p + := p 1 -3 √ 7γ .
This result allows us to bound the solution of LDE ( 17) by the solution of the simpler LDE

ê′ (λ) = γ ψ+ (λ)(1 + ê(λ)), ê(0) = e 0 , (18) 
where ψ+ (λ) := ψ(λ){p ← p + } with ψ(λ) dened in [START_REF] Thomassin | Asteria : Autonomous collision risks management[END_REF].

Proposition 5. The terms cn computed in FP arithmetic in the main loop of Algorithm 1 satisfy:

+∞ n=0 |c n -c n | = |δ|(1) ⩽ e 0 + (1+e 0 )e ηpR 2 (e γC + -1) f (1),
with γ = γ 40 , e 0 as in [START_REF] Mathai | Quadratic forms in random variable: Theory and Applications[END_REF], η :

= 3 √ 7γ 1-3 √ 7γ and C + := C{p ← p + }. Proof. Denoting Ψ+ (λ) := λ 0 ψ+ (σ)dσ, LDE (18) gives ê(λ) = (1 + e 0 )e γ Ψ+ (λ) -1 = e 0 + (1 + e 0 ) +∞ k=1 γ k Ψ+ (λ) k k! .
This gives an explicit expression for ∆(λ) = ê(λ) f (λ).

To obtain ∆(ξ) s.t. ∆(λ) = λ -2 L ∆ (λ -1 ), let Ψ + (ξ) be the series such that Ψ+ (λ) = L Ψ + (λ -1 ). Then Laplace transform rules give the following identity of formal power series:

∆(ξ) = e 0 f (ξ) + (1 + e 0 ) +∞ k=1 γ k k! Ψ + * k * f (ξ), (19) 
where

Ψ + * k = Ψ + * • • • * Ψ + (k times).
In Lemma 4, Appendix A.2, we prove the remaining inequality:

(Ψ + * k * f )(1) ⩽ e ηpR 2 (C + ) k f (1).

The nal rounding error bound

The truncated series approximation P 0:N = e -pR 2 s = e -pR 2 N -1 n=0 c n of P is obtained by evaluating the sum N -1 n=0 cn in FP arithmetic and by multiplying the result s with e -pR 2

. We call P0:N the FP number returned by Algorithm 1. The following theorem provides a relative rounding error bound w.r.t. P. Adding to this bound a relative truncation error bound on |P 0:N -P|/P derived from [12, III.C] would yield a total error bound on | P0:N -P|/P. Theorem 1. The total rounding error is bounded by

P0:N -P 0:N P ⩽ (1 + γ N )(1 + τ )(1 + e 0 ) 1 + e ηpR 2 (e γC + -1) -1,
with γ = γ 40 , and where the quantities e 0 , τ are dened in Proposition 1, and η, C + are dened in Proposition 5.

The rst-order error approximation in the roundo unit u for this bound on | P0:N -P 0:N |/P is

N + 8 + 2pR 2 + 2x 2 m σ 2 x + 2y 2 m σ 2 y + 40C u, ( 20 
)
where 40Cu is the dominant term for large p, R, x m and y m .

Proof. Denote s =

N -1 n=0 cn and s its FP evaluation using N -1 additions.

By Proposition 5, |s -s| ⩽ 

N -1 n=0 |c n -c n | ⩽ νf (1) where ν := e 0 + (1 + e 0 )e ηpR 2 (e γC + -1). Then |s -s| ⩽ γ N -1 N -1 n=0 |c n | ⩽ γ N -1 (1 + ν)f (1) 
| = |e -pR 2 s(1 + τ ′ )(1 + θ 1 ) -e -pR 2 s| ⩽ e -pR 2 s(τ + u + τ u) + |s -s|(1 + τ )(1 + u) ⩽ P τ + u + τ u + (γ N -1 + ν + γ N -1 ν)(1 + τ )(1 + u) ⩽ P (1 + γ N )(1 + τ )(1 + ν) -1 ,
which is exactly the bound claimed by Theorem 1.

Preventing Overows and Underows

Algorithm 1 may be subject to overows and underows, depending on the problem parameters and the number N of terms to be computed. First, according to [12, III.C, Prop. 4], this number N has to be at least 2e(p + ω x + ω y )R 2 to obtain a reasonable approximation of P. Since the c n sum to f (1) = e pR 2 P and P may be close to 1, the use of plain IEEE 754-1985 binary64 FP arithmetic with maximum exponent 1023 may cause overows for examples requiring more than 2e ln (2 1023 ) ≈ 4000 terms.

In the C implementation of [START_REF] Serra | Fast and accurate computation of orbital collision probability for short-term encounters[END_REF], a rescaling strategy is used to prevent overows and underows. At the end of each iteration, if the absolute value of the computed term cn is above A or below A -1 , for A = 2 800 , then the values of cn , cn-1 , cn-2 , cn-3 are rescaled by 2 k for some k so that their absolute values belong to [A -1 , A]. This number k is added to a signed 64-bit integer used to store the current exponent, and the summation of the terms cn keeps track of these intermediate rescalings. Two additional rescalings are also used for c 0 and the nal factor e -pR 2 to prevent underows. Note that this rescaling strategy, where the exponent is stored separately in a 64-bit integer, does not modify the relative rounding error model used in the previous sections.

The following theorem guarantees the absence of overows under reasonable assumptions on the size of input parameters. Theorem 2. We assume that the number N of terms required to approximate P is bounded by N * = 10 8 , and that this bound also holds for pR 2 , ω x R 2 and ω y R 2 . In addition, considering the size of a satellite and its distance to the space debris, we assume 1 ⩽ R ⩽ 10 3 and σ x , σ y , |x m |, |y m | ⩽ 10 6 (all these quantities are expressed in meters).

Then the execution of the C implementation of Algorithm 1 on σ x , σ y , x m , y m , R, N is not subject to overows.

Proof. We prove this property for all the steps of the algorithm, postponing to the end of the proof the additional eect of rounding errors.

Loop-independent parameters. By combining the inequalities assumed for the parameters in the theorem, it is straightforward that all the subexpressions involved in the computation of p, ϕ, ω x , ω y , Q i , P i and c 0 are much smaller than 2 1023 and do therefore not cause any overow.

Evaluation of c n for n ⩾ 1. At the beginning of iteration n, the preceding terms c n-1 , c n-2 , c n-3 , c n-4 are bounded by A = 2 800 in absolute value thanks to the rescaling strategy. A quick analysis shows that each of the four coecients in front of c n-i is bounded by 2N 4 * , and both their numerator and denominator are bounded by 2N 5 * . Hence, their evaluation cannot produce overows. Finally, c n ⩽

3 i=1 Q i + 3 i=0 P i A ⩽ 7N 4 * A ⩽ 2 910 < 2 1023 , so
that no overow can occur.

No overow of the 64-bit exponent. The total sum is bounded by f (1) = e pR 2 P ⩽ e N * ⩽ 2 2 20.5 < 2 2 63 -1 , so that the exponents of all c n and all partial sums t in the 64-bit integer. The nal multiplication by e -pR 2 cannot cause an overow either since the argument is negative.

The eect of rounding errors. The local rounding errors in the constants and in each iteration of the loop were bounded by small constants (Propositions 1 and 2), hence they do not modify signicantly the overow analysis of the rst two items above. The worst-case relative error bound given by Theorem 1 is (crudely) bounded by exp (γ N +8 + (2

• 10 12 + γ 2 + η)N * + γC + ) ⩽ 2 2 61.4
. Although huge, this bound is sucient to prove that the computed sum of the cn is smaller than 2 2 61.4 • 2 2 20.5 < 2 2 63 -1 .

The rigorous underow analysis is slightly more involved and postponed to future work. Roughly speaking, the rescaling strategy prevents underows in the exponentials in c 0 and e pR 2 (which would cause the output to be zero).

Underows can however occur when unrolling the recurrence, but then it means that the neglected terms c n are so small compared to the previous ones that this underow error is smaller than the relative error already computed for the partial sum.

Examples and conclusion

We exemplify the error bounds on the examples provided in [START_REF] Serra | Fast and accurate computation of orbital collision probability for short-term encounters[END_REF], together with additional numerically challenging examples that we custom made for illustration purposes.

The numerical behavior of the algorithm is illustrated on Test 1, given in the rst line of Table 3, for which 101 terms are computed. In Figure 1a, the magnitude of the coecients c 0 , . . . , c 100 is plotted on a log-scale. This is a higher precision 106-bits FP arithmetic computation, using the MPFR library [START_REF] Fousse | Mpfr: A multiple-precision binary oating-point library with correct rounding[END_REF], in order to accurately approximate their exact values. Their magnitude increases up to c 16 and then the convergent regime is observed. In Figure 1b the relative rounding error on each coecient is plotted, when the loop is evaluated with a 53-bit FP arithmetic (this rounding error is estimated by comparing with the shadow 106-bit higher precision computation). These errors are plotted in terms of the roundo unit u = 2 -53 . The corresponding evaluated sum s and probability P0:N are recalled in Figure 1d.

For comparison, we also tested an interval arithmetic implementation with a 53-bit precision interval format, using the MPFI library 2 . While these intervals provide enclosures of all the accumulated rounding errors, we observe in Figure 1c, where the radius of the intervals is plotted in terms of u, that they highly overestimate the actual rounding errors. This is conrmed in 1d: with interval arithmetic, the nal absolute enclosure radius is 2.9439e12 u ≃ 3.26e-4, while the shadowed absolute error bound is 2.5920e6 u≃ 2.87e-10. In Table 3, we computed both the fully rigorous relative error bound of Theorem 1 and its linearization (20) w.r.t. u. For easy examples requiring less than 50 terms, both MPFI and our bounds provide very sharp enclosures.

Both of our bounds are almost identical. A rapid increase of interval widths with MPFI is observed when N is larger than 100 in most of the cases, whereas our bounds continue to guarantee at least one correct digit in very hard cases requiring about N = 10 7 terms. However, when the ratio σ y /σ x becomes very small, like in Case Alfano 5 and Custom 8, the bounds provided are very loose and the rigorous bound deviates from its linearization. As mentioned also in [START_REF] Serra | Fast and accurate computation of orbital collision probability for short-term encounters[END_REF], such extremely degenerate cases are rarely occurring in practice (this roughly corresponds to the integration domain becoming uni-dimensional).

Therefore, we believe that the bound provided in this article can be of highly practical use. One can simply evaluate the provided closed-form bound and there is no need to overload the C code with shadowing computations or with an additional execution with interval arithmetic (which would encumber especially the on-board implementation). Our study also shows that the approach of [START_REF] Mezzarobba | Rounding error analysis of linear recurrences using generating series[END_REF] and the additional mathematical tools developed herein are applicable to an algorithm currently used in practice. While described by pen-and-paper, the formulas presented can be easily obtained by a computer algebra software (as shown in the jointed Maple code), so they can be at least partly automated. Future works, include possible renements concerning underow handling, an average case analysis in the framework of [START_REF] Higham | A new approach to probabilistic rounding error analysis[END_REF], a formal proof of these results and further generalizations to other implementations of similar mathematical functions like Chi-square densities (which have similar algebraic properties).

A Appendix

A.1 Complementary proofs for the rounding error analysis of the parameters of Algorithm 1

The following results complete the proof of Proposition 1. Note that we insist on bounding each P i , Q i in terms of the corresponding P ♯ i , Q ♯ i for simplicity reasons only, and slightly better bounds can be obtained without this restriction. Proposition 6. At step 2 of Algorithm 1, the computed value

Q2 of Q 2 satises |Q 2 -Q2 | ⩽ Q ♯ 2 γ 18 .
Proof. The value of Q 2 is computed as

Q2 = RN(RN(RN(RN( p2 ) • RN(RN(R 2 ) 2 )) • φ) • RN( φ + 2)).
By Equation ( 8), this implies

Q2 = (pR 2 (1 + θ 2 )) 2 φ( φ + 2)(1 + θ 4 ) = (p(1 + θ 2 )R 2 (1 + θ 2 )) 2 φ( φ + 2)(1 + θ 4 ) = p 2 R 4 φ( φ + 2)(1 + θ 12 ). It follows that Q2 -Q 2 = p 2 R 4 ((2 + φ + ϕ)( φ -ϕ) + φ( φ + 2)θ 12 )
and therefore

| Q2 -Q 2 | ⩽ p 2 R 4 (4γ 4 + 3γ 12 ) ⩽ Q ♯ 2 4 3 γ 4 + γ 12 ⩽ Q ♯ 2 γ 18 . Proposition 7. At step 2 of Algorithm 1, the computed value Q3 of Q 3 satises |Q 3 -Q3 | ⩽ Q ♯ 3 γ 24 .
Proof. One has with ψ dened in [START_REF] Thomassin | Asteria : Autonomous collision risks management[END_REF]. Then for all ξ ⩾ 0, the series Ψ(ξ) such that Ψ(λ) = L Ψ (λ 

Q3 = p3 (R 2 (1 + θ 1 )) 3 φ2 (1 + θ 7 ) = (p(1 + θ 2 )) 3 (R 2 (1 + θ 1 )) 3 φ2 (1 + θ 7 ) = p 3 R 6 φ2 (1 + θ 16 ), hence Q3 -Q 3 = p 3 R 6 (( φ -ϕ)( φ + ϕ) + φ2 θ 16 ) and | Q3 -Q 3 | ⩽ p 3 R 6 [2γ 4 + γ 16 ] ⩽ p 3 R 6 • γ 24 = Q ♯ 3 • γ 24 .

3. 3 2 y.

 32 of the reference[START_REF] Higham | Accuracy and stability of numerical algorithms[END_REF] Chap. 3.4]. The case of the other parameters P i and Q i is similar; see Appendix A.1 for detailed proofs.For c 0 , denote z = -Then z = z(1 + θ 4 ), and c0 = R 2 2σxσy e z (1 + θ 2 ) (1 + θ 4 ) = c 0 e zθ 4 (1 + θ 6 ).

Proposition 3 (

 3 Given two series a(λ) = +∞ n=0 a n λ n and b(λ) = +∞ n=0 b n λ n , denote by a(λ) ≪ b(λ) the fact that |a n | ⩽ b n for all n ⩾ 0. In particular, this implies that the b n coecients are nonnegative real numbers. We denote by |a|(λ) = +∞ n=0 |a n |λ n the series of absolute values of coecients. Corollary of Proposition 2). The generating series of local errors satises this dierential inequality:

This is a bound

  on | δ|, in the Laplace plane. To go back to |δ| and obtain an inequality |δ|(λ) ≪ ∆(λ), consider the series ∆ and Ψ dened by ∆(λ) = λ -2 L ∆ (λ -1 ) and Ψ(λ) = L Ψ (λ -1 ) (with no λ -2 factor in the latter). Standard Laplace transform theory, see [17, Chap. 5, 8], gives ∆(ξ) = e 0 f (ξ) + γ (Ψ * f )(ξ), with(Ψ * f )(ξ)= ξ 0 Ψ(τ )f (ξ -τ)dτ the convolution of Ψ and f . A technical but straightforward computation 1 (see Lemma 3 in Appendix A.2)

  . Combining these two bounds yields |s -s| ⩽ (γ N -1 + ν + γ N -1 ν)f (1). Finally, the relative errors |τ ′ | ⩽ τ and |θ 1 | ⩽ u induced by the evaluation of exp(-pR 2 ) and the multiplication by s give | P0:N -P 0:N

  2 https://gitlab.inria.fr/mpfi/mpfi Coe. rel. err. (in terms of u) for 53-bit precision Interval radius (in terms of u)

Figure 1 :

 1 Figure 1: Loop evaluation results for Test 1.

Proposition 8 . 8 and|

 88 At step 3 of Algorithm 1, the computed value P0 of P 0 satises |P 0 -P0 | ⩽ P ♯ 0 γ 10 . Proof. One hasP0 = ((p( 1 2 φ + 1)(1 + θ 2 ) + ωx )(1 + θ 1 ) + ωy )R 2 (1 + θ 3 ) = {[p(1 + θ 2 )( 1 2 φ + 1)(1 + θ 2 ) + ω x (1 + θ 5 )](1 + θ 1 ) + ω y (1 + θ 5 )}R 2 (1 + θ 3 ) = {p( 1 2 φ + 1)(1 + θ 8 ) + ω x (1 + θ 9 ) + ω y (1 + θ 8 )}R 2 , hence P0 -P 0 = pR 2 ( 1 2 ( φ -ϕ) + ( 1 2 φ + 1)θ 8 ) + ω x R 2 θ 9 + ω y R 2 θ P0 -P 0 | ⩽ pR 2 ( 1 2 γ 4 + 3 2 γ 8 ) + (ω x + ω y )R 2 γ 9 ⩽ R 2 ( 3 2 p( 1 3 γ 4 + γ 8 ) + (ω x + ω y )γ 9 ) ⩽ P ♯ 0 γ 10 .Proposition 9. At step 4 of Algorithm 1, the computed valueP1 of P 1 satises |P 1 -P1 | ⩽ P ♯ 1 γ 18 . Proof. One has P1 = {[ 1 2 p φ( φ + 5)(1 + θ 3 ) + ωx ](1 + θ 1 ) + ωy (2 φ + 1)(1 + θ 2 )}p(R 2 (1 + θ 1 )) 2 (1 + θ 3 ) = {[ 1 2 p φ( φ + 5)(1 + θ 5 ) + ω x (1 + θ 5 )](1 + θ 1 ) + ω y (2 φ + 1)(1 + θ 7 )}pR 4 (1 + θ 7 ) = pR 4 ( 1 2 p φ( φ + 5)(1 + θ 13 ) + ω x (1 + θ 13 ) + ω y (2 φ + 1)(1 + θ 14 )) Proof. One has P3 = p3 ωy ((R 2 (1 + θ 1 )) 2 (1 + θ 1 )) 2 φ2 (1 + θ 7 ) = p 3 ω y ((R 2 (1 + θ 1 )) 2 (1 + θ 1 )) 2 φ2 (1 + θ 18 ) = p 3 ω y R 8 φ2 (1 + θ 24 ), hence P3 -P 3 = p 3 ω y R 8 ( φ2 -ϕ 2 + φ2 θ 24 ) and | P3 -P 3 | ⩽ p 3 ω y R 8 (2γ 4 + γ 24 ) ⩽ P ♯ 3 γ 32 .Proposition 12. At step 15 of Algorithm 1, the computed value ã of exp(-pR 2 ) satises |exp(-pR 2 ) -ã| ⩽ τ exp(-pR 2 ) with τ = exp(pR 2 γ 2 )(1 + γ 2 ) -1.Proof. Denote z = -pR 2 . Then z = z(1 + θ 2 ). This gives ã = exp(z)(1 + θ 2 ) = exp(z) exp(zθ 2 )(1 + θ 2 ).

  xi * invlaplace(psi_aux, lambda, xi): Psi := collect(expand(Psi), exp(p*R^2*xi)); # remove the negative term -2*omega[y]*R^2 Psi := Psi + 2*omega[y]*R^2; # use (exp(t)-1)/t << exp(t) with t=p*R^2*xi to bound Psi t

Table 1 :

 1 Absolute rounding error bounds for the parameters. Proposition 1. The absolute FP rounding error for the parameters appearing in lines 17 and the preconditionner exp(-pR 2 ) in line 15 in Algorithm 1 is bounded as indicated in Table

Table 2 :

 2 Main properties of real and Laplace plane series.

  , γ = γ 40 and

	C :=	7 96	p 3 ω x R 8 +	7 12	p +	1 2	ω x p 2 R 6 +	9 4	p
		+	5 4	ω x +	15 4	ω y pR 4 +	3 2	p + ω x + 3ω y R 2 .

[START_REF] Titolo | An abstract interpretation framework for the round-o error analysis of oating-point programs[END_REF] 

Proposition 10. At step 5 of Algorithm 1, the computed value

Proof. One has 

and take the inverse Laplace transform term-by-term, which yields

We conclude by using the inequality (e x -1)/x ≪ e x and dropping the nal negative term.

Proof of Lemma 2. The denominator Q(λ)-γQ ♯ (λ) factors as (1-

) with all β i ̸ = 0. We prove that

which implies 1

and nally the desired result.

Let β denote one of the β i . If |β| ⩽ pR 2 , then clearly (21) holds. Now suppose |β| > pR 2 . Since λ = β -1 is a root of Q(λ) -γQ ♯ (λ), we have Q(β -1 ) = γQ ♯ (β -1 ). We observe:

We thus obtain (1 -pR 2 /|β|) 3 ⩽ 7γ, and (21) holds. Lemma 4. For all k ⩾ 1, we have

Proof. Replace the value of p by p + in the proof of Lemma 3 to have Ψ + (ξ) ≪ W + (ξ) e p + R 2 ξ and C + = 1 0 W + (τ )dτ . Also bound f (ξ) by e p + R 2 g(ξ) since p + ⩾ p. Then we have

For k = 1, we have as in the proof of Proposition 4

Repeating this process k times to push the exponential e p + R 2 ξ out of the convolution product gives W + e p + R 2 ξ * k * e p + R 2 ξ g (ξ) = e p + R 2 ξ (W + * k * g)(ξ).

Evaluating the series at ξ = 1 gives: