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Abstract

We present an error analysis of an algorithm due to Serra et al.

(Journal of Guidance Control and Dynamics, 2016) for computing the

orbital collision probability in the short term encounter model. The

algorithm reduces the numerical computation of the collision proba-

bility to that of the sum of a series whose coe�cients are produced

by a linear recurrence relation, and is speci�cally designed to avoid

cancellation issues in the evaluation of the sum. The authors derived

a bound on the method error arising from the truncation of the se-

ries, and observed experimentally that the computation of the terms

of the sum is numerically stable, but did not study the evaluation er-

ror. Here we give a rigorous bound on the accumulated rounding error

when Serra et al.'s algorithm is implemented in �oating-point arith-

metic. For a unit roundo� u and a truncation order N , the bound is

of the form (N + A)u+ o(u) where A is an explicit constant depend-

ing on the problem parameters and o(u) stands for explicitly bounded

small terms compared to u. Our analysis is based on the observation

that the generating series of the errors a�ecting each individual term

is solution to a perturbed form of a di�erential equation satis�ed by

the Laplace transform of a function related to the collision probability.
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1 Introduction

Due to the drastic increase in the space debris number during the last
decades, collision avoidance has become a usual and necessary procedure for
many active satellites. The uncertainty a�ecting the measured data charac-
terizing an encounter is a strong incentive to rely on a probability of collision
as the decision variable to trigger a possible avoidance maneuver. When mod-
eling conjunctions, two main paradigms � the short-term and the long-term
encounters � are widely accepted and implemented in the �eld of orbital
collision risk assessment [3]. The �rst one is most frequently used in practice
and assumes that the relative velocity between the two objects is su�ciently
high, so that the encounter time is short. In this framework, the orbital
collision probability is modeled as a 2-D integral on a disk, which can be
e�ciently evaluated using an approximation by a power series. The corre-
sponding algorithm of Serra et al. [12] was implemented in Floating Point
(FP) arithmetic and has been used in practice by the French Space Agency
(CNES) for ground space surveillance operations. More recently, an on-board
implementation was successfully tested on an experimental satellite [14].

While the parameters of this algorithm are only estimations of physical
quantities, it is however important to provide guaranties about the accuracy
and reliability of its numerical implementation. This can be seen by anal-
ogy to the need for accurate implementations of special functions (like erf,
Airy, Bessel, etc.) used in calculations of other physical phenomena. One
would like to estimate and bound independently the numerical evaluation
and truncation error for such a mathematical function, compared to other
model errors.

With this in mind, the mathematics for this problem were well-studied
(truncation error bounds, positivity of the coe�cients), but the round-o�
error analysis was so-far ignored. This was probably due to the di�culty
of the task, since it involves a loop, which implements the evaluation of a
linearly recursive sequence.

It is known that the naive rounding error analysis of such recurrences can
result in overestimation of the bounds [11] because rounding errors generated
in the evaluation of the loop typically cancel out to a large extent, instead
of purely adding up. Taking into account this phenomenon usually involves
a careful study of the propagation of local errors in following steps of the
algorithm, implying complicated manipulations of nested sums and yield-
ing opaque expressions. To alleviate this issue, the main idea of the recent
work [11] is to encode as generating series both the sequence of local errors
committed at each step and that of global errors resulting from the accumula-
tion of local errors. While far from classical in the context of rounding-error

2



analysis, this technique proves to be very adequate for studying algorithms
which originate from numerical methods implementing truncated series ap-
proximations, with coe�cients satisfying linear recurrences.

Di�erent alternative methods are now brie�y recalled. Firstly, unrolling a
linear recurrence can be seen as a special case of solving a triangular (banded
Toeplitz) system of linear equations. Therefore, a �rst result based on [8,
Chap. 8], bounds the maximum relative error for evaluating n terms of an
order m recurrence by the product of mu

1−mu
with the condition number of

the associated n by n matrix. In this sense, in [2], a more re�ned analysis
gives a �rst-order bound (meaning that the terms of order O(u2) are omit-
ted). However, one has to resort to more complicated formulas, expressed in
terms of quantities that may be di�cult to estimate (inverting the associated
triangular matrix, computing the so-called reverse homogeneous recurrence
for instance).

A complementary class of approaches concerns the use of static error
analyzers, which automatically provide sound (and often formally-proven)
error bounds on FP rounding errors (see for instance [1, 13, 15] and refer-
ences therein for existing software). While these tools are aimed at generic
numerical codes, they are not very e�cient for handling a very large number
of loop iterations due to the intrinsic high depth of the expression graph.
For instance, one of the currently fastest tools, SATIRE [4], reports a mini-
mum execution time of 50s for unrolling 70 iterations of the Lorenz system.
By comparison, the algorithm analyzed in this article sometimes requires
hundreds (or even thousands) of iterations. Furthermore, the parameters
involved have rather high ranges and we would like an error bound which
depends explicitly on these parameters, without additional runs of the pro-
gram.

Finally, let us also mention that a basic automatic evaluation in interval
arithmetic highly overestimates the bounds as the iterations directly reuse
the previously-computed values.

All in all, we believe that the adaptation of [11] to this particular algo-
rithm, o�ers a good remedy to these limitations and that the mathematical
tools employed herein may be of interest to the rounding-analysis spectrum
of methods.

The structure and contributions of this article are as follows. Firstly, we
recall in Section 2 the description of a Laplace transform technique from [12],
which proves that the terms of the recursive sequence implemented as the
main loop of the algorithm are the coe�cients of a series solution to a simple
�rst-order Linear Di�erential Equation (LDE). From that, the main contri-
bution of this article is to make heavy use of this equation to interpret the
individual rounding errors on each term as the coe�cients of another series
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whose analytic behavior is essentially similar, up to a factor proportional to
the roundo� unit. This is the key point for deriving realistic total relative
error bounds. To do that, a preliminary step in Section 3 is a classical round-
ing error analysis for the loop-independent parameters and the body of the
loop (local errors).

Then, we bound the global errors accumulating when executing the main
loop in Section 4. There, we make the key observation that the generating
series in the Laplace plane associated to global errors is solution to the same
previously mentioned LDE, but with an inhomogeneous term generated by
the local errors. Working with series in the Laplace plane allows for su�-
ciently simple closed-form formulas, even if it sometimes means performing
some crafty term-by-term majorizations. This technique allows for the com-
putation of explicit a priori rounding error bounds depending on the input
parameters, without any additional runs or restrictive imposed ranges on the
parameters. Given a unit roundo� u and a truncation order N , the bound
proposed in Theorem 1 is of the form (N +A)u+o(u), where A is an explicit
constant depending on the parameters and o(u) stands for explicitly bounded
small terms compared to u.

Finally, practical aspects are considered: in Section 5 we comment on
how the analyzed implementation simulates an increased exponent range, as
to avoid over�ows in practice; then, a numerical validation of the quality of
the bound is provided on a range of examples in Section 6.

2 Computing the Orbital Collision Probability

In this section, the main steps of the mathematical derivations used to build
the reviewed algorithm are brie�y reminded. This is particularly useful since
the proposed rounding error analysis partly exploits the very same ingredi-
ents.

2.1 The short-term encounter model

The short-term encounter model (whose complete set of assumptions is re-
called in detail in [3] or [12]) for the computation of the probability of collision
between two spherical objects mainly consists in assuming that the relative
trajectory is a straight line during the encounter and in projecting it onto
the encounter plane de�ned to be perpendicular to the relative velocity vec-
tor. Let (x, y) denote the mean coordinates of the relative position of the
secondary object with respect to the primary object in the encounter frame
(see [12] for its de�nition). The relative position uncertainty is described by
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the following bivariate Gaussian density function

ρ(x, y) =
1

2πσxσy
exp

[
−1

2

(
(x− xm)2

σ2
x

+
(y − ym)2

σ2
y

)]
,

where (xm, ym) is the mean position of the secondary object relative to the
primary object in the covariance frame and σx, σy ∈ R+

∗ are the standard
deviations of the relative coordinates in the encounter plane. The probability
of collision is then given by a two-dimensional integral parameterized by the
radius R of the combined spherical object:

P(R) =
∫
x2+y2⩽R

ρ(x, y)dxdy. (1)

This integral is the cumulative density function of the random variable Ξ =
X2 + Y 2 (i.e., P(R) = Pr {Ξ ⩽ R2}) where X ▷ N (xm, σ

2
x), Y ▷ N (ym, σ

2
y)

are independent normal random variables. By rescaling Ξ, we get P(R) =
g(1) where the function g : R+ 7→ R+ is de�ned as g(ξ) = P(R

√
ξ).

Several methods for computing the integral (1) have been proposed in
the aerospace literature (see for instance [6,12] and references therein). Here
we focus on the algorithm of [12], where one obtains a convergent series
expansion of g(ξ) by considering its Laplace transform. Various versions of
this idea have been applied to both central and non-central quadratic forms;
see for instance [10, Chapter 4] and references therein.

2.2 Algorithm

Due to the cancellation phenomenon occurring when summing the terms of
a series of di�erent signs and similar magnitude, the direct evaluation of the
power series expansion of g(ξ) is only practical for small values of R2. The
idea of [12] to remedy this, inspired by [7], is to introduce a preconditionner
of the form Π(ξ) = exp(pξR2) and consider the expansion of the function
f = Πg, which then has nonnegative coe�cients. Assuming without loss of
generality that 0 < σy ⩽ σx, a good choice is p = 1/(2σ2

y).
We now summarize how the authors of [12] obtain a linear-time algorithm

for computing the �rstN terms of the series f . We use the following notation:

p =
1

2σ2
y

, ϕ = 1−
σ2
y

σ2
x

, ωx =
x2m
4σ4

x

, ωy =
y2m
4σ4

y

,

and observe that 0 ⩽ ϕ < 1, ωx ⩾ 0, ωy ⩾ 0.
The �rst step is to compute the Laplace transform of the preconditioned

function in closed form. For |λ| > p, one has

Lf (λ) = Lg(λ− pR2) =
πR2ρ(0, 0) exp

[
ωyR2

λ
+ ωxR2

λ−pϕR2

]
√
λ(λ− pϕR2)(λ− pR2)

.
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The power series expansion of f(ξ) is the termwise inverse Laplace transform
of the expansion at in�nity of Lf (λ) (see [17, Chap. 9], [16, Chap. 2.14]), and
the coe�cients of the latter are the same as those of the Taylor expansion of

Lf (λ
−1)=

πR2ρ(0, 0)λ2 exp
[
ωyR

2λ− ωx

pϕ
− ωx

pϕ(pϕR2λ−1)

]
√
1− pϕR2λ(1− pR2λ)

.

Since the �rst two coe�cients of Lf (λ
−1) are zero, let f̂(λ) = λ−2Lf (λ

−1).

Letting f(ξ) =
∑∞

n=0 cnξ
n+1 (note the n+1), the series expansion of f̂ reads

f̂(λ) =
∞∑
n=0

cn (n+ 1)!λn. (2)

The second step is to derive a linear recurrence relation satis�ed by the
coe�cients cn. For this, one uses the fact that f̂(λ) is solution to a LDE.
Indeed, starting from the de�nition of f̂ and taking logarithmic derivatives,
one has

f̂ ′(λ) = φ(λ)f̂(λ), f̂(0) = πR2ρ(0, 0), (3)

φ(λ) = ωyR
2+

pϕR2

2(1−pϕR2λ)
+

pR2

1−pR2λ
+

ωxR
2

(1−pϕR2λ)2

=
P (λ)

Q(λ)
with Q(λ) = (1−pϕR2λ)2(1−pR2λ).

(4)

The coe�cients of the polynomials P and Q alternate in sign: we write
P (λ) = P0 − P1λ + P2λ

2 − P3λ
3 and Q(λ) = 1−Q1λ +Q2λ

2 −Q3λ
3 where

Pi, Qi ⩾ 0.

Lemma 1. The sequence (cn) satis�es the linear recurrence

ncn −
Q1(n− 1) + P0

n+ 1
cn−1 +

Q2(n− 2) + P1

(n+ 1)n
cn−2

−Q3(n− 3) + P2

(n+ 1)n(n− 1)
cn−3 +

P3

(n+ 1)n(n− 1)(n− 2)
cn−4 = 0,

(5)

for n ⩾ 4, with initial terms c0, . . . , c3 given in Algorithm 1.

Proof sketch. The LDE (3) is equivalent to

Q(λ)λf̂ ′(λ)− P (λ)λf̂(λ) = 0. (6)
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One can check that, for any series f̂ satisfying (2), one has

λkf̂(λ) =
+∞∑
n=k

cn−k

(n+ 1) . . . (n− k + 2)
(n+ 1)!λn,

λ(f̂)′(λ) =
+∞∑
n=0

(ncn)(n+ 1)!λn.

(7)

Using these identities repeatedly, one obtains

Q(λ)λf̂ ′(λ)− P (λ)λf̂(λ) =
∞∑
n=0

Fn(c)(n+ 1)!λn,

where Fn(c) is exactly the left-hand side of (5), with the additional convention
that c−1 = c−2 = c−3 = 0 and terms whose denominator vanishes are ignored.
It follows using (6) that Fn(c) = 0 for all n ⩾ 0. For n ⩾ 4, this gives
the desired recurrence. For n = 1, 2, 3, one obtains the expressions for c1,
c2, c3 appearing in the algorithm, and similarly for c0 since c0 = f̂(0) =
πR2ρ(0, 0).

Summarizing, we have

P(R) = g(1) = exp
(
−pR2

) ∞∑
n=0

cn,

where the coe�cients cn are given by Lemma 1. Algorithm 1 is a proce-
dure for evaluating this expression. Our next goal is to analyse the e�ect of
rounding errors on this procedure.

3 Local Rounding Error Bounds

In this section, we describe the employed FP setting and provide the local
error analysis.

3.1 FP arithmetic setting

We assume that Algorithm 1 is implemented in radix-2, precision-t, round-
to-nearest FP arithmetic, with unbounded exponent range. This means that,
whenever an expression a∗b, with a basic operation ∗ ∈ {+,−, ·, /}, appears
in the algorithm, what is e�ectively computed is RN(a ∗ b), where RN(x)
denotes the FP number closest to a real number x (with some arbitrary
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Algorithm 1 Computation of the Probability of Collision.

Input: Parameters: σx, σy, xm, ym; combined object radius: R; number of
terms: N .

Output: P0:N � truncated series approximation of P .
1: p = 1

2σ2
y
; ϕ = 1−

(σy

σx

)2
; ωx = x2

m

4σ4
x
; ωy =

y2m
4σ4

y
;

2: Q1 = pR2(2ϕ+ 1); Q2 = p2R4ϕ(ϕ+ 2); Q3 = p3R6ϕ2;

3: P0 =
(
p
(
ϕ
2
+ 1
)
+ ωx + ωy

)
R2;

4: P1 =
(pϕ(ϕ+5)

2
+ ωx + ωy(2ϕ+ 1)

)
pR4;

5: P2 =
(
3
2
p+ ωy(ϕ+ 2)

)
p2R6ϕ;

6: P3 = p3ωyR
8ϕ2;

7: c0 =
1

2σxσy
exp
(
−1

2

(x2
m

σ2
x
+ y2m

σ2
y

))
R2;

8: c1 =
P0

2
c0; c2 =

Q1+P0

6
c1 − P1

12
c0;

9: c3 =
2Q1+P0

12
c2 − Q2+P1

36
c1 +

P2

72
c0;

10: s = c0 + c1 + c2 + c3
11: for n = 4 to N − 1 do
12: cn = Q1(n−1)+P0

(n+1)n
cn−1 − Q2(n−2)+P1

(n+1)n2 cn−2

+ Q3(n−3)+P2

(n+1)n2(n−1)
cn−3 − P3

(n+1)n2(n−1)(n−2)
cn−4;

13: s = s+ cn;
14: end for

15: return P0:N = exp
(
−pR2

)
s.
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tie-breaking rule). In particular, our arithmetic obeys the standard error
models [8, Chap. 2.2.]

RN(x) = x(1 + r1) = x/(1 + r2),with |r1|, |r2| ⩽ u, (8)

with rounding unit u = 2−t. In addition, multiplications by powers of two
are exact.

This setting correctly models �real-life� IEEE-754 arithmetic provided
that no over�ows or under�ows occur. It turns out that, when implemented in
binary64 arithmetic, Algorithm 1 can easily encounter over�ows for realistic
values of the input. We comment in Section 5 on how the implementation
by the authors of [12] simulates an increased exponent range, making the
assumption of an unbounded exponent range legitimate for the error analysis.

For de�niteness, we also assume that

� composite expressions are evaluated from left to right: for instance,
a+ bcd is computed as RN(a+ RN(RN(bc)d)),

� the power operation is implemented according to the formulas x2 = x·x,
x3 = x · x2, x4 = (x2)2, x6 = (x2)3, and x8 = (x4)2,

� the exponential function used at steps 7 and 15 is faithfully rounded,
implying that the corresponding relative error is bounded by 2u.

These assumptions are not critical and our bounds easily adapt to slightly
di�erent implementations.

We denote by x̃ the computed value of a quantity x. To express the
relation between x̃ and x, we use the θk and γk notation of [8, Chap. 3].
In short, each occurrence of the symbol θk denotes a potentially di�erent
quantity of the form θk =

∏k
i=1(1+ri)

±1−1 with |ri| ⩽ u for all i. Assuming
ku < 1, one has |θk| ⩽ γk where γk is de�ned as ku/(1− ku) and satis�es in
particular γk = ku+O(u2) as u→ 0.

3.2 Bounds for loop-independent parameters

Let us �rst bound the rounding errors occurring in lines 1�7 of Algorithm 1.
For instance, using Equation (8), one has

p̃ = RN(1/RN(σy · σy))/2 = p(1 + θ2), (9)

which gives an absolute error bound of |p− p̃| ⩽ γ2p. Similar bounds for the
other parameters are summarized below.
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Param. p ωx ωy ϕ Q1 Q2 Q3

Abs. Err. γ2p γ5ωx γ5ωy γ4 γ9Q
♯
1 γ18Q

♯
2 γ24Q

♯
3

Param. P0 P1 P2 P3 c0 e−pR2

Abs. Err. γ10P
♯
0 γ18P

♯
1 γ27P

♯
2 γ32P

♯
3 e0c0 τe−pR2

Table 1: Absolute rounding error bounds for the parameters.

Proposition 1. The absolute FP rounding error for the parameters appear-
ing in lines 1�7 and the preconditionner exp(−pR2) in line 15 in Algorithm 1
is bounded as indicated in Table 1, where P ♯

i := Pi{ϕ← 1}, Q♯
i := Qi{ϕ← 1}

denote the values for ϕ = 1 of the Pi and Qi:

Q♯
1 = 3pR2, Q♯

2 = 3p2R4, Q♯
3 = p3R6,

P ♯
0 =

(
3
2
p+ ωx + ωy

)
R2, P ♯

1 = (3p+ ωx + 3ωy) pR
4,

P ♯
2 =

(
3
2
p+ 3ωy

)
p2R6, P ♯

3 = p3ωyR
8,

e0 = exp

[
1

2

(
x2m
σ2
x

+
y2m
σ2
y

)
γ4

]
(1 + γ6)− 1,

τ = exp
[
pR2γ2

]
(1 + γ2)− 1.

(10)

Proof. Similarly to Equation (9) one obtains ω̃x = ωx(1 + θ5) and ω̃y =
ωy(1 + θ5).

Concerning ϕ, �rstly observe that since 0 < σy ⩽ σx, one has 0 <
σy/σx ⩽ 1 and because RN preserves inequalities, 0 < ã := RN(RN(σy/σx) ·
RN(σy/σx)) ⩽ 1, implying that 0 ⩽ b := 1− ã < 1. Now, ϕ̃ = RN(b), so that
0 ⩽ ϕ̃ ⩽ 1 and

|ϕ− ϕ̃| ⩽ |ϕ− b|+ |b− ϕ̃| ⩽ |σ2
y/σ

2
x − ã|+ u ⩽ γ3 + γ1 ⩽ γ4.

Regarding Q1, one has Q̃1 = pR2(2ϕ̃ + 1)(1 + θ6), and hence, using the
previous bounds on ϕ and |ϕ− ϕ̃|,

|Q1 − Q̃1| = |pR2(2ϕ+ 1)− pR2(2ϕ̃+ 1)(1 + θ6)|
⩽ 2pR2|ϕ− ϕ̃|+ pR2|(2ϕ̃+ 1)|γ6
⩽ 2pR2γ4 + 3pR2γ6 ⩽ 3pR2γ9.

The last inequality is readily obtained by applying the rules given in Lemma
3.3 of the reference [8, Chap. 3.4]. The case of the other parameters Pi and Qi

is similar; see Appendix A.1 for detailed proofs.

For c0, denote z = −1
2

(
x2
m

σ2
x
+ y2m

σ2
y

)
. Then z̃ = z(1 + θ4), and c̃0 =

R2

2σxσy

(
ez̃(1 + θ2)

)
(1 + θ4) = c0e

zθ4(1 + θ6).
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3.3 Local error analysis

Let us now turn to the computation of cn (steps 7 �12 of Algorithm 1). We
denote by c̃n the computed value of cn, and we call local absolute error on
cn the absolute rounding error εn generated at the corresponding step of the
algorithm. In other words, for n ⩾ 4, we set

εn := c̃n −
(
Q1(n− 1) + P0

(n+ 1)n
c̃n−1 −

Q2(n− 2) + P1

(n+ 1)n2
c̃n−2

+
Q3(n− 3) + P2

(n+ 1)n2(n− 1)
c̃n−3 −

P3

(n+ 1)n2(n− 1)(n− 2)
c̃n−4

) (11)

(where all operations are mathematically exact). We then have the following
bound on |εn|.
Proposition 2. The local error introduced at iteration n at step 12 of Algo-
rithm 1 satis�es

|εn| ⩽ γ

(
Q♯

1(n− 1) + P ♯
0

(n+ 1)n
|c̃n−1|+

Q♯
2(n− 2) + P ♯

1

(n+ 1)n2
|c̃n−2|

+
Q♯

3(n− 3) + P ♯
2

(n+ 1)n2(n− 1)
|c̃n−3|

+
P ♯
3

(n+ 1)n2(n− 1)(n− 2)
|c̃n−4|

)
,

where γ = γ40.

Proof. The coe�cient cn is computed as c̃n = (((t1 + t2)(1 + θ1) + t3)(1 +
θ1) + t4)(1 + θ1) with

ti=(−1)i+1 (Q̃i(n− i)(1 + θ1) + P̃i−1)(1 + θ1)

di(n)(1 + θi)−1
c̃n−i(1 + θ2),

where d1(n) = (n+1)n, d2(n) = (n+1)n2, . . . are the denominators appearing
in (11), and Q4 = 0. We thus have

c̃n =
4∑

i=1

(Q̃i(n− i)(1 + θ9) + P̃i−1(1 + θ8)

di(n)
.

Substituting into (11), we obtain

εn =
4∑

i=1

(−1)i+1c̃n−i

di(n)

(
(Q̃i −Qi + Q̃iθ9)(n− i)
+ (P̃i−1 − Pi−1 + P̃i−1θ8)

)
.

According to Table 1, we have |Q̃i − Qi| ⩽ Q♯
iγ24 (with the convention that

Q♯
4 = 0) and |Q̃iθ9| ⩽ (1 + γ24)Q

♯
iγ9, so that |Q̃i − Qi + Q̃iθ9| ⩽ Q♯

iγ33.
Similarly, we have |P̃i−1−Pi−1+P̃i−1θ8| ⩽ P ♯

i−1γ40, and the result follows.
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Since the formulas used for computing c1, c2, c3 correspond to truncated
instances of the recurrence, (11) also applies for ε1, ε2, ε3, if terms with a
zero denominator are ignored. With this convention the bound from Prop. 2
holds for all n ⩾ 1.

4 Global Rounding Error Bounds

Let us apply the generating series approach of [11] to the rounding error
analysis of the main loop.

4.1 Global error modeling

The local errors εn build up and lead to a global (absolute) error

δn := cn − c̃n,

that is the main quantity we need to control. For doing so it is convenient
to encode the sequences (δn) and (εn) as coe�cients in the generating series
δ̂(λ) =

∑+∞
n=0(n+ 1)!δnλ

n and ε̂(λ) =
∑+∞

n=0(n+ 1)!εnλ
n in the same manner

as (2).
From Equations (5) and (11), we have

nδn =
Q1(n− 1) + P0

(n+ 1)
δn−1 −

Q2(n− 2) + P1

(n+ 1)n
δn−2

+
Q3(n− 3) + P2

(n+ 1)n(n− 1)
δn−3 −

P3

(n+ 1)n(n− 1)(n− 2)
δn−4 − nεn.

After multiplying this relation by λn and summing over n, we obtain, using
the identities(7), a LDE satis�ed by the series δ̂:

Q(λ)(δ̂)′(λ)− P (λ)δ̂(λ) = ε̂′(λ). (12)

Comparing with Equation (6), we see that δ̂ satis�es the same �rst-order
LDE as the generating series f̂ of the (exact) coe�cients cn, except for the
right hand side which now depends on the local errors εn. Only bounds are
available for these, so we need to work with di�erential inequalities.

Given two series a(λ) =
∑+∞

n=0 anλ
n and b(λ) =

∑+∞
n=0 bnλ

n, denote by
a(λ) ≪ b(λ) the fact that |an| ⩽ bn for all n ⩾ 0. In particular, this
implies that the bn coe�cients are nonnegative real numbers. We denote by
|a|(λ) =

∑+∞
n=0 |an|λn the series of absolute values of coe�cients.

12



Proposition 3 (Corollary of Proposition 2). The generating series of local
errors satis�es this di�erential inequality:

ε̂′(λ)≪ γ
((
Q♯(λ)φ(λ) + P ♯(λ)

)
f̂(λ)+

Q♯(λ)|δ̂|′(λ) + P ♯(λ)|δ̂|(λ)
)
,

(13)

with Q♯(λ) = Q♯
1λ+Q♯

2λ
2 +Q♯

3λ
3 and P ♯(λ) = P ♯

0+P
♯
1λ+P

♯
2λ

2+P ♯
3λ

3+P ♯
4λ

4.

Proof. It follows by using the inequality |c̃n| ⩽ cn + |δn| in the bound on εn
obtained from Proposition 2, which is to be multiplied by nλn, and summed
over n.

Located in the Laplace plane, Eqs. (12) and (13) allow for deriving bounds
on δ̂(λ). They are obtained as solutions of order-1 LDE. But there is still a

need to bound the inverse Laplace transform δ(ξ) =
∞∑
n=0

δnξ
n+1. In particular,

we need to bound the total sum of absolute rounding errors |δ|(1). This is
done by an ad-hoc majorization of convolution terms. For clarity, we provide
in Table 2 a synthesis of forthcoming notations in this twofold view.

4.2 A simpli�ed bound

For the sake of exposition, we �rst prove a simpli�ed, not fully rigorous error
bound obtained by neglecting the terms involving γδ̂(λ) in (13), which are
of order O(u2):

Q(λ)δ̂′(λ)− P (λ)δ̂(λ)≪ γ
(
Q♯(λ)φ(λ) + P ♯(λ)

)
f̂(λ).

To further simplify this equation, we denote φ♯(λ) := φ(λ){ϕ ← 1} and
use 0 ≪ φ(λ) ≪ φ♯(λ) and 0 ≪ Q(λ)−1 ≪ Q(λ)−1{ϕ ← 1} = (1 − pR2λ)−3

(this follows directly from Equation (4)) to obtain

|δ̂|′(λ)≪ φ(λ)|δ̂|(λ) + γψ̂(λ)f̂(λ),

with ψ̂(λ) :=
Q♯(λ)φ♯(λ) + P ♯(λ)

(1− pR2λ)3
≫ 0.

(14)

Solving this di�erential inequality gives rise to the following simpli�ed bound.

Proposition 4. Under the simpli�ed model above, the total rounding error
accumulated while computing f(1) satis�es

+∞∑
n=0

|c̃n − cn| = |δ|(1) ⩽ (e0 + γC)f(1),

13



'Real' (ξ) 'Laplace at ∞' (λ)

f(ξ) =
∑∞

n=0 cnξ
n+1

f̂(λ) =
∑∞

n=0 cn(n+ 1)!λn

f̂(λ) = λ−2Lf (λ−1)

Qf̂ ′ − P f̂ = 0

δ(ξ) =
∑∞

n=0 δnξ
n+1 δ̂(λ) =

∑∞
n=0 δn(n+ 1)!λn

δ̂(λ) = λ−2Lδ(λ−1)

|δ|(1) =
∞∑
n=0
|cn − c̃n| Qδ̂′ − P δ̂ = ε̂′

ε(ξ) =
∑∞

n=0 εnξ
n+1

ε̂(λ) =
∑∞

n=0 εn(n+ 1)!λn

ε̂′ ≪ γ
((
Q♯f̂ ′ + P ♯f̂

)
+
(
Q♯δ̂′ + P ♯δ̂

))

δ(ξ)≪ ∆(ξ)
δ̂ ≪ ∆̂

∆̂′ = φ∆̂ + γ
Q

(
Q♯
(
f̂ ′ + ∆̂′

)
+ P ♯

(
f̂ + ∆̂

))
∆ = e0f +

∞∑
k=0

γk

k! Ψ ∗ . . . ∗Ψ︸ ︷︷ ︸
k times

∗f ∆̂ = êf̂

ê = e0 + (1 + e0)
∞∑
k=0

γk

k! Ψ̂
k

Ψ(ξ) ⩽W (ξ)epR
2ξ

∆ = e0f + γΨ ∗ f Order 1 approx of ê

ê = e0 + γΨ̂
|δ|(1) ⩽ ∆(1)

Table 2: Main properties of real and Laplace plane series.
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with e0 given in (10), γ = γ40 and

C :=
7

96
p3ωxR

8 +

(
7

12
p+

1

2
ωx

)
p2R6 +

(
9

4
p

+
5

4
ωx +

15

4
ωy

)
pR4 +

(
3

2
p+ ωx + 3ωy

)
R2.

(15)

Proof. Since all the series on the right-hand side of (14) have nonnegative
coe�cients, Lemma 6.5 in [11] implies that |δ̂|(λ)≪ ∆̂(λ) where ∆̂(λ) is the
solution with ∆̂(0) = e0f̂(0) ⩾ |δ(0)| of the LDE

∆̂′(λ) = φ(λ)∆̂(λ) + γψ̂(λ)f̂(λ). (16)

Using f̂ as a solution of the homogeneous part of (16),

∆̂(λ) =
(
e0 + γΨ̂(λ)

)
f̂(λ), Ψ̂(λ) :=

∫ λ

0

ψ̂(σ)dσ.

This is a bound on |δ̂|, in the Laplace plane. To go back to |δ| and obtain
an inequality |δ|(λ)≪ ∆(λ), consider the series ∆ and Ψ de�ned by ∆̂(λ) =
λ−2L∆(λ

−1) and Ψ̂(λ) = LΨ(λ
−1) (with no λ−2 factor in the latter). Standard

Laplace transform theory, see [17, Chap. 5, �8], gives

∆(ξ) = e0f(ξ) + γ (Ψ ∗ f)(ξ),

with(Ψ∗f)(ξ)=
∫ ξ

0
Ψ(τ)f(ξ−τ)dτ the convolution of Ψ and f .

A technical but straightforward computation1 (see Lemma 3 in Appendix A.2)
shows that the series Ψ(ξ) can be bounded as Ψ(ξ)≪ W (ξ)epR

2ξ, whereW (ξ)
is an explicit polynomial of degree 3 in ξ with nonnegative coe�cients and∫ 1

0
W (τ)dτ is equal to the constant C de�ned in (15). It follows that

(Ψ ∗ f)(1) ⩽
∫ 1

0

W (τ)epR
2τepR

2(1−τ)g(1− τ)dτ

⩽ epR
2

g(1)

∫ 1

0

W (τ)dτ = Cf(1),

(where the second inequality uses the fact that g is nondecreasing), and
therefore

|δ|(1) ⩽ ∆(1) = e0f(1) + γ (Ψ ∗ f)(1) ⩽ (e0 + γC)f(1).

1Maple� worksheet used for these computations given in Appendix A.3.
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4.3 A rigorous bound

For a fully rigorous bound on δ̂(λ), we consider again the di�erential inequal-
ities (12) and (13). Reasoning as in the previous section, we have

|δ̂|′(λ)≪ γ
Q♯(λ)

Q(λ)
|δ̂|′(λ) +

(
φ(λ) + γ

P ♯(λ)

Q(λ)

)
|δ̂|(λ)

+ γ
Q♯(λ)φ(λ) + P ♯(λ)

Q(λ)
f̂(λ),

where the coe�cients of |δ| and |δ|′ as well as the inhomogeneous term are
series with nonnegative coe�cients. Since Q♯(0) = 0, Lemma 6.5 in [11]
applies again and shows that δ̂(λ) ≪ ∆̂(λ), with ∆̂(λ) ≫ 0 satisfying the
LDE

∆̂′(λ) = φ(λ)∆̂(λ) +
γ

Q(λ)

(
Q♯(λ)

(
f̂ ′(λ) + ∆̂′(λ)

)
+ P ♯(λ)

(
f̂(λ) + ∆̂(λ)

))
.

Let us write ∆̂(λ) = ê(λ)f̂(λ) and use (3) to obtain a LDE satis�ed by ê,
where the right-hand side is a positive series:(

1− γQ
♯(λ)

Q(λ)

)
ê′(λ) = γ

(
Q♯(λ)

Q(λ)
φ(λ) +

P ♯(λ)

Q(λ)

)
(1 + ê(λ)).

Since a(λ) := γQ♯(λ)/Q(λ) satis�es a(0) = 0 and a(λ)≫ 0,

1

1− a(λ)
=

Q(λ)

Q(λ)− γQ♯(λ)
≫ 0,

by composition of two series with nonnegative coe�cients. After multiplica-
tion by this series, we obtain

ê′(λ) = γ
Q♯(λ)φ(λ) + P ♯(λ)

Q(λ)− γQ♯(λ)
(1 + ê(λ)). (17)

This LDE has several poles due to the perturbation γQ♯(λ) of the denomina-
tor in the right-hand side. To overcome this additional di�culty, we use the
following lemma, proved in Appendix A.2, to obtain a unique pole, at the
price of a slight increase in the parameter p. This is a key point for adapting
the proof of Proposition 4 to the current setting.

Lemma 2. Assuming 7γ < 1, we have

1

Q(λ)− γQ♯(λ)
≪ 1

(1− p+R2λ)3
with p+ :=

p

1− 3
√
7γ
.
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This result allows us to bound the solution of LDE (17) by the solution
of the simpler LDE

ê′(λ) = γψ̂+(λ)(1 + ê(λ)), ê(0) = e0, (18)

where ψ̂+(λ) := ψ̂(λ){p← p+} with ψ̂(λ) de�ned in (14).

Proposition 5. The terms c̃n computed in FP arithmetic in the main loop
of Algorithm 1 satisfy:

+∞∑
n=0

|c̃n − cn| = |δ|(1) ⩽
(
e0 + (1+e0)e

ηpR2

(eγC
+ − 1)

)
f(1),

with γ=γ40, e0 as in (10), η :=
3
√
7γ

1− 3
√
7γ

and C+:=C{p←p+}.

Proof. Denoting Ψ̂+(λ) :=

∫ λ

0

ψ̂+(σ)dσ, LDE (18) gives

ê(λ) = (1 + e0)e
γΨ̂+(λ) − 1 = e0 + (1 + e0)

+∞∑
k=1

γkΨ̂+(λ)k

k!
.

This gives an explicit expression for ∆̂(λ) = ê(λ)f̂(λ).
To obtain ∆(ξ) s.t. ∆̂(λ) = λ−2L∆(λ

−1), let Ψ+(ξ) be the series such
that Ψ̂+(λ) = LΨ+(λ−1). Then Laplace transform rules give the following
identity of formal power series:

∆(ξ) = e0f(ξ) + (1 + e0)
+∞∑
k=1

γk

k!

(
Ψ+∗k ∗ f

)
(ξ), (19)

where Ψ+∗k
= Ψ+ ∗ · · · ∗Ψ+ (k times). In Lemma 4, Appendix A.2, we prove

the remaining inequality:

(Ψ+∗k ∗ f)(1) ⩽ eηpR
2

(C+)kf(1).

4.4 The �nal rounding error bound

The truncated series approximation P0:N = e−pR2
s = e−pR2∑N−1

n=0 cn of P is

obtained by evaluating the sum
∑N−1

n=0 c̃n in FP arithmetic and by multiplying

the result s̃ with e−pR2
. We call P̃0:N the FP number returned by Algorithm 1.

The following theorem provides a relative rounding error bound w.r.t. P .
Adding to this bound a relative truncation error bound on |P0:N − P|/P
derived from [12, �III.C] would yield a total error bound on |P̃0:N − P|/P .
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Theorem 1. The total rounding error is bounded by∣∣P̃0:N − P0:N ∣∣
P

⩽ (1 + γN )(1 + τ)(1 + e0)
(
1 + eηpR

2
(eγC

+− 1)
)
− 1,

with γ = γ40, and where the quantities e0, τ are de�ned in Proposition 1, and
η, C+ are de�ned in Proposition 5.

The �rst-order error approximation in the roundo� unit u for this bound
on |P̃0:N − P0:N |/P is(

N + 8 + 2pR2 +
2x2m
σ2
x

+
2y2m
σ2
y

+ 40C

)
u, (20)

where 40Cu is the dominant term for large p, R, xm and ym.

Proof. Denote s =
N−1∑
n=0

c̃n and s̃ its FP evaluation using N − 1 additions.

By Proposition 5, |s − s| ⩽
N−1∑
n=0

|c̃n − cn| ⩽ νf(1) where ν := e0 + (1 +

e0)e
ηpR2

(eγC
+ − 1). Then |s̃ − s| ⩽ γN−1

N−1∑
n=0

|c̃n| ⩽ γN−1(1 + ν)f(1). Com-

bining these two bounds yields |s̃− s| ⩽ (γN−1 + ν + γN−1ν)f(1).
Finally, the relative errors |τ ′| ⩽ τ and |θ1| ⩽ u induced by the evaluation

of exp(-pR2) and the multiplication by s̃ give

|P̃0:N − P0:N | = |e−pR2

s̃(1 + τ ′)(1 + θ1)− e−pR2

s|

⩽ e−pR2
(
s(τ + u+ τu) + |s̃− s|(1 + τ)(1 + u)

)
⩽ P

(
τ + u+ τu+ (γN−1 + ν + γN−1ν)(1 + τ)(1 + u)

)
⩽ P

(
(1 + γN)(1 + τ)(1 + ν)− 1

)
,

which is exactly the bound claimed by Theorem 1.

5 Preventing Over�ows and Under�ows

Algorithm 1 may be subject to over�ows and under�ows, depending on the
problem parameters and the number N of terms to be computed. First,
according to [12, �III.C, Prop. 4], this number N has to be at least 2e(p +
ωx + ωy)R

2 to obtain a reasonable approximation of P . Since the cn sum
to f(1) = epR

2P and P may be close to 1, the use of plain IEEE 754-1985
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binary64 FP arithmetic with maximum exponent 1023 may cause over�ows
for examples requiring more than 2e ln (21023) ≈ 4000 terms.

In the C implementation of [12], a rescaling strategy is used to prevent
over�ows and under�ows. At the end of each iteration, if the absolute value
of the computed term c̃n is above A or below A−1, for A = 2800, then the
values of c̃n, c̃n−1, c̃n−2, c̃n−3 are rescaled by 2k for some k so that their ab-
solute values belong to [A−1, A]. This number k is added to a signed 64-bit
integer used to �store� the current exponent, and the summation of the terms
c̃n keeps track of these intermediate rescalings. Two additional rescalings are
also used for c0 and the �nal factor e−pR2

to prevent under�ows. Note that
this rescaling strategy, where the exponent is stored separately in a 64-bit in-
teger, does not modify the relative rounding error model used in the previous
sections.

The following theorem guarantees the absence of over�ows under reason-
able assumptions on the size of input parameters.

Theorem 2. We assume that the number N of terms required to approximate
P is bounded by N∗ = 108, and that this bound also holds for pR2, ωxR

2 and
ωyR

2. In addition, considering the size of a satellite and its distance to the
space debris, we assume 1 ⩽ R ⩽ 103 and σx, σy, |xm|, |ym| ⩽ 106 (all these
quantities are expressed in meters).

Then the execution of the C implementation of Algorithm 1 on σx, σy, xm,
ym, R,N is not subject to over�ows.

Proof. We prove this property for all the steps of the algorithm, postponing
to the end of the proof the additional e�ect of rounding errors.
� Loop-independent parameters. By combining the inequalities assumed for
the parameters in the theorem, it is straightforward that all the subexpres-
sions involved in the computation of p, ϕ, ωx, ωy, Qi, Pi and c0 are much
smaller than 21023 and do therefore not cause any over�ow.
� Evaluation of cn for n ⩾ 1. At the beginning of iteration n, the preceding
terms cn−1, cn−2, cn−3, cn−4 are bounded by A = 2800 in absolute value
thanks to the rescaling strategy. A quick analysis shows that each of the four
coe�cients in front of cn−i is bounded by 2N4

∗ , and both their numerator and
denominator are bounded by 2N5

∗ . Hence, their evaluation cannot produce
over�ows. Finally, cn ⩽

(∑3
i=1Qi +

∑3
i=0 Pi

)
A ⩽ 7N4

∗A ⩽ 2910 < 21023, so
that no over�ow can occur.
� No over�ow of the 64-bit exponent. The total sum is bounded by f(1) =
epR

2P ⩽ eN∗ ⩽ 22
20.5

< 22
63−1, so that the exponents of all cn and all partial

sums �t in the 64-bit integer. The �nal multiplication by e−pR2
cannot cause

an over�ow either since the argument is negative.
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� The e�ect of rounding errors. The local rounding errors in the constants
and in each iteration of the loop were bounded by small constants (Proposi-
tions 1 and 2), hence they do not modify signi�cantly the over�ow analysis of
the �rst two items above. The worst-case relative error bound given by The-
orem 1 is (crudely) bounded by exp (γN+8 + (2 · 1012 + γ2 + η)N∗ + γC+) ⩽
22

61.4
. Although huge, this bound is su�cient to prove that the computed

sum of the c̃n is smaller than 22
61.4 · 2220.5 < 22

63−1.

The rigorous under�ow analysis is slightly more involved and postponed
to future work. Roughly speaking, the rescaling strategy prevents under�ows
in the exponentials in c0 and e

pR2
(which would cause the output to be zero).

Under�ows can however occur when unrolling the recurrence, but then it
means that the neglected terms cn are so small compared to the previous ones
that this under�ow error is smaller than the relative error already computed
for the partial sum.

6 Examples and conclusion

We exemplify the error bounds on the examples provided in [12], together
with additional numerically challenging examples that we custom made for
illustration purposes.

The numerical behavior of the algorithm is illustrated on Test 1, given
in the �rst line of Table 3, for which 101 terms are computed. In Figure 1a,
the magnitude of the coe�cients c0, . . . , c100 is plotted on a log-scale. This
is a higher precision 106-bits FP arithmetic computation, using the MPFR
library [5], in order to accurately approximate their exact values. Their mag-
nitude increases up to c16 and then the convergent regime is observed. In
Figure 1b the relative rounding error on each coe�cient is plotted, when the
loop is evaluated with a 53-bit FP arithmetic (this rounding error is esti-
mated by comparing with the shadow 106-bit higher precision computation).
These errors are plotted in terms of the roundo� unit u = 2−53. The cor-
responding evaluated sum s̃ and probability P̃0:N are recalled in Figure 1d.
For comparison, we also tested an interval arithmetic implementation with
a 53-bit precision interval format, using the MPFI library2. While these in-
tervals provide enclosures of all the accumulated rounding errors, we observe
in Figure 1c, where the radius of the intervals is plotted in terms of u, that
they highly overestimate the actual rounding errors. This is con�rmed in 1d:
with interval arithmetic, the �nal absolute enclosure radius is 2.9439e12 u ≃
3.26e-4, while the shadowed absolute error bound is 2.5920e6 u≃ 2.87e-10.

2https://gitlab.inria.fr/mpfi/mpfi
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(c) Interval radius (in terms of u) for

MPFI 53-bit precision

Sum s̃ Abs. err. (u) Rel. err. (u)

2.0521e4 2.5920e6 1.2631e2

Proba P̃0:N Abs. err. (u) Rel. err. (u)

7.6474e-2 9.6505e0 1.2619e2

MPFI Sum mid Abs. rad. (u) Rel. rad. (u)

2.0521e4 7.8997e17 3.8496e13

MPFI Proba mid Abs. rad. (u) Rel. rad. (u)

7.6474e-2 2.9439e12 3.8496e13

(d) Computed values

Figure 1: Loop evaluation results for Test 1.
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Case Input parameters (m)
N

Relative Error
# σx σy R xm ym Exact MPFI Lin. Bound (20) Bound Thm. 1

Test 1 50 1 5 10 0 101 1.40e-14 4.27e-3 6.72e-12 6.72e-12
Chan 1 50 25 5 10 0 49 5.86e-17 5.86e-15 6.48e-15 6.48e-15
Chan 2 50 25 5 0 10 49 1.50e-16 6.23e-15 6.53e-15 6.53e-15
Chan 3 75 25 5 10 0 49 9.01e-18 4.55e-15 6.47e-15 6.47e-15
Chan 4 75 25 5 0 10 49 1.80e-16 4.88e-15 6.53e-15 6.53e-15
Chan 5 3,000 1,000 10 1,000 0 49 2.02e-16 7.41e-15 6.35e-15 6.35e-15
Chan 6 3,000 1,000 10 0 1,000 48 1.18e-16 5.61e-15 6.44e-15 6.44e-15
Chan 7 3,000 1,000 10 10,000 0 40 3.38e-16 5.45e-15 7.80e-15 7.80e-15
Chan 8 3,000 1,000 10 0 10,000 4 1.53e-14 4.45e-16 2.36e-14 2.36e-14
Chan 9 10,000 1,000 10 10,000 0 46 9.31e-17 4.46e-15 6.22e-15 6.22e-15
Chan 10 10,000 1,000 10 0 10,000 4 1.52e-14 5.57e-14 2.36e-14 2.36e-14
Chan 11 3,000 1,000 50 5,000 0 47 9.92e-17 4.38e-15 6.73e-15 6.73e-15
Chan 12 3,000 1,000 50 0 5,000 4 4.84e-17 1.98e-15 7.10e-15 7.10e-15

CSM 1 152.88 57.91 10.3 60.58 84.87 46 1.57e-17 4.28e-15 6.85e-15 6.85e-15
CSM 2 5,756.84 15.98 1.3 115.05 -81.61 20 6.15e-16 5.48e-15 9.50e-15 9.50e-15
CSM 3 643.40 94.23 5.3 693.40 102.17 45 6.24e-17 6.39e-15 6.43e-15 6.43e-15

Alfano 3 114.25 1.41 15 0.15 -3.88 1627 4.14e-12 1.15e54 7.07e-10 7.08e-10
Alfano 5 177.81 0.03 10 2.12 -1.22 >1e7 4.35e-4 4e69380 4.87e-01 3.60e+00

Custom 1 1 1 10 1 1 543 6.96e-16 1.78e-13 1.53e-09 1.53e-09
Custom 2 1 0.8 10 1 1 969 2.73e-14 4.7e23 5.59e-09 5.60e-09
Custom 3 1 0.5 10 1 1 3805 7.74e-14 4.4e174 8.95e-08 9.00e-08
Custom 4 1 0.2 10 1 1 95139 4.6e-12 2e1483 2.13e-05 2.22e-05
Custom 5 1 0.1 10 1 1 >1e7 3.63e-8 1e6155 1.36e-03 1.59e-03
Custom 6 0.5 0.1 10 1 1 >1e7 1.49e-11 2e5988 1.66e-02 1.95e-02
Custom 7 1 0.05 10 1 1 >1e7 3.0e-6 4e24841 8.68e-02 1.70e-01
Custom 8 0.2 0.05 10 1 1 >1e7 1.28e-9 2e23506 4.05e+01 7.40e+17

Table 3: Relative errors for test cases adapted from [12]: exact, obtained
with MPFI, computed with our linearized bound w.r.t. u (20) and with our
full bound of Theorem 1.
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In Table 3, we computed both the fully rigorous relative error bound of
Theorem 1 and its linearization (20) w.r.t. u. For easy examples requiring
less than 50 terms, both MPFI and our bounds provide very sharp enclosures.
Both of our bounds are almost identical. A rapid increase of interval widths
with MPFI is observed when N is larger than 100 in most of the cases,
whereas our bounds continue to guarantee at least one correct digit in very
hard cases requiring about N = 107 terms. However, when the ratio σy/σx
becomes very small, like in Case Alfano 5 and Custom 8, the bounds provided
are very loose and the rigorous bound deviates from its linearization. As
mentioned also in [12], such extremely degenerate cases are rarely occurring
in practice (this roughly corresponds to the integration domain becoming
uni-dimensional).

Therefore, we believe that the bound provided in this article can be of
highly practical use. One can simply evaluate the provided closed-form bound
and there is no need to overload the C code with shadowing computations or
with an additional execution with interval arithmetic (which would encumber
especially the on-board implementation). Our study also shows that the
approach of [11] and the additional mathematical tools developed herein are
applicable to an algorithm currently used in practice. While described by
pen-and-paper, the formulas presented can be easily obtained by a computer
algebra software (as shown in the jointed Maple code), so they can be at least
partly automated. Future works, include possible re�nements concerning
under�ow handling, an average case analysis in the framework of [9], a formal
proof of these results and further generalizations to other implementations of
similar mathematical functions like Chi-square densities (which have similar
algebraic properties).
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A Appendix

A.1 Complementary proofs for the rounding error anal-

ysis of the parameters of Algorithm 1

The following results complete the proof of Proposition 1. Note that we
insist on bounding each Pi, Qi in terms of the corresponding P ♯

i , Q
♯
i for

simplicity reasons only, and slightly better bounds can be obtained without
this restriction.

Proposition 6. At step 2 of Algorithm 1, the computed value Q̃2 of Q2

satis�es |Q2 − Q̃2| ⩽ Q♯
2γ18.

Proof. The value of Q2 is computed as

Q̃2 = RN(RN(RN(RN(p̃2) · RN(RN(R2)2)) · ϕ̃) · RN(ϕ̃+ 2)).

By Equation (8), this implies

Q̃2 = (p̃R2(1 + θ2))
2ϕ̃(ϕ̃+ 2)(1 + θ4)

= (p(1 + θ2)R
2(1 + θ2))

2ϕ̃(ϕ̃+ 2)(1 + θ4)

= p2R4ϕ̃(ϕ̃+ 2)(1 + θ12).

It follows that

Q̃2 −Q2 = p2R4((2 + ϕ̃+ ϕ)(ϕ̃− ϕ) + ϕ̃(ϕ̃+ 2)θ12)

and therefore

|Q̃2 −Q2| ⩽ p2R4(4γ4 + 3γ12)

⩽ Q♯
2

(
4
3
γ4 + γ12

)
⩽ Q♯

2γ18.

Proposition 7. At step 2 of Algorithm 1, the computed value Q̃3 of Q3

satis�es |Q3 − Q̃3| ⩽ Q♯
3γ24.

Proof. One has

Q̃3 = p̃3(R2(1 + θ1))
3ϕ̃2(1 + θ7)

= (p(1 + θ2))
3(R2(1 + θ1))

3ϕ̃2(1 + θ7)

= p3R6ϕ̃2(1 + θ16),
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hence
Q̃3 −Q3 = p3R6((ϕ̃− ϕ)(ϕ̃+ ϕ) + ϕ̃2θ16)

and

|Q̃3 −Q3| ⩽ p3R6[2γ4 + γ16]

⩽ p3R6 · γ24
= Q♯

3 · γ24.

Proposition 8. At step 3 of Algorithm 1, the computed value P̃0 of P0 sat-
is�es |P0 − P̃0| ⩽ P ♯

0γ10.

Proof. One has

P̃0 = ((p̃(1
2
ϕ̃+ 1)(1 + θ2) + ω̃x)(1 + θ1) + ω̃y)R

2(1 + θ3)

= {[p(1 + θ2)(
1
2
ϕ̃+ 1)(1 + θ2)

+ ωx(1 + θ5)](1 + θ1) + ωy(1 + θ5)}R2(1 + θ3)

= {p(1
2
ϕ̃+ 1)(1 + θ8) + ωx(1 + θ9) + ωy(1 + θ8)}R2,

hence

P̃0 − P0 = pR2(1
2
(ϕ̃− ϕ) + (1

2
ϕ̃+ 1)θ8) + ωxR

2θ9 + ωyR
2θ8

and

|P̃0 − P0| ⩽ pR2(1
2
γ4 +

3
2
γ8) + (ωx + ωy)R

2γ9

⩽ R2(3
2
p(1

3
γ4 + γ8) + (ωx + ωy)γ9)

⩽ P ♯
0γ10.

Proposition 9. At step 4 of Algorithm 1, the computed value P̃1 of P1 sat-
is�es |P1 − P̃1| ⩽ P ♯

1γ18.

Proof. One has

P̃1 = {[12 p̃ϕ̃(ϕ̃+ 5)(1 + θ3) + ω̃x](1 + θ1)

+ ω̃y(2ϕ̃+ 1)(1 + θ2)}p̃(R2(1 + θ1))
2(1 + θ3)

= {[1
2
pϕ̃(ϕ̃+ 5)(1 + θ5) + ωx(1 + θ5)](1 + θ1)

+ ωy(2ϕ̃+ 1)(1 + θ7)}pR4(1 + θ7)

= pR4(1
2
pϕ̃(ϕ̃+ 5)(1 + θ13) + ωx(1 + θ13)

+ ωy(2ϕ̃+ 1)(1 + θ14))

27



hence

P̃1 − P1 = pR4(1
2
p[ϕ̃2 − ϕ2 + 5(ϕ̃− ϕ) + ϕ̃(ϕ̃+ 5)θ13]

+ ωxθ13 + ωy(2(ϕ̃− ϕ) + (2ϕ̃+ 1)θ14))

and

|P̃1 − P1| ⩽ pR4(1
2
p[2γ4 + 5γ4 + 6γ13]

+ ωxγ13 + ωy(2γ4 + 3γ14))

⩽ pR4[3p(γ13 +
7
6
γ4) + ωxγ13 + 3ωy(γ14 +

2
3
γ4)]

⩽ P ♯
1γ18.

Proposition 10. At step 5 of Algorithm 1, the computed value P̃2 of P2

satis�es |P2 − P̃2| ⩽ P ♯
2γ27.

Proof. One has

P̃2 = (3
2
p̃(1 + θ1) + ω̃y(ϕ̃+ 2)(1 + θ2))p̃

2

· (R2(1 + θ1))
3ϕ̃(1 + θ7)

= (3
2
p(1 + θ3) + ωy(ϕ̃+ 2)(1 + θ7))p

2

· (R2(1 + θ1))
3ϕ̃(1 + θ11)

= (3
2
p(1 + θ3) + ωy(ϕ̃+ 2)(1 + θ7))p

2R6ϕ̃(1 + θ14)

= p2R6(3
2
pϕ̃(1 + θ17) + ωy(ϕ̃

2 + 2ϕ̃)(1 + θ21))

hence

P̃2 − P2 = p2R6(3
2
p(ϕ̃− ϕ) + 3

2
pϕ̃θ17

+ ωy(ϕ̃
2 − ϕ2 + 2ϕ̃− 2ϕ) + ωy(ϕ̃

2 + 2ϕ̃)θ21)

and

|P̃2 − P2| ⩽ p2R6(3
2
pγ4 +

3
2
pγ17 + 4ωyγ4 + 3ωyγ21)

⩽ p2R6(3
2
p(γ4 + γ17) + 3ωy(

4
3
γ4 + γ21))

⩽ P ♯
2γ27.

Proposition 11. At step 6 of Algorithm 1, the computed value P̃3 of P3

satis�es |P3 − P̃3| ⩽ P ♯
3γ32.
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Proof. One has

P̃3 = p̃3ω̃y((R
2(1 + θ1))

2(1 + θ1))
2ϕ̃2(1 + θ7)

= p3ωy((R
2(1 + θ1))

2(1 + θ1))
2ϕ̃2(1 + θ18)

= p3ωyR
8ϕ̃2(1 + θ24),

hence

P̃3 − P3 = p3ωyR
8(ϕ̃2 − ϕ2 + ϕ̃2θ24)

and

|P̃3 − P3| ⩽ p3ωyR
8(2γ4 + γ24)

⩽ P ♯
3γ32.

Proposition 12. At step 15 of Algorithm 1, the computed value ã of exp(−pR2)
satis�es |exp(−pR2)− ã| ⩽ τ exp(−pR2) with τ = exp(pR2γ2)(1 + γ2)− 1.

Proof. Denote z = −pR2. Then z̃ = z(1 + θ2). This gives

ã = exp(z̃)(1 + θ2) = exp(z) exp(zθ2)(1 + θ2).

A.2 Complementary proofs for the global error analysis

Lemma 3. Let

Ψ̂(λ) =

∫ λ

0

ψ̂(σ)dσ

with ψ̂ de�ned in (14). Then for all ξ ⩾ 0, the series Ψ(ξ) such that Ψ̂(λ) =
LΨ(λ

−1) satis�es

Ψ(ξ)≪ W (ξ) epR
2ξ,

where

W (ξ) =
7

24
p3ωxR

8ξ3 +
(7
4
p+

3

2
ωx

)
p2R6ξ2 +

(9
2
p

+
5

2
ωx +

15

2
ωy

)
pR4ξ +

(3
2
p+ ωx + 3ωy

)
R2.

Proof. Since

Ψ̂(λ−1) =

∫ λ−1

0

ψ̂(σ)dσ =

∫ +∞

λ

ψ̂(τ−1)

τ 2
dτ,

we have

Ψ(ξ) =
1

ξ
L−1

{
ψ̂(λ−1)

λ2

}
(ξ)
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using Lemma 5.2 from [17, Chap. 5]. We compute the partial fraction de-
composition

ψ̂(λ−1)

λ2
=

7p3ωxR
8

(λ− pR2)5
+

(21p+ 18ωx)p
2R6

2(λ− pR2)4

+
(9p+ 5ωx + 15ωy)pR

4

(λ− pR2)3
+

(3p+ 2ωx − 18ωy)R
2

2(λ− pR2)2

+
12ωy

p(λ− pR2)
− 2ωyR

2

λ2
− 12ωy

pλ
.

and take the inverse Laplace transform term-by-term, which yields

Ψ(ξ) =

(
7

24
p3ωxR

8ξ3 +
(7
4
p+

3

2
ωx

)
p2R6ξ2 +

(9
2
p+

5

2
ωx

+
15

2
ωy

)
pR4ξ +

(3
2
p+ ωx − 9ωy

)
R2

)
epR

2ξ

+ 12ωy
epR

2ξ − 1

pξ
− 2ωyR

2.

We conclude by using the inequality (ex − 1)/x≪ ex and dropping the �nal
negative term.

Proof of Lemma 2. The denominatorQ(λ)−γQ♯(λ) factors as (1−β1λ)(1−
β2λ)(1− β3λ) with all βi ̸= 0. We prove that

|βi| ⩽ p+R2 for each i = 1, 2, 3, (21)

which implies 1
1−βiλ

≪ 1
1−p+R2λ

and �nally the desired result.

Let β denote one of the βi. If |β| ⩽ pR2, then clearly (21) holds. Now
suppose |β| > pR2. Since λ = β−1 is a root of Q(λ) − γQ♯(λ), we have
Q(β−1) = γQ♯(β−1). We observe:

� |Q(β−1)| = |1− ϕpR2/β|2|1− pR2/β| ⩾ (1− pR2/|β|)3;

� |Q♯(β−1)| = |3pR2/β + 3p2R4/β2 + 3p3R6/β3| ⩽ 7.

We thus obtain (1− pR2/|β|)3 ⩽ 7γ, and (21) holds.

Lemma 4. For all k ⩾ 1, we have

(Ψ+∗k ∗ f)(1)≪ eηpR
2

(C+)kf(1).
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Proof. Replace the value of p by p+ in the proof of Lemma 3 to have Ψ+(ξ)≪
W+(ξ) ep

+R2ξ and C+ =
∫ 1

0
W+(τ)dτ . Also bound f(ξ) by ep

+R2
g(ξ) since

p+ ⩾ p. Then we have

(Ψ+∗k ∗ f)(ξ)≪ ((W+ep
+R2ξ)∗k ∗ ep+R2ξg)(ξ).

For k = 1, we have as in the proof of Proposition 4

(W+ep
+R2ξ ∗ ep+R2ξg)(ξ) = ep

+R2ξ(W+ ∗ g)(ξ).

Repeating this process k times to �push� the exponential ep
+R2ξ out of the

convolution product gives((
W+ep

+R2ξ
)∗k ∗ (ep+R2ξg

))
(ξ) = ep

+R2ξ(W+∗k∗ g)(ξ).

Evaluating the series at ξ = 1 gives:

(Ψ+∗k∗ f)(1) ⩽ ep
+R2

g(1)

∫ 1

0

W+∗k
(τ)dτ ⩽ eηpR

2

(C+)kf(1),

using C+ =
∫ 1

0
W+(τ)dτ and the fact that for h1, h2 ⩾ 0,

∫ 1

0
(h1 ∗h2)(τ)dτ ⩽

(
∫ 1

0
h1(τ)dτ)(

∫ 1

0
h2(τ)dτ) by Fubini's theorem.

A.3 Maple� worksheet to verify the computations in

Proposition 4 and Lemma 3
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>  >  

(4)(4)

(1)(1)

>  >  

(2)(2)

(3)(3)

>  >  

>  >  

>  >  

r e s t a r t :
w i t h ( i n t t r a n s ) :
varphi  :=  omega[y] *R^2 +  p*phi *R^2 /  (2* (1 -p*phi *R^2* lambda) )  +  
p*R^2/(1-p*R^2*lambda) + omega[x]*R^2 /  (1-p*phi*R^2*lambda)^2;

# denominator Q
Q := (1-p*phi*R^2*lambda)^2*(1-p*R^2*lambda);
Q 1  : =  s i m p l i f y ( - c o e f f ( Q ,  l a m b d a ,  1 ) ) ;
Q 2  : =  s i m p l i f y ( c o e f f ( Q ,  l a m b d a ,  2 ) ) ;
Q 3  : =  s i m p l i f y ( - c o e f f ( Q ,  l a m b d a ,  3 ) ) ;
#  must  be 0
simpl i fy(Q -  (1  -  Q1* lambda + Q2*lambda^2 -  Q3* lambda^3)) ;

0

P  : =  c o l l e c t ( s i m p l i f y ( v a r p h i * Q ) ,  l a m b d a ) :
P 0  : =  s i m p l i f y ( c o e f f ( P ,  l a m b d a ,  0 ) ) ;
P 1  : =  s i m p l i f y ( - c o e f f ( P ,  l a m b d a ,  1 ) ) ;
P 2  : =  s i m p l i f y ( c o e f f ( P ,  l a m b d a ,  2 ) ) ;
P 3  : =  s i m p l i f y ( - c o e f f ( P ,  l a m b d a ,  3 ) ) ;
#  must  be 0
simpl i fy(P -  (P0 -  P1* lambda + P2* lambda^2 -  P3* lambda^3)) ;

0

Qsharp := subs(phi=1, Q1*lambda+Q2*lambda^2+Q3*lambda^3):
Psharp := subs(phi=1, P0+P1*lambda+P2*lambda^2+P3*lambda^3):
ps i  : =  (Qsharp  *  subs (ph i=1 ,  va rph i )  +  Psharp )  /  subs (ph i=1 ,  Q ) :
c o n v e r t ( p s i ,  p a r f r a c ,  l a m b d a ) ;



(6)(6)

(4)(4)

>  >  

>  >  

(5)(5)

>  >  

(9)(9)

>  >  

>  >  

(8)(8)

(7)(7)

psi_aux :=  convert (eval (psi ,  lambda=1/ lambda)  /  lambda^2,  
par f rac ,  l ambda) ;

l o c a l  P s i :
P s i  : =  1 / x i  *  i n v l a p l a c e ( p s i _ a u x ,  l a m b d a ,  x i ) :
P s i  : =  c o l l e c t ( e x p a n d ( P s i ) ,  e x p ( p * R ^ 2 * x i ) ) ;

# remove the negative term -2*omega[y]*R^2
Psi  :=  Psi  +  2*omega[y] *R^2;

#  u s e  ( e x p ( t ) - 1 ) / t  < <  e x p ( t )  w i t h  t = p * R ^ 2 * x i  t o  b o u n d  P s i
t  : =  p * R ^ 2 * x i :
P s i  : =  P s i  +  1 2 * o m e g a [ y ] * R ^ 2 * ( e x p ( t )  -  ( e x p ( t ) - 1 ) / t ) :
P s i  : =  c o l l e c t ( e x p a n d ( P s i ) ,  e x p ( p * R ^ 2 * x i ) ) ;

W  : =  P s i  /  e x p ( p * R ^ 2 * x i ) :
W  : =  c o l l e c t ( W ,  x i ) ;



(4)(4)

>  >  

(10)(10)

(9)(9)

C  : =  i n t ( W ,  x i = 0 . . 1 ) :
C  : =  c o l l e c t ( C ,  R ) ;
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