
HAL Id: hal-04474328
https://laas.hal.science/hal-04474328

Submitted on 6 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Oneshot Deep Reinforcement Learning Approach to
Network Slicing for Autonomous IoT Systems

Abdel Kader Chabi Sika Boni, Hassan Hassan, Khalil Drira

To cite this version:
Abdel Kader Chabi Sika Boni, Hassan Hassan, Khalil Drira. Oneshot Deep Reinforcement Learning
Approach to Network Slicing for Autonomous IoT Systems. IEEE Internet of Things Journal, inPress,
�10.1109/jiot.2024.3356750�. �hal-04474328�

https://laas.hal.science/hal-04474328
https://hal.archives-ouvertes.fr

1

Oneshot Deep Reinforcement Learning approach to
network slicing for autonomous IoT systems

Abdel Kader Chabi Sika Boni1, Hassan Hassan1 and Khalil Drira1

Abstract—With the emergence of the Internet of Things (IoT)
services, meeting multiple and diverse Quality of Service (QoS)
requirements in networks has become a crucial issue. In the
new 5G networks, network slicing is presented as the solution
to provide a tailored QoS for different network services. This
new technology offers better prospects for IoT services and
applications. In fact, in modern IoT systems, the number of IoT
devices increases, and these systems evolve to be autonomous
IoT systems. QoS management must be done without human
intervention, making conventional QoS management mechanisms
unsuitable. In this paper, we introduce an oneshot Deep Rein-
forcement Learning (DRL) agent capable of autonomously receiv-
ing requests for slices and proposing a placement on the physical
infrastructure that maximizes the total number of accepted
requests while guaranteeing load balancing at the infrastructure
resources level. By adopting a new paradigm located at the
crossroads between the single DRL agent and the multi-agent
DRL, our agent manages to generate the placement decision of
a slice request in one step, which makes it compatible with
the European Telecommunications Standards Institute (ETSI)
standard. Numerous simulations and comparisons with six other
algorithms allowed us to validate its effectiveness in real-time
scenarios where learning from previous placements is required
to improve future slice provisioning.

Index Terms—Autonomous IoT systems, QoS, Network Slicing,
Deep Reinforcement Learning.

I. INTRODUCTION

IN the context of fully automated networks, i.e., zero-
touch networks, and particularly in autonomous Internet

of Things (IoT) systems, efficient and automatic placement of
network services is considered as one of the most important
technological building blocks [31]. The proliferation of IoT
devices in recent years has participated in the emergence of
new network services. The number of IoT devices in use is
estimated to be between 75 and 100 billion by 2025 [38] [3].
As about 127 new IoT devices per second will establish a
connection with current devices [38], this estimate will be
revised upward. These IoT devices are used in many IoT use
cases i.e., smart cities, smart transportation networks, smart
healthcare facilities, smart agriculture systems, etc. These use
cases involve services with often conflicting Quality of Service
(QoS) requirements. The coexistence of IoT services on the
same physical infrastructure makes it difficult to implement
tailored QoS solutions. Hopefully, NGMN (Next Generation
Mobile Network) has introduced the concept of Network

1LAAS-CNRS, University of Toulouse, CNRS, UPS, Toulouse, France
{akchabisik, hhassan, khalil}@laas.fr
Copyright (c) 2024 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

Slicing in fifth-generation networks (5G) [4]. It advocates
the satisfaction of diverse QoS requirements by dividing the
common physical infrastructure into logical networks i.e.,
network slices, each specialized to provide specific network
capabilities and characteristics for a particular use case. This
technology offers new possibilities to IoT services as one IoT
service can be therefore supported by a network slice that
guarantees its QoS requirements.

Network slicing is enabled by two key technologies i.e.,
Network Function Virtualization (NFV) and Software Defined
Network (SDN) [16]. NFV enables the transformation of
hardware-based network functions into software-based func-
tions called VNFs (Virtual Network Functions). A network
slice is composed of these VNFs while dynamic traffic steering
between them is provided by SDN. The challenge of efficient
placement and chaining of a slice request’s VNFs is called the
Network Slice Placement problem (NSP). It can be viewed as
a special case of Virtual Network Embedding (VNE), VNF
Forwarding Graph Embedding (VNF-FGE), Service Func-
tions Chaining/Placement (SFC-P), VNF-PC (Virtual Network
Function Placement and Chaining) [11]. All of these problems
are NP-hard [7]. While network slicing intends to solve
conflicting QoS requirements in 5G networks, the placement
of network slices is a hard problem and becomes more difficult
in the context of IoT systems. In fact, IoT services have the
particularity of being made up of thousands of middle boxes
[24]. Their slice equivalents are therefore likely to contain an
important number of VNFs. This represents a strong scalability
challenge compared to non-IoT slices. Moreover, since an
IoT system may provide several IoT services, it becomes
crucial to optimize the use of network resources in order to
deploy the largest number of IoT slices. Particularly, in the
context of autonomous IoT systems, these IoT slices must be
created, managed, and destroyed automatically without human
intervention using adaptive, reactive, reliable, and autonomous
algorithms. Deep Reinforcement Learning (DRL) algorithms
are among the most powerful in this category.

DRL is a category of artificial intelligence algorithms where
an agent continuously interacts with an environment based on
the trial and error principle. The autonomous agents created
with DRL have enabled great advances in the fields of video
games, self-driving cars, object detection etc. [8]. Recently,
this technique has been used to solve the Network Slice Place-
ment problem [31] [42] [41] [10] with many limitations and
assumptions affecting its efficiency and making its deployment
in real environments not straightforward as we highlight it in
Section II.
In order to illustrate the issues inherent to NSP, let us consider

2

the infrastructure shown in Figure 1. This infrastructure is
composed of six NFV-capable nodes (Computing Nodes) con-
nected to SDN-capable switches which are in turn connected
by a transport network of 4 routers. The infrastructure provider
receives the request for NSPR (Network Slice Placement
Request) x from an IoT service provider. Depending on the
intended goal, the infrastructure provider has several possible
placement configurations. Each configuration corresponds to
the deployment of NSPR x’s VNFs (1, 2, and 3) at computing
nodes from 1 to 6. The table in Figure 2 shows five con-
figurations among the 120 possible placement configurations.
Moreover, for each possible configuration, the infrastructure
provider chooses the physical path associated with each virtual
link (VL) of NSPR x. Thus, Figure 1 shows a possible path
for 5th configuration in the table where virtual links VL1 and
VL2 of NSPR x are associated with physical links PL15 →
PL11 → PL5 → PL8 → PL10 → PL13 and PL13 → PL10
→ PL7 → PL3 → PL1 respectively. The number of possible
configurations depends on infrastructure’s size but also on each
request to satisfy. Therefore, there are 720 placement configu-
rations if the received NSPR includes 5 VNFs (6P5 = 720) or
426957024 configurations when considering the infrastructure
with 754 nodes from [30] (754P3 = 426957024). In either
case, the number of possible paths for each configuration
also increases substantially. Added to this are the Central
Processing Unit (CPU), Random Access Memory (RAM),
and storage space requirements of each VNF as well as
the bandwidth requirements of the NSPR’s virtual links. The
infrastructure provider receives many NSPRs in one time unit.

Although DRL algorithms can offer an adaptable and
reliable solution to this problem, the number of possible
actions of the DRL agent must be equal to the number of
possible configurations (e.g., 426957024 actions considering
the request in Figure 1 and the 754-node infrastructure in [30]).
But it has been shown that when the action space is too large,
a DRL agent experiences great difficulties in convergence
[36] [35]. Most of the existing works have therefore adopted
a sequential DRL where NSPR’s VNFs are processed one
after the other; this is equivalent to asking, for example, on
which of the 754 nodes to place the current VNF. The action
space is then reduced to 754, but it now takes as many DRL
iterations as there are VNFs in each request. Moreover, such
an iterative VNF placement is not compatible with the Euro-
pean Telecommunications Standards Institute (ETSI) standards
where a NSPR along with its specified VNFs placements
must be addressed to the Network Function Virtualization
Orchestrator (NFVO) in a single instruction [14].

In this work, we adopt the term Network Slice Placement
as in [11] and use NSPRs to designate incoming slice re-
quests. We introduce an algorithm for Network Slicing into
autonomous IoT systems by proposing a deep reinforcement
learning agent capable of autonomously receiving and placing
NSPRs in a oneshot manner on an IoT infrastructure. Based on
[20]’s classification, we position our oneshot DRL approach
as a resource management technique in Network Slicing and
more precisely as a Resource Allocation approach. While
comparing our approach to others in the literature, we have
shown through the results of numerous simulations conducted,

Fig. 1. Example of NSPR deployment on a 6 nodes infrastructure

its effectiveness and relevance in the context of autonomous
IoT systems.

The contributions of this paper are as follows:

• we propose a new reinforcement learning framework
at crossroad between single agent and multi-agents
paradigms

• we introduce the Extensible Reinforcement Learning
Observation (ERLO) concept to support our proposed
framework

• with the new framework, we propose a centralized
microagents-based agent to efficiently solve NSP problem
in an oneshot manner allowing compatibility with ETSI
NFV MANO (MANagement and Orchestration) frame-
work

• we introduce a new learning mechanism which efficiency
grows as NSPR number of VNFs grows

• we take into account the VNF-PC DRL Loop Latency
(VDLL) explained in Section II-F when designing our
agent as to enable its future real deployment in real
scenarios

• we design a new reward function able to stimulate the
agent to generate efficient placement decisions

• we compare our solution to many existing state of the art
algorithms to prove its efficiency under a such uncontrol-
lable parameter (i.e., VDLL)

The rest of the paper is organized as follows: In Section II, we
present a detailed discussion of related studies in which we
show the different existing approaches to solve the Network
Slice Placement problem. The formulation of the problem
as well as different notations used throughout this paper are
available in Section III. Global and internal functioning of
our proposed oneshot DRL agent is described in Section IV.
The comparison and performance analysis of this algorithm
with six other algorithms is done in Section V. Within the
latter, we also detail the comparison metrics and the simulation
environment. Finally, a conclusion and future perspectives are
discussed in Section VI while highlighting few limitations of
our algorithm in Section VII.

3

Fig. 2. Five possible placement configurations for NSPR x in Figure 1

II. RELATED WORK

Many existing works tried to provide solutions for VNFs
placement and chaining problems as well as its variants. We
can class these solutions in the following categories: Exact
solution approaches, Heuristics approaches, Meta-heuristics
approaches, DRL approaches and combined approaches.

A. Exact solution approaches

In literature, many previous works adopted an exact so-
lution approach. Jose Jurandi et al. [12] formulate the NSP
problem into an Integer Linear Programming (ILP) aimed
at minimizing global resources consumption. Bari et al. [9]
adopt a similar approach changing the objective function to
minimizing VNFs deployment cost, total energy consumption,
traffic forwarding cost and Service Level Objectives (SLO)
cost. ILP decision variables are restricted to integers. When
the mathematical formulation allows those variables to be
integers as well as real numbers, it is called Mixed Integer
Linear Programming (MILP). The latter is the one adopted by
[34] and [19] for fulfilling Service Function Chain requests
in datacenter networks and cloud environment respectively.
While [34] seeks to minimize the number of Virtual Machines
(VMs) set up to execute VNF instances, [19] focuses on
minimizing the delay between two dependent VNFs. Dealing
also with SFCs but in geo-distributed cloud, Jianing Pei et al.
[28] formulate their optimization problem in Binary Integer
Programming (BIP) where decision variables take two possible
values (i.e., 0 or 1). They were able to minimize the number of
instances required to embed SFCs with minimum embedding
cost. Although exact solution approaches have merit to output
optimal solutions for small instances of the problem, they take
too much time when dealing with large-scale networks and
are applicable only if all NSPRs are known in advance. For
example, [12] provide an optimal solution for NSPRs in a
network with 280 nodes after 7000 seconds (≃ 2 hours) which
is impractical in real-time scenarios.

B. Heuristics approaches

Heuristics approaches differ from exact approaches in the
way they trade optimality for speed, i.e., they try to find
near-optimal solutions in a reasonable time. Nevertheless,
they are often based on a mathematical formulation as exact
approaches. Matthias and Stefan [33] introduce a LP (Linear
Programming) formulation of VNE problem which they re-
laxed. Processing the latter, they decompose the solution they
find and employ a randomized rounding heuristic to select
combinations of solutions. Doing so, they avoid exploring
all feasible solutions, thus reducing the solution generation
for a network of 50 nodes. Similarly, [22] proposed T-SAT,
a two stage heuristic solution to place SFCs in cloud dat-
acenters while minimizing the number of activated physical
machines. [29] proposes a Markov approximation technique to
fulfill Service Chain Requests in NFV-enabled networks while
minimizing operational and network traffic costs. Authors in
[45] were able to place some VNFs chains in datacenter
networks scenario using a heuristic which sorted requests in
descending order according to their required resources and
chose a candidate physical node randomly for each VNFs.
Such a sorting was possible mainly because they considered
only CPU as VNF resources. [5] employs “Power of two
Choices” (P2C) to satisfy NSPRs. The principle consists of
randomly choosing two physical server nodes and placing
current VNF being processed on the most eligible server.
They drastically reduced the execution time at the expense
of optimality. Bernardetta Addis et al. [1] considered a VNE
scenario in which a single VNF could have many instances
set up. Then, trying to minimize the number of CPU cores
used by instantiated VNFs, they formulated a MILP problem
and solved it through a random values assignment to decision
variables. Efficient resource allocation is a crucial challenge
in NFV enabled networks [18] and all heuristics methods,
due to their massive use of randomness, cannot provide
such efficiency. Moreover, heuristic solutions suffer from the
problem that they can get stuck in a local optimum that can be
far from the real optimum [15] [18]. Other studies therefore
investigated the use of meta-heuristic approaches.

C. Meta-heuristics approaches

Considering VNF-PC as a combinatorial problem, meta-
heuristics sought the most optimal solution over a discrete
search space [18]. Meta-heuristics go from Simulated anneal-
ing to tabu search through genetic algorithms, ant colony
optimization and particle swarm optimization [15]. Jiaqiang
Liu et al. [23] focuses on the Service Chaining problem by
formulating it into BIP which they solve using Simulated
Annealing ensuring an end-to-end delay minimization along
with bandwidth consumption. Marcelo Caggiani et al. [24]
proposed Fix-and-Optimize, a solution for SFCs requests.
They first formulated an ILP problem and used Variational
Neighborhood Search to prioritize (based on the degree of
adjacency) and choose randomly subsets of Nodes Point of
Presence (N-PoPs). They aim to satisfy more SFCs using fewer
VNF instances. In the worst case, their solution takes 1500 sec-
onds. [30] proposed GAVA, a genetic algorithm based solution

4

for jointly placing and routing VNF-FGs keeping minimum
physical links resource consumption and deployment cost.
Meta-heuristics methods provide much near-optimal results
than heuristics as they try to mimic many real-life processes.
Nevertheless, they also suffer from the sub-optimality problem
which is still inconsistent in online scenarios.

D. Pure DRL approaches

Thanks to DRL advances in recent years [8], some studies
investigated its use in VNE problem. DRL is an artificial
intelligence technique in which an agent interacts with an envi-
ronment in a trial and error manner. Some rewards are sent to
the agent to adjust its actions. The agent’s goal is to maximize
cumulative discounted rewards. Pure DRL approaches are
straightforward as they simply adapt existing DRL algorithms
to VNF-PC problem without any major modification. The main
challenges are: i) to set the number of actions so as to not
explode the action space; ii) to provide a good reward function
and; iii) to provide a well designed observation or feature
matrix. The agent’s convergence speed depends on all of those
aspects. In [41], a VNE scenario is studied in which a DRL
system is set up using Asynchronous Advantage Actor-Critic
(A3C) [25] algorithm with 24 workers. Each worker interacts
with its own copy of the environment. They used the Graph
Convolutional Network (GCN) [21] framework to automate
observation extraction while setting the number of possible
actions to the number of physical nodes. They showed good
performance through simulations maximizing the acceptance
ratio and average Infrastructure Provider (InP) revenue. How-
ever, deploying their solution might be impossible or at least
very difficult as the ability to duplicate the environment is
often possible only in a simulation environment. Under the
VNE scenario, [10] proposed DeepViNE for grid-like requests
fulfillment on grid-like physical substrates. DeepViNE uses the
Dueling Deep Q-Network (DQN) (a variant of DQN [26]) and
has nine possible actions. The authors succeed in maximizing
revenue while minimizing network cost. It is worth recalling
that DeepViNE is applicable only on grid-like networks which
drastically limits its real deployment. RDAM was proposed in
[43] for the VNE problem trying to jointly maximize long-
term average revenue, long-term revenue-to-cost ratio, and
acceptance ratio. In RDAM, the number of actions is set as
in [41] (i.e., equals the number of physical nodes). Although
they succeed in their aforementioned objectives, the use of
a heavy spectral method to reduce feature matrix dimension
makes RDAM not suitable for large networks. NFVdeep [40]
employs a DRL based on policy gradients to place SFCs with
a good balance between the operating cost of the occupied
servers and the total throughput of accepted requests of the
NFV providers and the profits of the customers. Nevertheless,
policy-gradient agents require more DRL iterations compared
to value-based agents as they do not reuse all past trial and
error experiences : they thus take more time to converge.

E. Combined approaches (Exact+DRL and Heuristic+DRL)

DRL can be also combined with exact and heuristic ap-
proaches. Jianing Pei et al. [27] formulated a BIP problem

for SFCs requests arriving in a SDN/NFV-enabled network.
Their objective was to provide good VNF placement decisions.
Dividing the network into regions, they set up a Double
Deep Q-Network (DDQN) [37] algorithm with the number
of actions equal to the number of regions and the reward
function is based on the BIP problem objective function.
Their DDQN agent then interacts with the network by se-
lecting a region to optimize which consists in increasing or
decreasing VNFs instances in selected region. Except for the
difficulty to define and determine network regions clearly,
their approach was innovative and showed good results. Jose
Jurandir et al. [11] proposed HA-DRL, an NSP solution that
combines heuristic with DRL. In their approach, they inserted
the “Power of two Choices” [5] as a layer in a A3C [25]
agent’s neural network. In each interaction, the agent is set
to provide a physical node index, the one he thinks most
appropriate to host current VNF of ongoing NSPR. The role
of the heuristic layer is to influence the actions of the agent
to make better decisions. Although their simulations showed
good performance for networks with up to 1008 nodes, they
were forced to provide an ILP formulation for the heuristic
part. The same authors extended their work to non-stationary
network conditions [6] and realistic network load conditions
[13]. [32] has taken a similar approach while replacing A3C
agent by a REINFORCE [39] based agent. Combining DRL
with other approaches seems to be a good way to improve
DRL convergence. Nevertheless, doing so, full-automation is
not possible anymore as there must be an expert to design
the mathematical formulation cautiously avoiding conflicts
between the heuristic optimization’s objective function and the
agent goal.

F. Motivation

In view of the performance of pure DRL methods, they
offer a good tradeoff between scalability (e.g., [40] performed
well for a network with 500 nodes), automation ability and
execution time among other things. However, all the aforemen-
tioned state-of-the-art works used a sequential DRL approach,
i.e., a VNF placement decision is sent to the environment
which tries to perform it, then compute next observation
along with a reward and send them to agent for providing
next VNF decision. Anyway, even in the best situations,
that is, considering a container image of size 1GB, a VNF
instantiation time takes on average 10 seconds [2]. Thus,
a sequential deployment time is linearly proportional to the
number of VNFs in NSPR. In worst-cases (e.g., when at least
one decision is bad and has to be restarted or when non-
container-based images are used), it could even take more
time. Accordingly, along with the required time to compute
an observation, we claim that a sequential DRL iteration has
a latency of at least 11 seconds : we name it the VNF-PC DRL
Loop Latency (VDLL). This uncontrollable parameter was
neglected in previous studies. Moreover, a sequential approach
is not compatible with the ETSI NFV MANO framework, as
the NFVO waits for a Network Service (NS) request with
its specified VNFs placements in one instruction and not
iteratively [14]. Thus, the exhibited performances in the studies

5

Fig. 3. Overview of existing reinforcement learning frameworks (a and b)
and the one introduced in this paper (c)

are available only in simulated environments. In this work,
we propose a new DRL framework to efficiently solve the
Network Slice Placement problem. Different from the classic
reinforcement learning framework (Figure 3-a) and the fully
decentralized multi-agent framework (Figure 3-b), the frame-
work we introduced in this paper in Figure 3-c has an internal
mechanism similar to multi-agent while being externally as
a single agent with centralized learning. Consequently, we
overcome the limitation of sequential DRL and avoid the
difficulty of fully independent decentralized agent training
[44]. Under the VDLL parameter and using oneshot placement
decisions, we make our framework compatible with ETSI
framework.

III. PROBLEM STATEMENT

A. Physical Substrate Network

Let n ∈ N be a node in the set N of nodes contained
in the physical substrate network, S ⊆ N the set composed
of computing nodes able to execute a VNF and s ∈ S any
node of that set. For sake of simplicity, we consider each
computing node to be labeled with a number in [1, |S|]. Note
in the following sections, we use s indifferently as an entity
(i.e., a computing node) or its label (i.e., s ∈ [1, |S|]) and
we use physical substrate network and physical infrastructure
interchangeably.

1) Physical node description: Each computing node or
NFV-capable node s within an infrastructure is characterized
by its available CPU resource Rcpu

s , its available RAM re-
source Rram

s and its available amount of storage capacity
Rstor

s .
2) Physical link description: In the infrastructure, a physi-

cal link is a link between a computing node and a SDN-capable
switch, a link between a SDN-capable switch and a router or
between two routers in the transport network. For each link,
we consider in this paper the available bandwidth BW(m,n)

as a resource. The notation (m,n) is used to indicate that the
link goes from the physical node m ∈ N to n ∈ N .

3) Physical node bandwidth: We define the bandwidth of a
computing or physical node as the sum of available bandwidths
of its incident physical links; BWs =

∑
BW(s′,s) where s′

is any adjacent node of physical node s.

B. Network Slice Placement Request

We have described the entities that make up a NSPR in the
following way:

1) NSPR’s VNF description: An NSPR is composed of a
set P of VNFs linked to each other via virtual links (example
with NSPR x in Figure 1). In contrast to previous works,
three requirements are considered in this paper for each VNF
v ∈ P , that is, its required CPU, RAM and storage resources,
respectively Ucpu

v , Uram
v and Ustor

v .
2) NSPR’s Virtual link description: we note bw(v,w) as the

required bandwidth of virtual link (v, w) going from VNF
v ∈ P to VNF w ∈ P .

3) NSPR’s VNF bandwidth: We introduce the notion of the
bandwidth of a VNF as the sum of the required bandwidths
of its associated virtual links; bwv = bw(u,v) + bw(v,w) where
u and w are two adjacent VNFs to VNF v.

C. Remaining resource formalization

We denote by Rcpu

v,s , Rram

v,s and Rstor

v,s respectively the
remaining CPU, RAM and storage resources in computing
node s after placing VNF v on it. Thus, Rcpu

v,s = Rcpu
s −Ucpu

v ,
Rram

v,s = Rram
s − Uram

v and Rstor

v,s = Rstor
s − Ustor

v . On
the other hand, after allocating bw(v,w) to the virtual link
(v, w), the remaining bandwidth on the physical link (m,n)
is BW(m,n)/(v,w) = BW(m,n) − bw(v,w).

D. Network Slice Placement formalization

NSP problem can be formulated as follows: i) given a
network slice placement request with its VNFs and VLs
requirements; ii) given a physical infrastructure with resource
constraints on its computing nodes and physical links; iii)
find for each VNF (respectively VL) in NSPR, an optimal
computing node (respectively physical link) in physical in-
frastructure to place it on (respectively match it with). This
kind of formalization was widely used in previous works as
in [11].

6

IV. ONESHOT DRL AGENT FOR NSPR

A. Oneshot DRL agent

An overview of our proposed DRL agent interacting with
its environment is provided in Figure 4. The operation of the
oneshot DRL agent begins with the reception of an Extendable
Reinforcement Learning Observation (ERLO), as illustrated in
Figure 6. This constitutes a real-time description of the envi-
ronment and comprises two parts: 1) P1 describes the physical
infrastructure, specifically detailing the available CPU, RAM,
storage space, and bandwidth resources of computing nodes,
and 2) P2 describes the NSPR to be processed, which in-
cludes the required CPU, RAM, storage space, and bandwidth
resources of the VNFs. For a given physical infrastructure,
the size of P1 remains constant. The variability in the size of
the observation is therefore contingent upon that of P2, which
changes according to the number of VNFs contained within
the NSPR being processed : this justifies the term ”Extendable
Reinforcement Learning Observation.”

The first mechanism (mechanism 1 Figure 4) following the
reception of an ERLO involves the separation of P1 from P2,
based on two key parameters: the number |N | of computing
nodes and the fixed number of features per computing node set
at 4 in this paper (CPU, RAM, storage space, and bandwidth).

The second mechanism (mechanism 2 Figure 4) involves
extracting information about the number of VNFs contained
within the NSPR to be processed, i.e., the parameter |P | from
P2, and instantiating or updating |P | microagents, which are
replicas of Master microagent. The latter model is provided
to the oneshot DRL agent at runtime. The size of the action
space of each microagent is equal to the number of computing
nodes |N | in the physical infrastructure, and is, therefore,
unaffected by the variations in the number of VNFs |P | within
the processed NSPR (described by P2).

In the third mechanism (mechanism 3 Figure 4), each of the
|P | microagents respectively generates placement decisions for
each of the |P | VNFs within the NSPR. To do this, the first
microagent is provided with an observation resulting from
the concatenation of P1 and the information about the first
VNF (extracted from P2). The first microagent proposes the
placement decision for the first VNF, which is simply the index
of the computing node where the VNF 1 should be placed.
An update, denoted as P ′

1, is carried out using the module
(U), the operation of which is detailed in Algorithm 1. The
observation to be provided to the second microagent is then
obtained by concatenating P ′

1 with the information regarding
the second VNF (extracted from P2). This process continues
to generate placement decisions for each subsequent VNF until
the last VNF in the NSPR. The set of placements proposed
by the microagents constitutes the placement solution for the
entire NSPR. The complete solution is sent to the environment
at the same time for implementation and evaluation. The term
”oneshot DRL agent” derives precisely from the agent’s ability
to suggest the placements of all the VNFs within NSPR in
a single DRL iteration. Thus, ”oneshot DRL agent” should
not be confused with ”oneshot learning”, which is instead
employed in supervised classification tasks. It is important to
note that in Deep Reinforcement Learning (DRL), only the

environment has the capability to execute actions and measure
their optimality. For each of the VNFs within the NSPR,
the environment applies the proposed placement decision and
generates an evaluation in the form of a reward, the function
of which is detailed in Section IV-B. These rewards are then
transmitted to the agent.

Following the receipt of rewards, the fourth and final
mechanism (mechanism 4 Figure 4) involves the construction
of experiences. Each microagent has undergone a different
experience e = (st, at, rt, st+1), which can be summarized
as follows: 1) insertion of an observation st in its input; 2)
generation of a placement decision at; 3) receipt of a reward
rt associated with the placement decision and 4) creation of
the subsequent observation st+1 resulting from the update
performed by the module (U). These experiences are collected
by the oneshot DRL agent, which inserts them into its unique
replay memory. Periodically, samples of these experiences are
extracted to train the master microagent according to equation
1.

Y DDQN = rt+γQtarget(st+1, argmax
a
Qeval(st+1, a)) (1)

where γ in [0, 1] is the discount factor determining how much
future rewards estimations are taken into account for current
target’s compute.

The enhancement of Master microagent’s policy is subse-
quently made available to the microagents through mechanism
2. In Figure 5, we provide an image-based explanation of the
process for training the Master microagent’s neural networks
using experiences sampled from the replay memory.

Algorithm 1 pseudo-code of Update module
1: INPUTS :
2: Pi

1 (P1 provided to ith microagent)
3: {Ucpu

v ,Uram
v ,Ustor

v , bwv} (ith VNF required resources)
4: ai (ith microagent placement decision)
5: OUTPUT :
6: Pi′

1 (updated Pi
1)

7:
8: Set Pi′

1 ← Pi
1

9: On computing node at index ai in Pi′

1 do
10: Set Rcpu

s ← Rcpu
s − Ucpu

v

11: Set Rram
s ← Rram

s − Uram
v

12: Set Rstor
s ← Rstor

s − Ustor
v

13: Set BWs ← BWs − bwv

14:
15: return Pi′

1

B. Reward function

We design the reward function below based on whether a
VNF was successfully placed or not.


rsuccessful = −

∑
1

Rres
v,s+η

runsuccessful = max(−100,− 3
η +

∑
I[Rres

s < Ures
v]

Rres
v,s

η +

I[BW(m,n) < bw(v,w)](BW(m,n)/(v,w)))

7

Fig. 4. Overview of the internal mechanisms of the oneshot DRL agent during a DRL iteration with the environment. Physical infrastructure is contained
within the environment, where the generation/reception of NSPRs also takes place.

where res ∈ {CPU, RAM, STOR}, η is a small value set to
0.01 avoiding division by zero in rsuccessful while increasing
penalty in runsuccessful and I[condition] a binary value equals
to 1 when [condition] is satisfied, 0 otherwise.

In this reward function, rsuccessful is intended to induce
the agent to choose a computing node where once the VNF
placement is done, there will be enough resources left. In this
case, the difference Rres

s −Ures
v = Rres

v,s will be positive and
large, making the ratio − 1

Rres
v,s+η

minimal, which represents a
smaller negative reward for the agent.

In contrast, in the case of unsuccessful placement, the
difference Rres

s − Ures
v = Rres

v,s will be negative. The agent
is then penalized proportionally to the amount of resources
missing to have a successful placement. This penalty is also
accentuated by division by η and addition with − 3

η . Finally, we
bounded runsuccessful setting its low bound at −100 through
the use of max function.

Note that the reward function has been made negative be-
cause a positive value could influence a microagent to always
choose the same action that would generate a positive reward
even if the overall outcome of the placement of the whole
NSPR turned out to be unsatisfactory. With this negativity,
each microagent will therefore always strive to do better.

V. EVALUATION RESULTS

A. Comparison algorithms

We compared our oneshot DRL agent with six other ap-
proaches.

• Algorithm 1 (sequential DRL): where a DRL agent places
the VNFs contained in a NSPR one after another during
successive DRL iterations. We have implemented the
reward function proposed in [11].

• Algorithm 2 (ILP): where a mathematical formulation of
the network slice placement problem is proposed with
binary decision variables and constraints on the resources
available on computing nodes and those required by
the VNFs and VLs of all NSPRs. We adopt the ILP
formulation of [12].

• Algorithm 3 (GAVA [30]): where a genetic approach is
adopted to solve the network slice placement problem.
The algorithm is based on the notion of individuals.
Each of them represents the possibility of placing a
request on the physical infrastructure. As an example,
in Figure 9 we have provided an illustration of two
possible individuals for placing NSPR x in Figure 1 on
the physical infrastructure contained in the same figure.
The algorithm starts with a random initialization of a
number of individuals before passing them several times

8

Infrastructure 1 Infrastructure 2
Computing node’s initial CPU — RAM — STORAGE randomly in [800, 1000]
Computing node’s physical link initial bandwidth 500
Transport network physical link initial bandwidth 700
Number of VNFs per NSPR 10
VNF’s initial CPU — RAM — STORAGE randomly in [2, 5]
Number of VLs per NSPR #(number of VNFs) - 1
VL’s intial bandwidth randomly in [2, 5]
Number of NSPRs 200 600
VNF instanciation latency — Observation computation latency 10 seconds — 1 second
Neural Network structure Hidden layers: 2 — Neurons per hidden layer: 600
Microagents exploration method during training ϵ-greedy (start=1.0 ; end=0.1 ; decaying step=3x10−6)
Microagents’ Local State size 28 72
Optimizer used Adam(learning rate=2.5x10−4)
γ value for equation 1 computation 0.99
Iterations between target network’s updates 100
Master microagent Replay Memory’s size — Minibatch size 106 experiences — 128 experiences
ns3gym simulator — Operating System version 3.35 — Ubuntu 20.04.5 LTS
Computer used for simulations DELL Precision 7560 i9 with 64Gb RAM and 1To disk space

TABLE I
SIMULATION SETTINGS

Fig. 5. Master microagent training process based on DDQN algorithm.
Observation st from experience is an input evaluation network that outputs
current estimated discounted cumulative rewards (Q-values) [step 1]. To
update a neural network, there must be a current output and a desired output.
Already having current output, the next goal is to search for the desired
output (target). Next observation st+1 of experience is input into 1) policy
network and retrieve index of its maximal Q-value and 2) target network and
retrieve Q-value at the index got at 1) [steps 2 and 3]. The Q-value recovered
from the target network is finally multiplied by the discount factor γ (an
hyperparameter) and added to the reward rt [step 4] and substituted at the
index at of a copy of current output (got at step 1) to obtain the desired
output [steps 5 and 6]. A loss function (e.g., Mean Squared Error) is then
used along with computed current output and desired output to generate the
loss. Finally, an optimizer (e.g., Adam) is used to back-propagate the loss and
update evaluation network’s weights. Note that figure this is an illustration
with a single experience and that in practice a random batch of experiences
is instead taken from Replay Memory to proceed evaluation network update.

Fig. 6. Overview on introduced Extendable Reinforcement Learning Observa-
tion. The part P1 highlighted in blue represents a real-time description of the
physical infrastructure contained within the DRL environment. The parameter
|N | indicates the number of computing nodes in the infrastructure, and each
line of 4 values (Rcpu

s ,Rram
s ,Rstor

s and BWs) provides information about
the remaining resources of each computing node in terms of CPU, RAM,
storage space, and bandwidth. Part P2 highlighted in orange serves as a
real-time description of the NSPR to be processed. It informs about the
number |P | of VNFs within the request, along with the CPU (Ucpu

v), RAM
(Uram

v), storage space (Ustor
v), and bandwidth (bwv) requirements of each

VNF. For a fixed infrastructure, the size of ERLO, denoted by the parameter
(|N | ∗ 4) + (|P | ∗ 4) + 2, can vary depending on the characteristics of the
NSPRs being processed. Hence, the term ”Extendable Reinforcement Learning
Observation” is used, as the size of ERLO may change from one DRL iteration
to another based on the specific NSPR’s size |P |.

through successive steps (repairer - evaluation fitness -
selection - crossover - mutation) to improve their quality.

• Algorithm 4 (RandomLogicAgent): a heuristic consisting
of placing each NSPR’s VNF randomly on a computing
node of the target physical infrastructure.

• Algorithm 5 (MaxOperatorAgent): a heuristic consisting,
for each NSPR’s VNF, in determining the computing
nodes having 1) the most CPU resources; 2) the most
RAM resources; 3) the most storage space resources; and
in placing said VNF on the first of these nodes having

9

Fig. 7. Physical substrate networks used for experiments

Fig. 8. Evolution of the number of binary variables in the ILP optimization
problem for each of the infrastructures shown in Figure 7. For 100 requests,
there is respectively 33000 and 67400 variables to manage for Infrastructures
1 and 2 respectively. It is possible to exploit the observed linear relationship
to estimate the number of variables for 200 requests.

Fig. 9. Example of two possible individuals during GAVA’s [30] execution
while placing NSPR x of Figure 1 on its physical infrastructure. Individual 1
means to place VNF 1, 2 and 3 on computing nodes 1, 2 and 4 respectively.
Individual 2 means to place VNF 1 simulatenously on computing nodes 2
and 4, VNF 2 on computing node 1 and VNF 3 simultaneously on computing
nodes 1, 2 and 3. Therefore, individual 2 is considered as non-viable individual
and should pass through a repairing step to correct its inconsistencies.

enough resources with respect to the VNF’s requirements.
• Algorithm 6 (FirstFitAgent): a heuristic consisting, for

each NSPR’s VNF, in placing it on the first computing
node having enough resources. It should be noted that
a fixed order of the computing nodes is required at the
beginning of the algorithm. In this paper, we have used
the indexes of computing nodes for the traversal.

The second part of the network slice placement problem is
the chaining of placed VNFs. Algorithms 1, 4, 5 and 6 use
the Breadth First Search (BFS) for this purpose as done in
[42]. Instead, a modified version of BFS (mBFS) is used by
the oneshot DRL agent. mBFS is an extension we made of
BFS algorithm in which a criteria of minimum bandwidth was
added enhancing it to provide a path between two nodes while
satisfying that minimum bandwidth constraint. We provide in
2 a pseudocode of mBFS. As for ILP and GAVA, these two
algorithms generate both placements and chaining and do not
require chaining algorithms.

Algorithm 2 mBFS’s pseudo-code used at VNFs chaining step
1: INPUTS : start node, end node, minimum bw
2: OUTPUT : a path from start node to end node verifying

minimum bw
3:
4: Initialize paths (to store computed paths)
5: Initialize path (an empty path)
6: Initialize neighbors (to store a node’s neighbors)
7: Initialize node (to store current node)
8:
9: Add path {start node} into paths

10: While paths not empty do
11: get and remove first path from paths → path
12: get last node of path → node
13: If node equals end node then
14: return path
15: get node’s neighbors verifying (1) and (2)→ neighbors

16: (1) neighbor not in path
17: (2) bandwidth(node, neighbor) >= minimum bw
18: For each neighbor in neighbors do
19: insert new path {path+neighbor} into paths
20: empty neighbors
21: return empty path

B. Comparison metrics

We compared the performance of our oneshot DRL agent
with these algorithms based on three metrics.

• average execution time: this is an approximation of the
time it takes for concerned algorithm to process and gen-
erate whole NSPR’s decision then sends it to environment

• the acceptance ratio: it reflects the ability of concerned
algorithm to successfully process a large number of
received NSPRs. Its calculation is based on the formula
#Number of successful NSPRs

#Total number of NSPRs 100.
• load balancing: which proves the ability of the algorithm

to fairly exploit the resources of all the computing nodes

10

Fig. 10. Used simulator : based on ns3-gym framework

in target physical infrastructure. This metric characterizes
the imbalance between the resources of computing nodes
after the algorithm has processed all NSPRs addressed to
it.

• adaptability: this characterizes the ability of the algorithm
to process a NSPR while taking into account events that
occurred during the processing of previous requests

C. Physical infrastructures in comparison

Our performance metrics were measured in simulations
performed on two physical infrastructures visible in Figure
7. Infrastructure 1 is inspired by the one used in [12] and
is made up of 6 computing nodes, 3 SDN-enabled switches,
and a transport network of 4 routers. Infrastructure 2 is made
up of 17 computing nodes, 6 SDN-compliant switches, and a
transport network of 5 routers. It is based on the one provided
in [11]. We have recorded in table I how we defined the
resources of each infrastructure, as well as other information
useful for the reproducibility of all simulations conducted in
this paper.

D. Simulator

To conduct our simulations, we employed an extended
version of the ns3-gym simulator [17], which is a framework
that connects ns3 to OpenAI-Gym. This choice was made to
facilitate the reproducibility of the results and allow for the
modular implementation of different entities in the simula-
tion, as depicted in Figure 10. All algorithms presented in
Section V-A were implemented as agents that interact with the
environment in a seamless manner. This approach simplifies
the testing of algorithms and makes it easy to compare with
other algorithms present in literature. On the environment side,
we implemented two infrastructures as shown in Figure 7. To
begin a simulation, we simply choose the infrastructure and
the agent to load. An automatic infrastructure descriptor, along
with an applicator for actions from agents, and a configurable
NSPRs generator were also implemented.

E. Fine-tuning the hyperparameters of the oneshot DRL agent

The oneshot DRL agent has hyperparameters that influence
its performance. These hyperparameters are specific to the
DDQN algorithm used by agent. We carried out fine-tuning
in order to choose the right values of hyperparameters.

We considered four high-impact hyperparameters: learning
rate, gamma, target network update interval and mini-batch
size. The authors of the DDQN propose some default values
which are respectively 0.001; 0.99; 10000 and 32. We used
these values as a starting point by i) maintaining values of
hyperparameters already fine-tuned if any; ii) varying value
of hyperparameter being fine-tuned and; iii) keeping default
values of hyperparameters not yet fine-tuned.

To monitor performance improvement, agents are trained
on 1000 different (varying seed) training episodes with an
evaluation of the number of successful NSPRs per interval of
10 training episodes. This evaluation takes place in a reference
environment that remains identical (i.e., with fixed seed), so
that at each evaluation comparison is possible with the previ-
ous evaluations. Results are expressed in relative percentages
where 100% is the percentage of the best performing agent and
remaining agents’ percentages are determined based on for-
mula #Number of successful NSPRs achieved

#Number of successful NSPRs achieved by best agent100
1) Learning rate fine-tuning: Learning rate determines how

fast agent neural networks’ weights are updated. A too high
value could lead to instability as agent erase previously
learned policy while a too small value leads to a slower
agent’s convergence which may cause difficulty in adapting
to environment. We tested 4 values (2.5 ∗ 10−2, 2.5 ∗ 10−3,
2.5∗10−4 and 2.5∗10−5) while keeping gamma, target network
update interval, and mini-batch size equal, respectively, to
0.99, 10000 and 32. Figure 11-a shows the performance of
each agent on Infrastructure 1. We can see that agents with
learning rates of 2.5 ∗ 10−2 and 2.5 ∗ 10−3 have the worst
performance. This means that these values are too high. On
average, maximum performance is achieved by 2.5 ∗ 10−4

while 2.5∗10−5 shows intermediate performance. This trend is
confirmed in Infrastructure 2 (Figure 11-e) where, as training
episodes progress, agents with learning rates 2.5 ∗ 10−4 and
2.5 ∗ 10−5 maintain the best performances, with 2.5 ∗ 10−4

being much better at the end of training. In view of Figures
11-a and 11-e, we therefore retained 2.5∗10−4 as the learning
rate value for the remainder of the fine-tuning process.

2) Gamma fine-tuning: This hyperparameter is the one in
equation 1 and is known as the discount factor. It is a value be-
tween 0 and 1 that determines how much importance the agent
places on future rewards compared to immediate rewards. A
value of 0 means only immediate reward matters. In other
words, the discount factor allows the agent to make decisions
that balance short-term rewards with long-term rewards. We
set fine-tuned learning rate i.e., 2.5 ∗ 10−4, default values of
target network update interval and mini-batch size i.e., 10000
and 32, then we vary γ’s value. Achieved performance in
Infrastructures 1 and 2 are visible respectively in Figures 11-b
and 11-f. It appears that there is no linear relationship between
the γ’ value and the performance of the associated agent. Thus,
in both infrastructures, the agent with γ = 0.75 presents the
weakest performance compared to the one with γ = 0.25.
The agent with γ = 0.5 performs well in Infrastructure 1 but
poorly in Infrastructure 2. On average, best performances are
exhibited by agents with γ = 0.25 and γ = 0.99. However,
as it is difficult to distinguish between them in view of their
alternating performances, we preferred to keep γ = 0.99,

11

especially since it is the default value suggested by the authors
of DDQN.

3) Target network update interval fine-tuning: The target
network is a separate neural network that is periodically
updated to create a stable target for the Q-value predictions
during training. It serves as a ”frozen” copy of the main Q-
network, and its parameters are updated periodically to match
those of the latter. Thus, this hyperparameter determines the
update frequency. Its value can be any positive integer and
depends strongly on task being performed by agent. We set
a fine-tuned learning rate (2.5 ∗ 10−4) and γ (0.99), keep the
default value of the mini-batch size (32) and vary the update
interval. Observed performances are showed in Figures 11-
c and 11-g. On Infrastructure 1 (Figure 11-c), highest per-
formance is achieved by agent which updates target network
each 100 iterations. The second-best performance is shared by
the agents operating updates each 1000 and 10000 iteration.
It is worth noting that updating the target network less fre-
quently (20000) shows the worst performance. Nevertheless,
only agents updating the target network at frequency of 100
and 10000 performed well on Infrastructure 2 (Figure 11-g).
Specifically, the one with 100 have a better mean performance.
Consequently, we set the target update interval equal to 100
for the remaining fine-tuning.

4) Mini-batch size fine-tuning: As the oneshot DRL agent
keeps its experiences in a replay memory, it is essential to
set how many samples will be taken when training the main
neural network. To measure the effect of mini-batch size, we
set all previously fine-tuned hyperparameters i.e., learning rate
to 2.5 ∗ 10−4, γ to 0.99, target network update interval to 100
and then we test four values of mini-batch size mainly 32, 64,
92 and 128. Through performance results on Infrastructure 1
(Figure 11-d), it seems there is a linear relationship between
mini-batch size and achieved performance : higher is mini-
batch size, better is performance. Thus, we set the mini-batch
size equal to 128 and that value appears to also be the one that
provides far better performance on Infrastructure 2 (Figure 11-
h). Note that during our simulations, we noticed a slowness in
training of agents as the mini-batch size increased. Thus, by
keeping value 128 and not going beyond, we aim at finding a
trade-off between performance and speed.

F. Analysis

1) Execution time performance: In this first batch of simu-
lations, we measured the execution time of each algorithm. We
set the number of VNFs for each NSPR to its maximum (i.e.,
10) and considered an abundance of resources in CPU, RAM,
storage space and bandwidth. In such a configuration, all the
placement decisions of an NSPR always result in success,
allowing us to measure the execution time if all the algorithms
were at their peak performance.

Figure 12-a shows for Infrastructure 1 in Figure 7 the
average processing time of an NSPR by each of the algorithms
as the total number of requests varies. The oneshot DRL
agent has an average processing time of about 13 seconds as
do all heuristics (Algorithms 4 to 6). This time includes the
observation latency of 1 seconds, and the instantiation time

of a VNF (10 seconds). It is necessary to specify that the
oneshot DRL agent and the heuristics generate the decisions
of all NSPR’s VNFs at once, which makes it possible to
instantiate them in parallel on their respective node inside the
environment, reducing the instantiation time to 10 seconds for
all the 10 VNFs. However, the sequential DRL agent needs one
DRL iteration per each VNF of NSPR. The VNF is instantiated
on the concerned node in 10 seconds and only then the next
VNF of NSPR is taken care of. The sequential DRL agent thus
takes an average of 121 seconds to process a NSPR, which
is 9.3 times the time required by the oneshot DRL agent,
RandomLogicAgent, MaxOperatorAgent, and FirstFitAgent.
The lowest average processing time, that is 2.3 seconds, is
achieved by ILP. As for GAVA, it presents a very variable
average processing time in [42; 161.5] seconds depending on
the number of NSPRs to be processed. This is due to the fact
that GAVA is a genetic algorithm based on randomness in
several of its steps i.e., initialization, crossover and mutation.
As a consequence, individuals obtained at each generation
have a low level of viability which must be remedied in
the repairer step. The time required for this last step is
unpredictable as it depends on the repairs to be done on the
individuals at each generation.

In order to evaluate the impact of infrastructure’s size on
the average execution time, we conducted the same simulation
considering Infrastructure 2 in Figure 7 which contains twice
as many computing nodes compared to Infrastructure 1. It
appears from these simulation results in Figure 12-b that the
trends in terms of the average request processing time for the
oneshot DRL agent, RandomLogicAgent, MaxOperatorAgent,
FirstFitAgent, and sequential DRL agents remain approxi-
mately the same. As for GAVA, its average processing time
varies in [108.3; 278.9] seconds unpredictably. For example,
it has an average time of 175.6 seconds for 60 NSPRs and
273.2 seconds for 30 NSPRs. Although this is surprising, it is
perfectly explained by the use of randomness in its key steps
and by the fact that each individual has a size of 170 (10 VNFs
∗ 17 computing nodes): the repair of an individual thus takes
into account more values and more time than in Infrastructure
1 where each individual had a size of 60.
On the other hand, we notice a degradation of ILP perfor-
mance starting from 60 requests. Its average processing time
increased from 2.5 seconds (number of requests between 2
and 50) to 8.9 seconds (number of requests between 55 and
80). This is due to the fact that ILP takes into account all the
requirements of all the NSPRs in order to propose the most
optimal way to place them on the infrastructure. Therefore,
the number of variables and constraints in the formulated opti-
mization problem increases as the number of NSPRs increases.
We confirm this analysis by the Figure 8 showing the number
of binary variables in formulated optimization problem as a
function of the number of NSPRs: even at 100 requests, we
observe 67400 binary variables for Infrastructure 2 against
33000 for Infrastructure 1. This proves that even for small
infrastructures, the performance of ILP is highly dependent on
the number of NSPRs it receives. Recall that oneshot DRL,
sequential DRL, RandomLogicAgent, MaxOperatorAgent and
FirstFitAgent algorithms are not impacted by the number of

12

(a) Learning rate variation
(Infrastructure 1)

(b) Gamma variation
(Infrastructure 1)

(c) Target update interval variation
(Infrastructure 1)

(d) Minibatch size variation
(Infrastructure 1)

(e) Learning rate variation
(Infrastructure 2)

(f) Gamma variation
(Infrastructure 2)

(g) Target update interval variation
(Infrastructure 2)

(h) Minibatch size variation
(Infrastructure 2)

Fig. 11. Fine-tuning of the oneshot DRL agent’s hyperparameters. Top : on Infrastructure 1; Down : on Infrastructure 2

Fig. 12. Mean slice placement time vs total number of Network Slice Placement Requests. From left to right: (a) Infrastructure 1, (b) Infrastructure 2

requests because they process requests individually one after
another.

2) Acceptance ratio and load balancing performances:
In this second batch of simulations, we tested the efficiency
of each algorithm. We quantified this efficiency by i) the
percentage of success on all the NSPRs received by concerned
algorithm and ii) the load balancing observed on infrastruc-
ture’s computing nodes. The calculation of success percentage
is presented in Section V-B. As for the calculation of load
balancing, we defined the load of a computing node by

l =
100(3−#remaining CPU

#initial CPU −#remaining RAM
#initial RAM −#remaining STOR

#initial STOR)

3
and the load balancing of the whole infrastructure by the
difference G between loads of the most overloaded computing
node and the least overloaded one
G = lmost overloaded cnode − lleast overloaded cnode.

It is essential to note that G is in [0; 100] and is expressed
in percentage. The smaller G, the better the load balancing on
the computing nodes.

The way in which we initialize the resources of the comput-
ing nodes in each infrastructure, as well as the requirements
of each NSPR and other parameters/information can be seen
in table I. Also, for fairness comparison and because the
sequential and the oneshot DRL agents are learning-based,
we trained them on 500 different episodes than those used to
evaluate all algorithms.

The results of this second batch of simulations for Infras-
tructure 1 are shown in Figure 13. We organized this figure in
such a way that columns 1, 2 and 3 represent the results for
G = 10%, G = 50% and G = 70%, respectively.

The figure in row 1 column 1 shows acceptance percentages
of algorithms when the maximum tolerable imbalance between

13

Fig. 13. Acceptance ratio vs total number of Network Slice Placement Requests, for Infrastructure 1. From left to right: G = 10%, G = 50% and G = 70%

the most overloaded computing node and the least overloaded
one is 10%. When there is only one NSPR to process,
all algorithms achieve a percentage of 100%. This can be
explained by the fact that before receiving that first request,
all computing nodes had a load of 0%. Therefore, there was
a large enough margin for each solution to not create an
imbalance of more than 10%. At 12 NSPRs to be processed,
the acceptance percentage of GAVA and FirstFitAgent drops
to 16.66%, i.e., barely two requests successfully placed. For
FirstFitAgent, this drop in performance is due to the fact
that it places all VNFs of all NSPRs it receives on the same
computing node as long as the latter has sufficient resources.
As a result, the first computing node ends up with a high
load, while the 5 other computing nodes of the infrastruc-
ture remain at 0% load. It quickly violates the G = 10%
requirement, which invalidates the proposed placement for
the NSPR. Worse, FirstFitAgent proposes the same placement
for each of the following NSPRs because it still trying to
use resources of the same computing node regardless of
load balancing requirements. Paradoxically, the same behavior
is observed with the GAVA genetic algorithm. Indeed, the
authors of GAVA adopted a fitness function so that the more
an individual proposes to group VNFs of an NSPR on the
same computing node, the better it is considered and thus
will have more chance to be retained as a placement decision.
With such a fitness function, GAVA’s behavior is therefore
equivalent to that of FirstFitAgent, hence its percentage of
16.66%. MaxOperatorAgent performs a little better (41.66%)
because by placing the current VNF on the computing node
with the most resources, it tends to balance the remaining
resources. However, in the Network Slice Placement problem,
balancing remaining resources is not enough to have a good
load balancing. For example, if we consider a computing node
c1 with 12 CPU and another c2 with 6 CPU and we place
VNFs so that each one has 6 CPU free, we will have generated
a load of 50% on computing node c1 while computing node
c2 will be at 0%. This explains why MaxOperatorAgent also
violated the G = 10% requirement at the risk of having
its placement decisions invalidated. The oneshot DRL agent
and the sequential DRL agent succeeded in placing all their
requests as did RandomLogicAgent. The performance of the
latter may seem surprising, but it is subject to randomness.
Therefore, it is not an exaggeration to say that it is a fluke.

Especially since, for the same NSPRs, its decisions vary from
one moment to the next randomly. At 110 NSPRs, except for
the oneshot DRL agent and ILP, all algorithms are at a success
percentage less than 50% : 23.42% for sequential DRL agent,
3.60% for GAVA, 42.34% for RandomLogicAgent, 4.50%
for MaxOperatorAgent and 1.80% for FirstFitAgent. If the
performance degradation of RandomLogicAgent is acceptable,
the one of the sequential DRL agent is justified by its reward
function (the one of [11]) which evaluates the performance
more thoroughly on the entire request placement than on
each VNF placement. Indeed, it is equal to 0 as long as
the last VNF has not been processed. The sequential DRL
agent thus ends up with experiences where the proposed
placement for a VNF is judged both ”not good” and ”not
bad”. In contrast, the reward function proposed in this paper is
placement oriented and allows the oneshot DRL agent to learn
from each placement decision of each VNF. This explains its
performance of 75.67%. Note that ILP keeps a performance
of 100% (number of requests between 1 and 150) due to the
fact that the optimization problem is formulated and solved
only once all the NSPRs are received, which differs from the
behavior of other algorithms that process the NSPRs one after
the other as they are received. However, from 155 requests,
the percentage of ILP drops drastically to 0%. In fact, as the
number of NSPRs increases, there are more constraints on the
resources, and as soon as one constraint is unsatisfiable in the
optimization problem, no solution can be found. ILP thus has
an ”all or nothing” logic where even last NSPR can destabilize
all the previous ones. Moreover, it remains difficult to identify
that NSPR for not taking it into account, for example.

Figures in row 1, columns 2, and 3 show the performance
of each algorithm when tolerating 50% and 70% imbal-
ances, respectively. This shows a slight improvement in the
performance of GAVA and FirstFitAgent and reflects more
overloading of the first nodes of Infrastructure 1 when the last
nodes are at 0% load. MaxOperatorAgent also improves to
the point of surpassing the sequential DRL agent while still
underperforming RandomLogicAgent, ILP and the oneshot
DRL agent. For G = 50%, out of the 200 NSPRs received
by each algorithm, the oneshot DRL was able to process and
place successfully 84 while sequential DRL, ILP, GAVA, Ran-
domLogicAgent, MaxOperatorAgent and FirstFitAgent placed
26, 0, 15, 54, 38 and 12 respectively i.e., a percentage of

14

42.21% for Oneshot DRL, 13.06% for sequential DRL, 0%
for ILP, 7.53% for GAVA, 27.13% for RandonLogicAgent,
19.09% for MaxLogicAgent and 6.03% for FirstFitAgent. ILP,
meanwhile, is at 0% after a run of 100% between 1 and 150
requests. It is beyond 150 requests that it could not solve
the optimization problem. This proves that no matter what
concessions the infrastructure provider makes on load balance,
the all-or-nothing logic of ILP will remain unchanged.

The passage from G = 50% to G = 70% actually only
results in a slight increase in the performance of GAVA
and FirstFitAgent which pass, respectively, from 7.53% to
9.54% and from 6.03% to 8.54%. Interestingly, unlike the
latter, RandomLogicAgent drops performance from 27.13%
to 25.12%. This shows how the randomness of this algorithm
does not allow it to take into account the needs expressed by
the infrastructure provider.

The results of the simulation on Infrastructure 1 allowed us
to see that G = 10% is a little too strict as a load balance con-
dition and that G = 50% or G = 70% gives approximately the
same result in terms of algorithm performance. We therefore
performed the simulations on Infrastructure 2 by setting only
G = 50%.

Infrastructure 2 is made up of 17 computing nodes. The
simulation results obtained on the acceptance percentage are
in Figure 14. Between 1 to 12 requests, all algorithms have a
success percentage of 100% because Infrastructure 2 with its
17 nodes has slightly enough resources than Infrastructure 1.
For a few NSPRs, the placements proposed by each algorithm
are then successful. At 23 NSPRs, the trend is still 100%
except for GAVA and FirstFitAgent which drop to 60.86% and
52.17%, respectively. This is because these two algorithms, by
their operation, have placed all VNFs on the first computing
node of Infrastructure 2, i.e., a total of 230 VNFs (23 requests
∗ 10 VNFs per request). The difference G in computing loads
between the first node that is very overloaded and the other
nodes exceeds 50%, which is a violation of the requirement
G = 50% leading to the rejection of their placements. This
trend is confirmed as the number of NSPRs increases. At 200
NSPRs, GAVA is at 7.53% and FirstFitAgent at 6.03%. As for
sequential DRL, from 34 NSPRs, it continuously decreases in
performance to end up at 12.56% at 200 requests i.e., barely
25 requests placed successfully. This confirms that even with
enough resources on the infrastructure, the reward function
proposed in [11] does not allow the agent to have the right
feedback to correct its future placements. RandomLogicA-
gent and MaxLogicAgent overlap in terms of performance,
with sometimes RandomLogicAgent managing to slightly
outperform MaxLogicAgent (e.g., when number of requests
equals 78, 100 or 133) and sometimes the opposite (e.g.,
when number of requests equals 56 or 133). In 200 NSPRs,
RandomLogicAgent has an acceptance percentage of 29.64%
and MaxLogicAgent has 28.64%. This shows that trying to
equalize the remaining resources on the computing nodes
without taking into account other issues (such as available
bandwidth on the physical links) can generate performance
as low as randomly placing VNFs on the computing nodes.
ILP is still in its all-or-nothing logic, performing at 100%
up to about 175 requests before collapsing to 0%. Oneshot

Fig. 14. Acceptance ratio vs total number of NSPRs for Infrastructure 2 and
G = 50%

DRL held its own against ILP from 1 to 133 requests, also
getting a succession of 100% before gradually dropping in
performance. However, when ILP collapses from 175 requests
onwards, Oneshot DRL maintained a performance of 76.83%
(177 NSPRs), 72.34% (188 NSPRs) and 68.34% (200 NSPRs).
This clearly shows that even when resources are very limited
on the infrastructure, the oneshot DRL agent manages to place
successfully a certain number of NSPRs instead of rejecting
them all as ILP does. Relying on mBFS, the oneshot DRL
agent also manages well to chain NSPR’s VNFs, which limits
the risk of placements failing due to chaining constraints.
While ILP needs to know all the NSPRs before proposing
placements, making it unsuitable for online scenarios, the
oneshot DRL agent processes NSPRs as they arrive and
relies on its past placements rewards to improve itself. Those
characteristics make the oneshot DRL agent a better choice
when dealing with online scenarios such as in autonomous
IoT systems.

VI. CONCLUSION

In this paper we present a new algorithm for network
slicing in IoT networks based on deep reinforcement tech-
nique. Our algorithm is fully ETSI compliant and proposes
oneshot placement for slice requests. Hence, it is suitable for
deployment in real-world IoT networks, which is a significant
step towards enabling network operators to efficiently allocate
network resources and meet the ever-increasing demands for
IoT services. Our approach is hybrid between single agent
and multi-agent paradigms and addresses the challenges of
real scenarios without requiring prior knowledge of all slice
placement requests. We implemented and tested this algorithm
in the ns3-gym framework and compared its performance with
six other algorithms. The results show that our algorithm is as
fast as heuristics, with the extra benefit of learning from past
placement decisions to improve future placements. The use
of Extensible Reinforcement Learning Observation (ERLO)
makes it possible to adapt to changes in the environment

15

without changing the algorithm. The algorithm is a promising
step towards the provisioning of autonomous IoT systems
with adaptable tools capable of managing service requirements
without human intervention. In future work we would like to
extend the optimization algorithm to include price and revenue
parameters to meet the needs of both service providers and
consumers.

VII. LIMITATIONS

The ability of the oneshot DRL agent to generate the place-
ment decision for an entire NSPR in a single DRL iteration
largely relies on the use of module (U) (Algorithm 1), which
updates the observations provided to microagents. Conse-
quently, each microagent operates independently while taking
into account the placement decisions of previous microagents.
Therefore, the oneshot DRL agent is better suited for resource
allocation or management scenarios where a straightforward
subtraction of allocated resources can update the remaining
resources. However, we also consider that it might be feasible
to employ the oneshot DRL agent in other scenarios, provided
that the effect of one microagent on the input (observation) of
the subsequent microagent is predictable without the need to
involve the environment. While not entirely predictable, an
update module based on predictive Machine Learning models
could be considered. In any case, without the update of
microagents’ input, the oneshot DRL agent may suffer from
degraded performance.

Although it includes independent microagents, the oneshot
DRL agent has been proposed as a centralized solution. Thus,
we think that to transform it into a distributed solution,
several aspects need to be addressed: 1) the rapid supply
of microagents’ experiences to Master microagent; 2) the
synchronization of microagents in generating placement deci-
sions; and 3) the swift dissemination of policy improvements
obtained by the Master microagent to the microagents.

LIST OF ABBREVIATIONS

IoT Internet of Things
QoS Quality of Service
DRL Deep Reinforcement Learning
ETSI European Telecommunications

Standards Institute
NGMN Next Generation Mobile Network
5G fifth-generation networks
NFV Network Function Virtualization
SDN Software Defined Network
VNF Virtual Network Function
NSP Network Slice Placement
VNE Virtual Network Embedding
VNF-FGE Virtual Network Function

Forwarding Graph Embedding
SFC-P Service Functions

Chaining/Placement
VNF-PC Virtual Network Function Placement

and Chaining
NSPR Network Slice Placement Request
VL Virtual Link

CPU Central Processing Unit
RAM Random Access Memory
NFVO Network Function Virtualization

Orchestrator
MANO MANagement and Orchestration
VDLL VNF-PC DRL Loop Latency
ILP Integer Linear Programming
SLO Service Level Objectives
MILP Mixed Integer Linear Programming
VM Virtual Machine
SFC Service Functions Chaining
BIP Binary Integer Programming
LP Linear Programming
P2C Power of two Choices
N-PoP Nodes Point of Presence
VNF-FG Virtual Network Function

Forwarding Graph
A3C Asynchronous Advantage

Actor-Critic
GCN Graph Convolutional Network
InP Infrastructure Provider
DQN Deep Q-Network
DDQN Double Deep Q-Network
HA-DRL Heuristically Assisted Deep

Reinforcement Learning
NS Network Service
ERLO Extendable Reinforcement Learning

Observation
GAVA Genetic Algorithm for VNF-FGs

Allocation

REFERENCES

[1] Bernardetta Addis, Dallal Belabed, Mathieu Bouet, and Stefano Secci.
Virtual network functions placement and routing optimization. In 2015
IEEE 4th International Conference on Cloud Networking (CloudNet),
pages 171–177, 2015.

[2] Ibrahim Afolabi, Tarik Taleb, Pantelis A. Frangoudis, Miloud Bagaa,
and Adlen Ksentini. Network slicing-based customization of 5g mobile
services. IEEE Network, 33(5):134–141, 2019.

[3] Ibrahim Afolabi, Tarik Taleb, Konstantinos Samdanis, Adlen Ksentini,
and Hannu Flinck. Network slicing and softwarization: A survey on
principles, enabling technologies, and solutions. IEEE Communications
Surveys Tutorials, 20(3):2429–2453, 2018.

[4] N. Alliance. “description of network slicing concept,” ngmn 5g p, vol.
1, no. 1, 2016.

[5] Jose Jurandir Alves Esteves, Amina Boubendir, Fabice Guillemin, and
Pierre Sens. Heuristic for Edge-enabled Network Slicing Optimization
using the ”Power of Two Choices”. In CNSM 2020 - 16th International
Conference on Network and Service Management, Izmir / Virtual,
Turkey, November 2020.

[6] Jose Jurandir Alves Esteves, Amina Boubendir, Fabrice Guillemin,
and Pierre Sens. DRL-based Slice Placement Under Non-Stationary
Conditions. In CNSM 2021 - 17th International Conference on Network
and Service Management, Izmir, Turkey, October 2021.

[7] Edoardo Amaldi, Stefano Coniglio, Arie M.C.A. Koster, and Martin
Tieves. On the computational complexity of the virtual network embed-
ding problem. Electronic Notes in Discrete Mathematics, 52:213–220,
2016. INOC 2015 – 7th International Network Optimization Conference.

[8] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil An-
thony Bharath. Deep reinforcement learning: A brief survey. IEEE
Signal Processing Magazine, 34(6):26–38, nov 2017.

[9] Faizul Bari, Shihabur Rahman Chowdhury, Reaz Ahmed, Raouf
Boutaba, and Otto Carlos Muniz Bandeira Duarte. Orchestrating
virtualized network functions. IEEE Transactions on Network and
Service Management, 13(4):725–739, 2016.

16

[10] Mahdi Dolati, Seyedeh Bahereh Hassanpour, Majid Ghaderi, and Ahmad
Khonsari. Deepvine: Virtual network embedding with deep reinforce-
ment learning. In IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), pages
879–885, 2019.

[11] Jose Jurandir Alves Esteves, Amina Boubendir, Fabrice Guillemin,
and Pierre Sens. A heuristically assisted deep reinforcement learning
approach for network slice placement, 2021.

[12] José Jurandir Alves Esteves, Amina Boubendir, Fabrice Guillemin, and
Pierre Sens. Location-based data model for optimized network slice
placement. In 2020 6th IEEE Conference on Network Softwarization
(NetSoft), pages 404–412, 2020.

[13] José Jurandir Alves Esteves, Amina Boubendir, Fabrice Guillemin, and
Pierre Sens. Drl-based slice placement under realistic network load
conditions, 2021.

[14] ETSI. Network functions virtualisation (nfv); management and or-
chestration, european telecommunication standard institute (etsi), group
specification (gs) nfv-man 001, 12 2014, version 1.1.1., 2014.

[15] Andreas Fischer, Juan Felipe Botero, Michael Till Beck, Hermann
de Meer, and Xavier Hesselbach. Virtual network embedding: A survey.
IEEE Communications Surveys Tutorials, 15(4):1888–1906, 2013.

[16] Xenofon Foukas, Georgios Patounas, Ahmed Elmokashfi, and Ma-
hesh K. Marina. Network slicing in 5g: Survey and challenges. IEEE
Communications Magazine, 55(5):94–100, 2017.

[17] P. Gawłowicz and A. Zubow. Ns-3 meets openai gym: The playground
for machine learning in networking research. In Proceedings of the 22nd
International ACM Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems, MSWIM ’19, page 113–120, New York,
NY, USA, 2019. Association for Computing Machinery.

[18] Juliver Gil Herrera and Juan Felipe Botero. Resource allocation in nfv:
A comprehensive survey. IEEE Transactions on Network and Service
Management, 13(3):518–532, 2016.

[19] Hassan Hawilo, Manar Jammal, and Abdallah Shami. Network function
virtualization-aware orchestrator for service function chaining placement
in the cloud. IEEE Journal on Selected Areas in Communications,
37(3):643–655, 2019.

[20] Johanna Andrea Hurtado Sánchez, Katherine Casilimas, and Os-
car Mauricio Caicedo Rendon. Deep reinforcement learning for resource
management on network slicing: A survey. Sensors, 22(8), 2022.

[21] Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks, 2016.

[22] Defang Li, Peilin Hong, Kaiping Xue, and jianing Pei. Virtual network
function placement considering resource optimization and sfc requests
in cloud datacenter. IEEE Transactions on Parallel and Distributed
Systems, 29(7):1664–1677, 2018.

[23] Jiaqiang Liu, Yong Li, Ying Zhang, Li Su, and Depeng Jin. Improve
service chaining performance with optimized middlebox placement.
IEEE Transactions on Services Computing, 10(4):560–573, 2017.

[24] Marcelo Caggiani Luizelli, Weverton Luis da Costa Cordeiro, Luciana S.
Buriol, and Luciano Paschoal Gaspary. A fix-and-optimize approach for
efficient and large scale virtual network function placement and chaining.
Computer Communications, 102:67–77, 2017.

[25] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex
Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
2016.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing
atari with deep reinforcement learning, 2013.

[27] Jianing Pei, Peilin Hong, Miao Pan, Jiangqing Liu, and Jingsong Zhou.
Optimal vnf placement via deep reinforcement learning in sdn/nfv-
enabled networks. IEEE Journal on Selected Areas in Communications,
38(2):263–278, 2020.

[28] Jianing Pei, Peilin Hong, Kaiping Xue, and Defang Li. Efficiently
embedding service function chains with dynamic virtual network func-
tion placement in geo-distributed cloud system. IEEE Transactions on
Parallel and Distributed Systems, 30(10):2179–2192, 2019.

[29] Chuan Pham, Nguyen H. Tran, Shaolei Ren, Walid Saad, and
Choong Seon Hong. Traffic-aware and energy-efficient vnf placement
for service chaining: Joint sampling and matching approach. IEEE
Transactions on Services Computing, 13(1):172–185, 2020.

[30] Tran Anh Quang Pham, Jean-Michel Sanner, Cédric Morin, and Yassine
Hadjadj-Aoul. Virtual network function–forwarding graph embedding:
A genetic algorithm approach. International Journal of Communication
Systems, 33(10):e4098, 2020. e4098 0.1002/dac.4098.

[31] Pham Tran Anh Quang, Yassine Hadjadj-Aoul, and Abdelkader Outta-
garts. A deep reinforcement learning approach for vnf forwarding graph

embedding. IEEE Transactions on Network and Service Management,
16(4):1318–1331, 2019.

[32] Anouar Rkhami, Yassine Hadjadj-Aoul, and Abdelkader Outtagarts.
Learn to improve: A novel deep reinforcement learning approach for
beyond 5g network slicing. In 2021 IEEE 18th Annual Consumer
Communications Networking Conference (CCNC), pages 1–6, 2021.

[33] Matthias Rost and Stefan Schmid. Virtual network embedding approx-
imations: Leveraging randomized rounding, 2018.

[34] Hong Tang, Danny Zhou, and Duan Chen. Dynamic network function
instance scaling based on traffic forecasting and vnf placement in
operator data centers. IEEE Transactions on Parallel and Distributed
Systems, 30(3):530–543, 2019.

[35] Khuong Tran, Maxwell Standen, Junae Kim, David Bowman, Toby
Richer, Ashlesha Akella, and Chin-Teng Lin. Cascaded reinforcement
learning agents for large action spaces in autonomous penetration testing.
Applied Sciences, 12(21), 2022.

[36] Tom Van de Wiele, David Warde-Farley, Andriy Mnih, and Volodymyr
Mnih. Q-learning in enormous action spaces via amortized approximate
maximization, 2020.

[37] H. van Hasselt, A.r Guez, and D. Silver. Deep reinforcement learning
with double q-learning, 2015.

[38] Shalitha Wijethilaka and Madhusanka Liyanage. Survey on network
slicing for internet of things realization in 5g networks. IEEE Commu-
nications Surveys Tutorials, 23(2):957–994, 2021.

[39] Ronald J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. 1992.

[40] Yikai Xiao, Qixia Zhang, Fangming Liu, Jia Wang, Miao Zhao,
Zhongxing Zhang, and Jiaxing Zhang. Nfvdeep: Adaptive online
service function chain deployment with deep reinforcement learning. In
2019 IEEE/ACM 27th International Symposium on Quality of Service
(IWQoS), pages 1–10, 2019.

[41] Zhongxia Yan, Jingguo Ge, Yulei Wu, Liangxiong Li, and Tong Li.
Automatic virtual network embedding: A deep reinforcement learning
approach with graph convolutional networks. IEEE Journal on Selected
Areas in Communications, 38(6):1040–1057, 2020.

[42] Haipeng Yao, Xu Chen, Maozhen Li, Peiying Zhang, and Luyao
Wang. A novel reinforcement learning algorithm for virtual network
embedding. Neurocomputing, 284:1–9, 2018.

[43] Haipeng Yao, Bo Zhang, Peiying Zhang, Sheng Wu, Chunxiao Jiang,
and Song Guo. Rdam: A reinforcement learning based dynamic attribute
matrix representation for virtual network embedding. IEEE Transactions
on Emerging Topics in Computing, 9(2):901–914, 2021.

[44] Dong Yin, Zhe Zhao, Yinglong Dai, and Han Long. A novel multi-agent
deep reinforcement learning approach. Journal of Physics: Conference
Series, 1757(1):012097, jan 2021.

[45] Qixia Zhang, Yikai Xiao, Fangming Liu, John C.S. Lui, Jian Guo, and
Tao Wang. Joint optimization of chain placement and request scheduling
for network function virtualization. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), pages 731–
741, 2017.

Abdel Kader Chabi Sika Boni received the En-
gineering degree in Networks and Telecommuni-
cations from ENSA Khouribga, Morocco, in 2020
and the Master II ILoRD degree in software engi-
neering of networks and distributed systems from
INSA Toulouse, France in 2021. Since 2021, he is
PhD candidate at the French National Center for
Scientific Research (CNRS). His PhD topic is about
providing intelligent architectures and algorithms in-
cluding Machine Learning and Deep Reinforcement
Learning to support autonomous IoT systems.

17

Hassan Hassan received the Engineering degree
in Computer Science from ENSERG (INP Greno-
ble) in septembre 1996 and M.S. (DEA) degree in
Networks and Telecommunication from ENSEEIHT
(INP Toulouse) in June 2003. He obtained his Ph.D.
degree in Computer Science from UPS, University
Paul Sabatier Toulouse III, in December 2006. He
was from January 2007 to January 2008, Postodc-
toral researcher at LAAS-CNRS, and from February
2008 et December 2008 R&D engineer at Ginkgo
Networks, a startup of Paris 6 University. He is

since January 2009 Research Engineer, a full-time position, at the French
National Center for Scientific Research (CNRS). His research interests include
Computer Networks and Deep Reinforcement Learning applications in IoT
systems.

Khalil Drira received the Master degree in com-
puter science from INP, Toulouse, in 1988, and
the Ph.D. and HDR degrees in computer science
from Université Paul Sabatier Toulouse in 1992
and 2005, respectively. Since 1992, he assumes a
full-time research position in CNRS, France. His
research interests include cooperative network IoT
services, platforms and applications. His research
activity addresses topics in this field focusing on
Software architectures and communication services.
He continues to be involved in national and inter-

national conferences and journals. He serves as a member of the program
journals in the fields of software architecture as well as IoT and Internet
networks. He has also been an Editor of several proceedings, books, and
journals.

	Introduction
	Related work
	Exact solution approaches
	Heuristics approaches
	Meta-heuristics approaches
	Pure DRL approaches
	Combined approaches (Exact+DRL and Heuristic+DRL)
	Motivation

	Problem statement
	Physical Substrate Network
	Physical node description
	Physical link description
	Physical node bandwidth

	Network Slice Placement Request
	NSPR's VNF description
	NSPR's Virtual link description
	NSPR's VNF bandwidth

	Remaining resource formalization
	Network Slice Placement formalization

	Oneshot DRL agent for NSPR
	Oneshot DRL agent
	Reward function

	Evaluation results
	Comparison algorithms
	Comparison metrics
	Physical infrastructures in comparison
	Simulator
	Fine-tuning the hyperparameters of the oneshot DRL agent
	Learning rate fine-tuning
	Gamma fine-tuning
	Target network update interval fine-tuning
	Mini-batch size fine-tuning

	Analysis
	Execution time performance
	Acceptance ratio and load balancing performances

	Conclusion
	Limitations
	References
	Biographies
	Abdel Kader Chabi Sika Boni
	Hassan Hassan
	Khalil Drira

