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The image formation in coded aperture spectral imagers is a key information to process the acquired
compress data, and the optical system design and calibration of these instruments require great care.
We propose an analytical model for CASSI systems that builds upon ray-tracing equations of each optical
component. The model takes into account optical distortions, sampling effects and optical misalignments,
and allows accurate modelling and fast calibration. Numerical comparisons with the simpler model usu-
ally exploited in the literature are provided, and an experimental validation is presented.
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1. INTRODUCTION1

Hyperspectral imaging has been considerably renewed by the2

advent of coded aperture imagers, known as CASSI systems3

("Coded-aperture Spectral Snapshot Imager" [1]). Unlike tradi-4

tional spectral imagers where spectral bands are measured one5

at a time, CASSI systems measure linear combinations of spec-6

tral bands. This combination results from spatio-spectral filter-7

ing of the scene by an optical system containing one or more8

dispersive elements and a spatial light modulator that defines9

a coded aperture.10

Various CASSI architectures have been proposed in the liter-11

ature, with variations on the number and position of dispersive12

elements, the number of cameras, the nature and position of13

the coded aperture [2]. Whatever the optical architecture and14

the processing algorithms are, the extraction of relevant infor-15

mation from the measurements requires an accurate model of16

the image formation, that takes into account both the charac-17

teristics of the optical components and the sampling effects at18

the coded aperture and detector planes. This model plays a19

key role in linking the coded aperture pattern to the resulting20

spatio-spectral filtering occurring at the coded aperture plane,21

and hence on the information acquired in the encoded images.22

Furthermore, a realistic model is needed to simulate acquisi-23

tions, e.g. to ease the definition of the processing algorithms,24

or, following a co-design approach, to specify the characteris-25

tics of a system along with the processing algorithms.26

Some authors consider simple models for CASSI systems27

[3, 4], with straightforward approximations of the spectral fil-28

tering that degrade the quality of the extracted information. Ef-29

forts have been made to improve the estimation of the spectral30

filtering: [5] focuses on the spatio-spectral discretization and31

model its impact, and [6] propose a precise spectral-dependant32

estimation of the point-spread function. Both works exploit a33

straightforward propagation model that does not consider op-34

tical distortions inherent in prism-based systems. Failing to ex-35

plicitly consider these imperfections leads to artefacts in the re-36

constructed information, e.g. moiré effects in spectral planes,37

as we experienced in previous work [7]. The usual approach38

to account for optical distortions is to amend a simple model39

with experimental look-up tables (LUTs) obtained during cali-40

bration, once a prototype is built [8–10], a process that can be41

cumbersome and whose complexity increases with the spectral42

and spatial resolutions of the instrument. Calibration is deemed43

as one of the drawbacks of coded aperture hyperspectral imag-44

ing systems [11, 12].45

We propose here an accurate analytical model of a CASSI sys-46

tem, that builds upon ray-tracing equations of each optical com-47

ponent. The model embraces optical distortions that are seldom48

considered in the literature (smile and stretching distortions)49

and also accounts for optical misalignments. It precisely rep-50

resents the image formation process, and more specifically the51

spatial/spectral filtering in CASSI systems.52

Besides, the advantages of an analytical model as compared53

to an experimental LUT are threefold. First, the model allows54

easy and fast calibration of CASSI prototypes, using a small set55

of calibration scenes to estimate the model physical parame-56

ters with an optimisation process. Second, by explicating the57

impact of the system physical parameters in its formulation, it58
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allows to dimension the system to reach given requirements, al-59

lowing fast parametric studies. And finally, it allows to easily60

develop a coded-image generation simulator (we provide such61

a simulator in [13]). Our work is complementary to [5] and [6]62

as it includes a high-order discretization and an estimation of63

the point-spread function, but also includes a modular, differ-64

entiable and realistic optical propagation model. Its differentia-65

bility is key for efficient optimisation, including machine learn-66

ing approaches. The simulator thus generates realistic encoded67

images and yields the possibility to jointly define and configure68

the system and data processing algorithms along a co-design69

paradigm, or to train inference models on synthetic data.70

Paper outline: the next section recalls the principle of a71

single-disperser CASSI system, and then describes two opti-72

cal models: the simplified model commonly used in the liter-73

ature, and the proposed analytical model. Section 3 compares74

both models in relation to the very accurate results provided75

by the optical design software Zemax, and show drastic im-76

provements provided by our model. In section 4, we estimate77

the model parameters of a prototype CASSI system, depict the78

spectral sampling defined by our model, and provide an ex-79

perimental validation. Finally, section 5 shows how the non-80

regular local spectral sampling induced by the distortions and81

discretization effects can be harnessed to enhance the spectral82

resolution of homogeneous regions in the scene.83

2. MODEL OF A SINGLE DISPERSER CASSI84

Fig. 1. Single-disperser CASSI architecture.

The studied architecture is a single-disperser prism-based85

CASSI (SD-CASSI), originally proposed in [1] and depicted in86

figure 1. Imaging optics are used to image the scene in the mask87

plane of the instrument. A mask placed in this plane applies a88

spatial modulation to the object according to a chosen coding89

pattern. The masked object is then imaged in the detector plane90

by an optical system containing relay optics and a prism, re-91

sulting in each wavelength forming on the detector a laterally92

shifted image. As a result, the spatial information and the spec-93

tral information from the observed object are multiplexed on94

the detector.95

We focus throughout the paper on a prism-based SD-CASSI96

system, but a similar approach can be trivially applied to a97

grating-based SD-CASSI. Also, the proposed model can de-98

scribe a dual-disperser CASSI sytem (DD-CASSI), by using it99

twice: once for each of the two arms of the DD-CASSI.100

A. Classical propagation model101

The acquisition model widely used in the literature for an SD-102

CASSI describes the intensity collected on the detector at the103

(xd, yd) position as:104

I(xd, yd) =
∫

H(xd, yd)S0(xd, yd, λ) dλ (1)

where H is the filtering function, (xd, yd) the coordinates in the105

detector plane, λ the wavelength of interest and So the spectro-106

spatial power density of the scene.107

For the sake of simplicity, we assume the optical elements108

and detector to be 100 % efficient: spectral filtering only occurs109

in the mask plane. In the models proposed by [4, 5, 14, 15], H is110

written as:111

H(xd, yd, λ) = T(xm, ym)

with Mc :

{
xm = −xd + Ω(λ)

ym = −yd

(2)

where the “classical” model Mc is the backward propagation112

model mapping positions (xd, yd) in the detector plane to posi-113

tions (xm, ym) in the mask plane, T(xm, ym) is the transmission114

efficiency of the mask at position (xm, ym), independent of the115

wavelength λ, and the spectral spread function Ω(λ) models116

the spatial shift due to the spectral dispersion of the prism.117

The underlying assumptions of the propagation model Mc118

are the following:119

� assumption H1: The spectral dispersion induced by the120

prism is the same for all positions (xd, yd) in the detector121

plane.122

� assumption H2: Whatever the wavelength, the magnifica-123

tion Gx between the detector plane and the mask plane is124

constant in the dispersion direction x.125

� assumption H3: Whatever the wavelength, the magnifica-126

tion Gy between the detector plane and the mask plane is127

constant in the direction perpendicular to the dispersion y.128

The assumption H1 is contained in the function Ω(λ) that129

only depends on the considered wavelength λ and not on the130

position (xd, yd). The assumptions H2 and H3 are implicitly131

contained in the ×(−1) factors in eq. Eq. (2) that correspond to132

Gx = Gy = −1.133

B. Accurate propagation model134

Our experimental observations [16] and simulations with the135

Zemax software detailed in section A indicate that the range of136

validity of the previous assumptions is limited. A more general137

propagation model is needed, that captures the specificities of138

a real prism-based CASSI system, such as geometric distortions139

induced by the prism and alignment errors. We define here the140

improved backward propagation model Mp, by integrating the141

parametrization of elementary transformations induced by the142

optical components (prism and lenses) and their relative orien-143

tations (rotation matrices).144

B.1. Components models145

From the detector back to the mask plane, light undergoes three146

transformations corresponding to the three optical components:147

a position-to-angle conversion lp,a through the first lens, an148

angle-to-angle conversion pa,a through the prism, and an angle-149

to-position conversion la,p through the second lens.150

Lens model lp,a (image plane to Fourier plane)151

We assume the lenses are perfect thin lenses and the propaga-152

tion distances before and after the lens are perfectly equal to153

their focal length F. When propagating from an image plane to154

a Fourier plane, such a lens performs a perfect position-to-angle155

conversion depending only on its focal length F, as depicted in156

figure 2.157
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Fig. 2. Position-to-angle conversion lp,a induced by a perfect
thin lens between object and Fourier planes.

This assumption is well verified in practice when using158

achromatic lenses and working with a small aperture system.159

This position-to-angle relation is:160

lp,a :

{
α = − arctan (x/F)
β = − arctan (y/F)

(3)

where F is the focal length, (x, y) the horizontal and vertical161

incoming positions in the object plane and (α, β) the horizontal162

and vertical outgoing angles after the lens.163

In terms of normalized wave-vector ~v = ~k × λ
2π , after the164

lens, the model lp,a gives:165 
vx

vy

vz

 =
1√

1 + tan2(α) + tan2(β)


tan(α)

tan(β)

1

 (4)

Lens model la,p (Fourier plane to image plane)166

Conversely, when propagating from a Fourier plane to an im-167

age plane, a perfect thin lens performs an angle-to-position con-168

version as depicted in figure 3.

Fig. 3. Angle-to-position conversion la,p induced by a perfect
thin lens between Fourier and image planes.

169

This position-to-angle relation is:170

la,p :

{
x = F tan(α)
y = F tan(β)

(5)

where F is the focal length, (α, β) the horizontal and vertical171

incoming angles and (x, y) the horizontal and vertical positions172

in the image plane after the lens.173

Note that using these definitions of lp,a and la,p ensures that174

a 4F telescope, described by lp,a ◦ la,p has the expected magnifi-175

cation ratio of Gx = Gy = −1.176

Prism model pa,a (spectral deviation)
Prisms perform an angle-to-angle conversion that depends on
the wavelength. We describe the incident wavevector~ki as:

~ki =
2π

λ
×~vi

where the normalized vector ~vi can be written as:177 
vi,x

vi,y

vi,z

 =
1√

1 + tan2(αi) + tan2(βi)


tan(αi)

tan(βi)

1

 (6)

with α and β corresponding to incident angles on the input in-178

terface of the prism P expressed in the corresponding frame179

{RPi}, as illustrated in figure 4. Note that αi and αo belong to180

the xOz plane and βi and βo belong to the yOz plane of the re-181

spective frames.

Fig. 4. Propagation of a wavevector through a prism.~ki is an
incident wavevector on the input interface of the prism in the
{RPi} frame;~ko is the corresponding output vector in frame
{RPo}.

182

The refraction law ensures that the component of the183

wavevector lying in the air/glass interface (i.e. component184

within the z = 0 plane in {RPi}) is conserved. The same applies185

to its normalized vector ~vi. Combining this conservation of in-186

plane components at both input and output interfaces with the187

fact that the normalized wavevector norm is 1 out of the prism188

and n(λ) inside the prism, one can express the components of189

the output vector ~vo in the {RPo} frame as:190 
vox

voy

voz

=


cos(A)vix−sin(A)
√
[n(λ)]2−v2

ix−v2
iy

viy√
‖~vo‖2 −v2

ox −v2
oy

 (7)

where A is the apex angle of the prism, ‖~vo‖ = 1, the norm of191

the ~vo vector, λ the considered wavelength and n(λ) the corre-192

sponding refractive index.193

Output angles in the frame of the output face {RPo} can be194

expressed with vector ~vo components as:195

pa,a :

{
αo = arctan (vox/voz)

βo = arctan
(
voy/voz

) (8)

Combining equations Eq. (8), Eq. (7) and Eq. (6) defines the196

analytical model pa,a, giving a closed-form expression of αo and197

βo as a function of αi and βi. This expression is somewhat com-198

plex, it is not presented here explicitly (see the code in [13] for199

more details on the exact implementation). For a grating-based200

SD-CASSI, a similar approach can be derived to define an ana-201

lytic model for wavelength dependent ray deviation [17].202

B.2. Mp : combination of elementary models203

The model Mp describes the propagation from a position204

(xd, yd) at wavelength λ through two lenses and a prism as il-205

lustrated in figure 5. The optical layout is such that the optical206

axis of the lenses L1 and L2 corresponds to the minimum de-207

flection of the prism for the central wavelength of the system.208

The latter is a design choice made with respect to the spectral209

range of the instrument.210

The full model Mp is defined by the composition of the ele-211

mentary transformations lp,a, pa,a and la,p:212

Mp : (xd, yd, λ)→ (xm, ym, λ)

Mp = la,p ◦ RPo→L1 ◦ pa,a ◦ RL2→Pi ◦ lp,a
(9)
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Fig. 5. The backward propagation model Mp is the combina-
tion of the elementary transformations lp,a, pa,a and la,p and
the rotation operators RL2→Pi and RPo→L1 .

with RL2→Pi and RPo→L1 the rotation operators associated re-213

spectively with the change of reference frame between {RL2}214

and {RPi}, and between {RPo} and {RL1} (see figure 5).215

Fig. 6. Prism alignment parameters. The angle αc is the angle
of incidence corresponding to the minimum deflection of the
prism at the central wavelength. The angles δαc and δβc de-
scribe small errors of alignment respectively with respect to
the minimum deflection and with respect to the verticality of
the prism.

These two operators are parametrized according to the op-216

tomechanics on which the prism is fixed. To allow the align-217

ment of the optical system, it is generally necessary to have at218

least two degrees of freedom on this component. A rotation219

around the y-axis, illustrated in figure 6, allows the positioning220

around the minimum of deflection, and a rotation around the221

x-axis guarantees the verticality of the prism. To account for222

alignment errors, we have parametrized these two rotations by223

δαc and δβc, which represent respectively the error from the in-224

cidence αc corresponding to the minimum of deviation and the225

error from the vertical (see figure 6). To summarize, our model226

parameters are the focal length F, the apex angle A, the angle of227

incidence on the prism αc ensuring minimum deflection at λc,228

and the two angles δαc and δβc that define the alignment errors229

of the prism.230

C. Discussions on dispersive elements231

In the literature, there has been several discussions on which232

optical component to use for spectral dispersion.233

One commonly employed element is the grating, in trans-234

mission or reflection, renowned for its linear dispersion capa-235

bilities. However, its utility is somewhat constrained by a rel-236

atively narrow spectral range, beyond which its efficiency no-237

tably diminishes. Moreover, going beyond one octave requires238

special care to avoid diffraction orders overlapping.239

Conversely, prisms offer a broader spectral range with high240

efficiency, but at the expense of introducing distortions. These241

include smile and stretching effects, alongside inherent non-242

linear dispersion, which can complicate the interpretation of243

raw spectral images.244

An alternative is the Amici prism [18], a composite of three245

prisms arranged to combine the benefits of both grating and246

prism. It achieves linear dispersion over an extensive spectral247

range, akin to gratings, while retaining the wide-range appli-248

cability of prisms [19]. Despite its merits, the Amici prism is249

not without drawbacks, as it still manifests smile and stretch-250

ing distortions.251

In this article, we chose to focus on the prism as it induces252

various optical distortions that need to be addressed, and is also253

the basic building block of the Amici prisms. Note that a grat-254

ing model is also included in our associated simulator [13].255

3. NUMERICAL VALIDATION256

To quantify the advantages of the model Mp over the classical257

model Mc, both were compared to simulations performed by258

the optical design software Zemax. Zemax was chosen as the259

reference for the evaluation because it is widely used in the op-260

tical systems industry.261

The simulated system is an SD-CASSI as depicted in figure 5.262

We first assume that there is no misalignment (δαc = δβc = 0)263

and simulate in Zemax the propagation of a grid of 19 × 19264

points, forming a field of view of 8 × 8 mm2, from the detec-265

tor plane to the mask plane (see figure 7). The spectral range

Fig. 7. Typical comparison: a regular grid of 19× 19 points in
the detector plane (top) is propagated to the mask plane (bot-
tom) with both the Mc model (black dots) and Zemax (green
dots).

266

evaluated is the visible and near-infrared [450− 780] nm. The267

lenses are perfect, with focal length F = 165 mm, and the prism268

is equilateral (A = 60°) in BK7 (these parameters are those of269

the prototype presented in section A, except the field of view270

which is larger, so as to better exhibit the differences between271

the models). The central wavelength is fixed at λc = 532 nm,272

and the associated minimum deviation Dm is calculated by di-273

rect application of the Snell-Descartes law [20]:274

Dm = 2 arcsin(n(λc) sin(A/2))− A (10)

where n(λc) is the refractive index of the prism at the central275

wavelength and A the apex angle of the prism. We finally get276

the angle of incidence on the prism αc:277

αc =
A + Dm

2
(11)

In our case, αc = 49.44°. Since the misalignments cannot be278

taken into account by the classical model we first assume that279

they are non-existent. In the last validation step, we perform280

a comparison between our model and the Zemax simulations281

with increasing misalignments.282
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A. Evaluation of the classical model Mc283

Preliminary methodological note: The Mc model assumes iden-284

tical spectral dispersion for all positions in the field of view285

(assumption H1, section A). The Ω function related to the dis-286

persion thus depends only on the wavelength λ. Different ways287

of evaluating this dispersion have been proposed in the litera-288

ture [7, 11, 14]. To avoid any bias due to the use of an inade-289

quate model for Ω, we extrapolate this function from the Zemax290

reference simulation with a polynomial of degree 10. We obtain291

a dispersion function for the point at the centre of the detector292

(xd, yd) = (0, 0). This function faithfully reproduces the spatial293

shifts observed at the mask for the different wavelengths.294

Fig. 8. Comparison between Zemax and Mc propagation mod-
els for the central wavelength λ = 532 nm: (a) points in the
mask plane (xm, ym) predicted by Mc (black) and by Zemax
(green); (b) zoom on the stretching distortion along the hori-
zontal axis x; (c) zoom on the smile distortion along the ver-
tical axis y; (d) geometric distortions mapped on detector
points: Euclidean distance D between points predicted by Ze-
max and Mc.

Figure 8 (a) shows the points propagated by Zemax (black295

dots) and by the Mc model (green dots) for the wavelength λ =296

532 nm. The Mc model is accurate around the centre of the field297

of view but the error increases with the distance from the centre.298

One can see different geometric distortions along the x and y299

axes.300

Let us observe more precisely what happens along the x axis301

with the zoom in figure 8 (b): all the black points are to the right302

of the corresponding green points. This is due to the non-linear303

deviation of the prism around its minimum of deviation, which304

induces a geometric distortion that we call stretching distortion305

as the horizontal magnification Gx changes with the position.306

Since the classical model Mc assumes a constant magnification307

Gx across the field of view (assumption H2), it does not prop-308

erly account for this stretching distortion.309

Along the vertical axis y, after propagation, the vertical lines310

are bowed, as illustrated in figure 8 (c). This is the smile dis-311

tortion, well known in spectroscopy. It couples the horizontal312

position xm in the mask plane to the vertical position yd in the313

detector plane. As the classical model Mc treats both directions314

independently (see eq. Eq. (2)), it cannot account for smile dis-315

tortion.316

For a more quantitative analysis of the differences between317

Zemax and Mc, we present in figure 8 (d) the distortion map,318

i.e. the Euclidean distance D between the corresponding black319

and green points. Note that distortion values D are plotted as a320

function of the originating position in the detector plane (xd, yd)321

to allow easier comparison between considered wavelengths.322

We can see that this distance D grows with the radial distance323

to the centre of the field of view, reaching up to 190 µm in the324

corners. For comparison, the typical size of a mirror of a digital325

micro-mirror device (DMD) typically used as a mask is of the326

order of 5 µm. This distance thus corresponds to a maximum327

error of around 38 micro-mirrors on a typical DMD.328

Fig. 9. Distance maps comparing the classical Mc model to
Zemax for (left) upper, (centre) central and (right) lower wave-
lengths.

Let us now observe the wavelength dependence of these ge-329

ometric distortions. As a reminder, the prism is positioned so330

that the centre of the field of view is at the minimum of devi-331

ation for λc = 532 nm. The distortion maps presented in fig-332

ure 9 correspond to this configuration for three wavelengths:333

450, 532 and 780 nm. One can see that they are off-centred and334

reach higher values for wavelengths lower (450 nm) and higher335

(780 nm) than the central wavelength. Indeed, for both these336

wavelengths, we are no longer at the minimum of deviation337

where the geometric distortions are minimal.338

This can also be observed in figure 10, in which histograms339

of the distances D for the 19 × 19 points of the field of view340

are plotted for three wavelengths: 450 nm, 532 nm and 780 nm.341

For each of these wavelengths, the dotted lines indicate the 95th
342

percentile of D. By definition, 95% of the values of D lie below343

the 95th percentile, which is therefore a relevant scalar metric344

to assess the differences between the two models. We observe345

a higher 95th percentile of D for λ = 450 and 780 nm (respec-346

tively 136 and 133 µm) than for the central wavelength λc = 532347

(116 µm). The classical model tends here to produce significant348

positioning errors, of the order of 25 micro-mirrors for a typical349

DMD.

Fig. 10. Histogram of Euclidean distance D between points
propagated into the mask plane with Zemax and the with clas-
sical model Mc for lower, central, and upper wavelengths. For
each wavelength, the dashed line corresponds to the distance
of the 95th percentile (i.e. 95% of the distances are below this
limit).

350

B. Evaluation of the proposed model Mp351

Mp gives the position (xm, ym) in the mask plane as a function352

of the position in the detector plane (xd, yd) and the considered353
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wavelength λ. Contrary to the classical model, the spectral dis-354

persion induced by the prism is not the same for all positions in355

the field of view (no assumption H1). Furthermore, we make356

no assumptions about the magnification in the x and y direc-357

tions (no assumptions H2 and H3).358

Fig. 11. Distance maps comparing the proposed Mp model
to Zemax for (left) upper, (centre) central and (right) lower
wavelengths.

Figure 11 presents the distortion maps obtained with the Mp359

model for three wavelengths, with the same metric as in sec-360

tion A (Euclidean distance D between image points from the361

Mp model and those from the Zemax simulation). Comparing362

the distortion maps in figures 9 and 11, one can observe a size-363

able difference in the scale of the distortion in the field of view:364

the maximum D distance decreases from 190 µm to 0.015 µm,365

i.e. a reduction of about 4 orders of magnitude. Figure 11 also366

shows that the accuracy of the model does not depend on the367

wavelength.368

The same trend can be observed by comparing the his-369

tograms of D presented in figure 12 and the values of the 95th
370

percentile of D. These values are more than two orders of371

magnitude below the typical size of a micro-mirror (5 µm) and372

therefore correspond to negligible positioning errors.373

Fig. 12. Histogram of Euclidean distance D between Zemax
and the proposed model Mp in the mask plane for lower, cen-
tral, and upper wavelengths. For each wavelength, the dashed
line corresponds to the distance of the 95th percentile (i.e. 95%
of the distances are below this limit).

The Mp model also accounts for prism misalignments (non-374

zero values of δαc and δβc, see figure 6). Since they cannot be375

modelled by the classical Mc model, we can only compare to376

the Zemax simulations. Figure 13 represents the histograms of377

D for a series of misalignment values, starting with typical val-378

ues compatible with an expected experimental alignment, and379

multiplying them by a factor of 3 and 10. The model Mp esti-380

mates the distortions with an accuracy similar to that obtained381

without misalignments (compare to figure 12), even for large382

misalignments: the slight variations observed between the val-383

ues of the 95th percentiles for the various misalignment values384

are not significant.385

Fig. 13. Histograms of Euclidean distances D between the Ze-
max simulations and the Mp model, with increasing misalign-
ment, for three wavelengths. In dotted line, the 95th percentile
of D.

4. EXPERIMENTAL VALIDATION386

We present in this section a validation of the proposed model387

Mp with a prototype SD-CASSI system. The model parameters388

are first determined with a calibration process, and the spec-389

tral sampling defined by the model is validated by observing a390

known spectrum.391

A. Geometric spatio-spectral calibration of an SD-CASSI sys-392

tem393

One of the benefits of a parametric model of the image forma-394

tion is that it allows a quick calibration, using only a few im-395

ages of a known geometric pattern and an optimisation tech-396

nique. This is more straightforward than building an experi-397

mental LUT for each individual pixel, which is reckoned as a398

laborious process in the literature [11, 12, 21], even though effi-399

cient approaches have been proposed [22]. Also, while buidling400

experimental LUTs is tractable for low spectral and/or spatial401

resolution, the process becomes more difficult and time con-402

suming for high resolution imagers.403

The proposed model-based calibration approach pertains to404

the geometry of an SD-CASSI system, as expressed by the model405

Mp: we do not consider purely photometric phenomena (quan-406

tum efficiency and vignetting).407

The principle of the calibration is to fit the Mp model pa-408

rameters to real measurements with a non-linear least-square409

optimisation. For this purpose, we rely on the association410

of features of known positions (xm, ym) in the scene to pixel411

coordinates (xd, yd) in the detector, for a series of wavelengths412
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λ. We use the DMD as the scene, displaying a chequerboard413

pattern, which defines easily detectable corners on the image414

formed in the detector plane (figure 14). The corners are415

detected with the OpenCV image processing library.416

417

Fig. 14. Calibration pattern on the DMD at the scene (a), and
extracted corners in the detector plane (b).

Our SD-CASSI prototype is composed of two lenses, two418

folding mirrors, one prism, a matrix of micro-mirrors acting as419

a programmable mask, and a CMOS camera (figure 15). The

Fig. 15. 3D model of the prototype.

420

folding mirrors have no contribution to the propagation model,421

they just ensure easier alignment and reduced volume of the422

optical system. The input scene in the object plane of the sys-423

tem is 3.5× 3.5 mm2 wide, and spectrally ranges from 450 to424

750 nm. The components of the prototype are described table 1.425

Component Type and characteristics

Lenses (L1, L2) Thorlabs TTL165-A,
achromatic over [450− 780] nm,
F = 165 mm

Prism (P1) BK7 material,
equilateral,
apex angle A = 60°

DMD Texas Instruments DLP3010,
720× 1280 square 5.4 µm micro-mirrors,
defining a 3.9× 6.9 mm2 mask

Detector The Imaging Source,
33UP2000,
1920× 1200 4.8 µm pixels

Table 1. Characteristics of the prototype components

We experimentally estimated the system point spread func-426

tion (PSF): it slightly changes with the position in the field of427

view and wavelength, and its diameter is bounded by 15 µm.428

The calibration chequerboard pattern is made up by 17× 17429

square regions of 30 × 30 mirrors, which defines 289 corners.430

Three lasers are used to illuminate the chequerboard pattern,431

with respective wavelengths 450, 532 and 780 nm. In total,432

3 × 289 = 867 (xd, yd, xm, ym, λ) quintuplets are provided to433

the non-linear least-square regression process to estimate the434

parameters that define the Mp model. As a reminder, these pa-435

rameters are the focal length F, the apex angle A, the angle of436

incidence on the prism αc ensuring minimum deflection at λc,437

and the two angles δαc and δβc that define the alignment errors438

of the prism.439

The estimated parameters are given in Table 2 with the as-440

sociated 95 % confidence interval obtained with a jackknife re-441

sampling. According to the components’ specifications, the fo-442

cal lengths F and apex angle A may respectively vary by 1 %443

and 0.1 % around their specified values of 165 mm and 60°: the444

estimated values are within these bounds. The minimum of de-445

viation is also extremely close to the expected value. As for δαc446

and δβc, the estimated values are coherent with the precision of447

the experimental alignment. In particular, as verticality of the448

prism is easier to assess than its orientation with respect to the449

minimum of deviation, it is not surprising that |δβc| is smaller450

than |δαc|.451

F [µm] A [°] αc [°] δαc [°] δβc [°]

Value 165 449 60.0005 49.4416 0.5778 −0.1407

C.I. 26 0.0098 0.0134 0.312 0.092

Table 2. Calibration results: value estimated for the parame-
ters and associated 95 % confidence interval (C.I.).

An alternate way to assess the quality of the calibration is452

to calculate the reprojection error, i.e. the Euclidean distance D453

between the extracted corner positions and the ones predicted454

using the model with the estimated parameters. The values of455

D plotted as a function of the original position in the image456

plane are reported in figure 16, and the associated histograms457

are plotted in figure 17, with the distance of the 95th percentile458

for the three reference wavelengths. For 95% of the points in459

the field of view, the reprojection errors do not exceed 6.9 µm460

for the upper wavelength, 10.7 µm for the central wavelength461

and 8.4 µm for the lower wavelength.462

These errors are significantly larger than the ones obtained463

with the numerical projections presented in section 3. This464

comes from various experimental causes. In particular, the465

lasers used for the calibration have spectral FWHM of the order466

of 0.5 nm, are not thermally regulated and exhibit a tempera-467

ture drift of the order of 0.2 nm/° C, resulting in an uncertainty468

on the exact position on the detector of more than one pixel469

(& 4.8 µm) Additionally, the detector 4.8 µm sampling step and470

the experimentally measured PSF of 15 µm diameter affects the471

precision of the corners detection. Nevertheless, these errors472

are sub-PSF and correspond to a rather accurate spatio-spectral473

calibration of the SD-CASSI.474

Fig. 16. Experimental reprojection error D for the 3 reference
wavelengths.
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Fig. 17. Histogram of the reprojection error D for the 3 refer-
ence wavelengths. For each wavelength, the color dashed line
corresponds to the distance of the 95th percentile.

Fig. 18. The spectral sampling at each pixel in the detector
plane depends on the back-propagation to the mask micro-
mirror centres.

B. Estimation of the spectral sampling475

To evaluate the spectral sampling of an SD-CASSI or a DD-476

CASSI system, one usually resort to a an experimental LUT-477

based calibration [5, 11, 12, 23, 24]. The proposed method relies478

on the 5-parameter model estimated in section A to calculate479

the spectral sampling specific to each pixel, without any addi-480

tional measurement.481

As illustrated in figure 18, for any given image pixel (xd, yd),482

with the analytical model Mp one can back propagate light483

into the mask plane to determine which micro-mirrors can send484

light at that pixel position. In the mask plane, the light from the485

pixel would form an horizontal rainbow line, spread over sev-486

eral adjacent micro-mirrors. The wavelengths corresponding487

to the centre of each of these micro-mirrors define the spectral488

sampling that the DMD is imposing on the considered pixel.489

Due to the non-linear dispersion, the smile distortion and the490

stretch distortion, this sampling differs for each pixel in the de-491

tector plane. We thus call it the local spectral sampling. The entire492

process to determine the local spectral sampling can be summa-493

rized in three steps:494

1. from the position (xd, yd) of the pixel in the detector plane,495

one determines the angles (αo, βo) on the back side of the496

prism using the lens model lp,a;497

2. from the position (xm, ym) of a given micro-mirror in the498

mask plane, one determines the angles (αi, βi) on the front499

side of the prism using the lens model la,p;500

3. using the prism model pa,a, one determines whether there501

is a wavelength λ such that (αi, βi) corresponds to (αo, βo)502

thanks to the deflection induced by the prism. This corre-503

sponds to finding the value of n(λ) that solves the equation504

7.505

If such a wavelength exists, it is part of the local spectral506

sampling of the considered pixel. If it doesn’t, it means this507

particular micro-mirror does not influence the light impinging508

on the pixel. The local spectral sampling for this pixel is fully509

defined when all the micro-mirrors have been tested. Once this510

procedure has been applied to all the pixels of the detector, we511

have the local spectral sampling for the whole detector, together512

with the link between each micro-mirror and the spectral sam-513

ples it controls over various pixels in the detector.514

Of course, in practice, we do not test every single micro-515

mirror and every possible wavelength in the spectral range of516

interest for each pixel of the detector, as it is prohibitively time-517

consuming. Some considerations can be used to significantly518

reduce the micro-mirrors to test for any given pixel. In particu-519

lar, as the device is mostly line-independent, for each pixel, we520

can limit the test to a single line of micro-mirrors. Moreover, for521

each pixel, it is easy and fast to back propagate the two extreme522

wavelengths of the spectral range of interest, thus bounding the523

lateral positions of the micro-mirrors to test on the DMD. Note524

that once the 5 physical parameters of the model are known, all525

these pixel-dependant spectral samplings can be pre-computed526

for spectral reconstruction or any other interpretation or pro-527

cessing of the encoded images.528

C. Experimental validation of the local spectral sampling529

The spectral calibration obtained using the local spectral sam-530

pling is tested using a fluorescent lamp that illuminates the ob-531

ject and mask planes homogeneously. The DMD mask pattern532

consists of a single vertical slit, turning the SD-CASSI into a533

prism-based spectrometer.534

Fig. 19. Spectral calibration validation: (a) detector image for
a single slit DMD mask and a uniform scene lighted by a fluo-
rescent lamp; (b) fluorescent lamp spectrum measured with a
reference spectrometer (grey line) and with the SD-CASSI us-
ing line yd = 600 of the detector (orange line). Two spectral
peaks at 546 nm and 611.5 nm are used for comparison.

The image formed on the detector (see figure 19 (a)) shows535

the different spectral lines and bands of the fluorescent lamp.536

Note that the dispersion is such that wavelength λ decreases537

with increasing xd position on the detector (longer wavelengths538

are imaged on the left). Using our local spectral sampling, the539

intensity along any horizontal line can be calibrated in wave-540

length to retrieve the spectrum. Figure 19 (b) shows the spec-541

trum obtained from the line yd = 600 of the detector (orange542

line), together with an independent reference measurement of543

the spectrum of the scene (black line, obtained using a UV-VIS544

Ocean Optics Flame spectrometer).545

We can see from this comparison that the spectral local546

sampling is accurate enough to precisely locate the features547

of the spectrum (like the peaks at 546 and 611.5 nm for ex-548



Research Article 9

ample). However, we can see significant intensity dissimilar-549

ities between the retrieved and reference spectra: this is due to550

the absence of intensity (or quantum efficiency) calibration on551

our prototype, whereas the quantum efficiency is properly ac-552

counted for in the signal from the reference spectrometer. More-553

over, as it consists of a single line of pixels, the retrieved spec-554

trum is significantly noisier than the reference spectrum ob-555

tained by collecting the light for the whole scene.556

In order to ascertain the validity of the local spectral sam-557

pling, we retrieved the calibrated spectrum using several lines558

across the field of view. Figure 20 (a) shows typical spectra re-559

trieved for yd = [310, 600, 890]. As these spectra are almost per-560

fectly overlapped, we shifted them vertically for better read-561

ability of the figure.562

A close up on the main peak at 611.5 nm of the spectrum is563

shown in figure 20 (b): it reveals that although the measured564

spectra are perfectly consistent and correspond to the same565

spectral shape (give or take the acquisition noise), they are566

based on different spectral samples.567

In this simple example of a single slit DMD pattern, recom-568

bining accurately the different lines of the detector in one single569

spectrum with higher signal to noise ratio requires to take this570

change of the spectral sampling into account.571

Fig. 20. Spectral calibration validation across the field of view:
(a) spectra measured from three different lines of the detec-
tor (yd = [310, 600, 890]) give consistent results; (b) close in-
spection of the spectra reveal the local spectral sampling that
changes across the detector.

5. SPECTRAL SUPER-RESOLUTION572

In most papers [5, 14, 15] authors assume that the data573

collected by CASSI systems can be interpreted with a uni-574

form spectral sampling, thus neglecting the change observed575

in figure 20 (b). This assumption can simplify hyperspec-576

tral cube reconstruction, as uniform spectral sampling implies577

that acquired raw data conveniently consists of well-defined578

monochromatic planes or images. But it leads to various issues,579

like moiré patterns, that are particularly detrimental for high580

resolution CASSI imagers [7]. There has been some discussion581

regarding these issues [7–10, 12], but even the most effective582

methods, i.e correction of the filtering function H [16], result in583

a loss of spectral resolution by a factor of 2. Conversely, model-584

based calibration gives an easy access to the spectral local sam-585

pling, with no resolution losses and can be harnessed to achieve586

super-resolution.587

Indeed, considering local spectral sampling gives the abil-588

ity to achieve spectral super-resolution when several adjacent589

pixels share the same spectrum. Such groups of pixels, dubbed590

spectrally homogeneous spatial regions are fairly common and591

can be harnessed to speed-up hyperspectral imaging [7, 25]. To592

demonstrate spectral super-resolution we compare the hyper-593

spectral measurements achieved with our SD-CASSI prototype594

with either a uniform or local spectral sampling, on a spectrally595

homogeneous scene.596

The acquisition scheme is a simple moving-slit sequence: we597

successively open the columns of micro-mirrors on the DMD598

mask and record the corresponding image on the detector. The599

mask plane is illuminated with a large single-mode He-Ne laser600

beam ensuring an homogeneous spectrum across many pixels.601

The raw data-cube is then interpreted to retrieve the spectrum602

at every point in the mask plane.603

The figure 21 shows the spectral sampling ((a) and (c)) and604

measured spectral intensities ((b) and (d)) across 7 neighbour605

pixels (yellow to blue color code) when using either the uniform606

((a) and (b)) or local ((c) and (d)) spectral sampling.607

Fig. 21. Spectral super resolution of a He-Ne laser spectrum:
the uniform spectral sampling ((a) & (b)) implies that adjacent
pixels provide several intensity values for a single wavelength
whereas the proposed approach ((c) & (d)) properly describes
the minute changes in sampling and adjacent pixels provide
spectral super-resolution.

With a uniform spectral sampling (see figure 21 (a)), each of608

the 7 pixels provides an independent measurement over the609

same spectral samples (see the dotted red line in figure 21 (a)).610

We thus obtain one spectrum per pixel (see for example the611

dark blue and yellow spectra in figure 21 (b), measured 6 pixels612

apart). We can observe a large intensity variation across these613

spectra (dotted red line in figure 21 (b)) and a large, regular,614

spectral sampling of about 0.65 nm. Similar intensity variations,615

forming moiré patterns, have been observed in DD-CASSI sys-616

tems and require cumbersome mitigation post-processing that617

degrade significantly either spatial of spectral resolution of the618

reconstructed hyperspectral data [16], hindering the develop-619

ment of high resolution DD-CASSI.620

Conversely, with a pixel-specific spectral sampling, the same621

raw data can be interpreted in a more precise and faithful way.622

The spectral sampling is slightly different for each pixel (see the623

slanted dotted red line in figure 21 (c)). We thus have access to624

interleaved spectral samples (see the dotted red curve in fig-625

ure 21 (d)) and we can reconstruct a super-resolved spectrum626

for the whole region, with a sampling of about 0.09 nm. This627

super-resolved spectrum is irregularly but finely sampled, and628

measured accurately in intensity.629
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It is noteworthy that harnessing spectral sampling effects630

has been previously explored for a color-coded aperture spec-631

tral imager [26], exploiting the difference of spectral sampling632

between the response of the color filters and the prism disper-633

sion. Interestingly, these are two different but complementary634

ways of using sampling effects: our method relies on the op-635

tical system distortions and discretization of mask and detec-636

tor, while [26] harnesses the difference of spectral sampling in-637

duced by spectral filters and prism dispersion. Both approaches638

could in principle be combined.639

6. CONCLUSION640

The proposed analytical model for back-propagation in prism641

SD-CASSI is based on ray-tracing and simple rotation matri-642

ces, and relies on a few physical parameters directly related to643

the optical components properties and their alignment. It mod-644

els accurately systems under design, and allows fast and easy645

calibration of existing prototypes. This model is part of a DD-646

CASSI simulator, available online as Free Open Source Software647

(FOSS)[13].648

This model offers positioning accuracy of the propagated649

principal rays comparable to that of an industry standard like650

Zemax. However, contrary to Zemax, it is perfectly fit to be651

integrated into larger software ecosystems, e.g. for optimiza-652

tion, data processing or co-design. This enables the complete653

study of co-designed prototypes and companion algorithms in654

one unified framework. Such studies could provide meaning-655

ful insights on the interplay between opto-geometrical and al-656

gorithmic trade-offs and their impact on the overall efficiency657

of a particular hyperspectral measurement strategy.658

Using this model to calibrate an SD-CASSI prototype, we659

accurately describe minute changes in the spectral sampling660

across the field of view, without resorting to the building of661

experimental LUTs. These changes are inducing spectral mea-662

surement artefacts, particularly detrimental in high-resolution663

CASSI systems. Access to the local spectral sampling allows664

to eliminate the spectral artefacts and even to exploit them to665

achieve super-resolved measurements.666

As presented here, this model is limited to prism-based667

single disperser (SD) CASSI systems. However, it could be668

trivially extended to grating-based SD-CASSI by replacing the669

prism wavelength-dependent angular dispersion by that of670

transmission or reflection gratings. Moreover, this model is also671

extremely valuable for dual-disperser (DD) CASSI systems that672

either rely on two chained SD-CASSI (two arms) or on a double-673

pass in one SD-CASSI (one arm in double-pass). A key require-674

ment with DD-CASSI is the perfect symmetry between each675

pass or arm: exploiting the model to simulate or calibrate in-676

dependently half of the DD-CASSI system would provide hints677

on the impact of misalignment and dissymmetry on the achiev-678

able performance.679

In addition, this model could be complemented by a an esti-680

mate of the spectral quantum efficiency over the field of view, as681

well as precise estimate of the spectrally-dependant PSF, as pro-682

posed in [6]. Moreover, it could also account for the diffraction683

induced by the DMD, as was done in [27]. Finally, in order to684

take into account defocussing at the different relay and imaging685

planes together with non-paraxial lens aberrations, the perfect686

lens model could be replaced by a proxy model of some specific687

real lens or lens assembly, as proposed in [28].688

Data availability. Data underlying the results presented in this pa-689

per are not publicly available at this time but may be obtained from the690

authors upon reasonable request.691
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