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THE CHRISTOFFEL FUNCTION: APPLICATIONS,

CONNECTIONS AND EXTENSIONS

Jean B. Lasserre�∗1

1LAAS-CNRS and Toulouse School of Economics (TSE), France

(Communicated by Handling Editor)

Abstract. We provide an introduction to the Christoffel function (CF), a

well-known (and old) tool from the theory of approximation and orthogonal

polynomials. We then describe how it provides a simple and easy-to-use tool to
address some problems in data analysis and mining, and in approximation and

interpolation of discontinuous functions. Finally we also reveal some surpris-

ing links of the CF with seemingly different disciplines, including polynomial
optimization, positivity certificates, and equilibrium measures of compact sets.

1. Introduction. This paper provides a brief introduction to the Christoffel func-
tion (CF), a well-known tool from the theory of approximation and orthogonal
polynomials. One reason to reconsider this “old” tool is that surprisingly, while
well-known for a long time, only recently some of its properties have been shown to
be particularly interesting and practical to address some problems in data analysis
and mining, notably for support inference, outlier detection, and density approxi-
mation, as described in e.g. [16, 21, 22, 23, 31]. Indeed, quoting [23]:

Among the many positive definite kernels appearing in classical analysis,
approximation theory, probability, mathematical physics, control theory
and more recently in machine learning, Christoffel-Darboux kernel (CD
kernel in short) stands aside by its numerical accessibility from raw data
and its versatility in encoding/decoding fine properties of the generating
measure. . . .

On the practical side, the CD kernel can be regarded as a bridge be-
tween the underlying Reproducing Kernel Hilbert Space (RKHS) carried
by a finite dimensional function space and the unknown measure. This
basic feature allows to import in the data analysis context an existing,
rich theory describing the relation between the Christoffel-Darboux kernel
and the underlying measure.

In addition in [10, 25] a non-standard application of the Christoffel-Darboux kernel
has also been proved quite efficient in some approximation and interpolation of
functions (notably discontinuous).
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Another reason is that again recently, we have revealed some (in the author’s
opinion surprising) connections of the CF with seemingly different fields, including
positivity certificates in real algebraic geometry and polynomial optimization on
one side, and (a generalized) Pell’s polynomial equation and equilibrium measure in
pluripotential theory on the other side [18, 24]. At last, we also report on a simple
modification (or regularization) of the CF due to the author [19], with a new and
simple asymptotic property in which a factor containing the unknown equilibrium
measure has disappeared. It thus provides a numerical means to approximate the
unknown underlying density of the measure associated with the CF.

By its very nature this article is a condensed review of some previous results
of the literature (most including the author as a contributor) and therefore some-
times results are simply re-stated from the article where they are published (with
a reference), and their proof is omitted.

The paper is organized as follows: After introducing notation and definitions
in Section 2, we briefly introduce the CF and some of its important asymptotic
properties in Section 3. Then in Section 4 we briefly describe some applications
of the CF in data analysis and approximation and interpolation of discontinuous
functions. In Section 5 we introduce some connections of the CF with positive
polynomials and with what we call a generalized polynomial Pell’s equation. Finally,
in Section 6 we describe an extension of the CF via a certain regularization.

2. Notation, definitions and some preliminaries.

2.1. Notation, definitions. Let R[x] denote the ring of polynomials in the vari-
ables x = (x1, . . . , xd) and let R[x]n be the vector space of polynomials of degree at

most n (whose dimension is s(n) :=
(
d+n
d

)
). For every n ∈ N, let Ndn := {α ∈ Nd :

|α| (=
∑
i αi) ≤ n}, and let vn(x) = (xα), α ∈ Nd, be the vector of monomials of

the canonical basis (xα) of R[x]n. Given a closed set X ⊆ Rn, let P(X ) ⊂ R[x]
(resp. Pn(X ) ⊂ R[x]n) be the convex cone of polynomials (resp. polynomials of
degree at most n) that are nonnegative on X . A polynomial f ∈ R[x]n is written

x 7→ f(x) =
∑
α∈Nd

fα xα = 〈f ,vn(x)〉 ,

with vector of coefficients f = (fα) ∈ Rs(n) in the canonical basis of monomials
(xα)α∈Nd . For real symmetric matrices, let 〈B,C〉 := trace (B C) while the notation
B � 0 stands for B is positive semidefinite (psd) whereas B � 0 stands for B is
positive definite (pd). Denote by Sn the space of real n × n symmetric matrices
and Sn+ its subset of psd matrices.

With a closed set S ⊂ Rd, denote by M (S) the space of finite signed Borel
measures on S, and M (S)+ ⊂ M (S) (resp. P(S)) the convex cone of finite
positive Borel measures (resp. probability measures) on S. The support supp (µ) of
a Borel measure µ on Rd is the smallest closed set Ω ⊂ Rd such that µ(Rd \Ω) = 0.

Riesz linear functional. Given a sequence φ = (φα)α∈Nd (in bold), its associated
Riesz linear functional is the linear mapping φ : R[x]→ R (not in bold) defined by:

f (=
∑
α

fα xα) 7→ φ(f) =
∑
α∈Nd

fα φα = 〈f ,φ〉 , (1)
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A sequence φ has a representing measure if its associated Riesz linear functional φ
is a (positive) Borel measure on Rd, in which case,

φα = φ(xα) =

∫
Rd

xα dφ , ∀α ∈ Nd .

Given a sequence φ = (φα)α∈Nd and a polynomial g ∈ R[x], x 7→ g(x) =
∑

γ gγ xγ ,
define the new sequence g · φ such that

(g · φ)α := φ(xα g) =
∑
γ∈Nd

gγ φα+γ , ∀α ∈ Nd ,

and therefore its associated Riesz linear functional, denoted by g · φ, satisfies

g · φ(f) = φ(g f) , ∀f ∈ R[x] .

In particular, if φ has a representing measure φ and g is nonnegative, then the Riesz
linear functional g · φ is a representing measure, i.e.,

g · φ(f) = φ(g f) =

∫
Rd
f g dφ , ∀f ∈ R[x] .

Moment matrix. The (degree-n) moment matrix associated with a sequence φ =
(φα)α∈Nd (or, equivalently, with the Riesz linear functional φ), is the real symmetric
matrix denoted Mn(φ) (or Mn(φ)) with rows and columns indexed by Ndn, and
whose entry (α,β) is just φα+β, for every α,β ∈ Ndn. So Mn(φ) depends only
on moments φα of degree at most 2n. Alternatively, if one introduces the real
symmetric matrices (B1

α) ⊂ Ss(n) defined by

vn(x) vn(x)T =
∑

α∈Nd2n

B1
α xα, ∀x ∈ Rd , (2)

then Mn(φ) =
∑

α∈Nd2n
φα B1

α. Moreover, if φ has a representing measure φ then

Mn(φ) � 0 because 〈f ,Mn(φ) f〉 =
∫
f2dφ ≥ 0, for all f ∈ R[x]n.

A measure whose all moments are finite, is moment determinate if there is no
other measure with same moments.

Localizing matrix. With φ as above and g ∈ R[x] (with g(x) =
∑
γ gγx

γ), the

localizing matrix associated with φ and g is the moment matrix Mn(g ·φ) associated
with the sequence g ·φ. That is, Mn(g ·φ) is the real symmetric matrix with rows
and columns indexed by Ndn, and whose entry (α,β) is just (g · φ)α+β, that is,
Mn(g · φ)(α,β) =

∑
γ gγφα+β+γ , for every α,β ∈ Ndn.

Alternatively, letting dg := ddeg(g)/2e, and introducing the real symmetric ma-

trices Bg
α ∈ Ss(n), α ∈ Nd, defined by

g(x) vn(x) vn(x)T =
∑

α∈Nd
2(n+dg)

Bg
α xα, ∀x ∈ Rd , (3)

one obtains Mn(g · φ) =
∑

α∈Nd
2(n+dg)

φα Bg
α.

If φ has a representing measure φ whose support is contained in the set {x :
g(x) ≥ 0} then Mn(g · φ) � 0 for all n, because

〈f ,Mn(g · φ) f〉 = g · φ(f2) = φ(f2g) =

∫
f2 g dφ ≥ 0 , ∀f ∈ R[x]n .
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2.2. SOS polynomials and quadratic modules. A polynomial f ∈ R[x] is
a Sum-of-Squares (SOS) if there exist s ∈ N, and f1, . . . , fs ∈ R[x], such that
f(x) =

∑s
k=1 fk(x)2, for all x ∈ Rd. Denote by Σ[x] (resp. Σ[x]n) the set of SOS

polynomials (resp. SOS polynomials of degree at most 2n). Of course every SOS
polynomial is nonnegative. However the converse is not true.

Membership in Σ[x]n. Checking whether a given polynomial f is nonnegative
on Rd is difficult whereas, and this is crucial for the Moment-SOS hierarchy [9],
checking whether f is SOS is much easier and can be done efficiently. Indeed let
f ∈ R[x]2n (for f to be SOS its degree must be even), x 7→ f(x) =

∑
α∈Nd2n

fα xα.

Then f ∈ R[x]2n is SOS if and only if there exists a real symmetric matrix XT = X

of size s(n) =
(
d+n
d

)
, such that:

X � 0; fα = 〈X,B1
α〉, ∀α ∈ Nd2n, (4)

where the matrices B1
α have been introduced in (2). It turns out that (4) defines

the feasible set of what is called a semidefinite program1 (in short, SDP).

Quadratic module. Introduce the constant polynomial x 7→ g0(x) := 1 for all
x ∈ Rd (also denoted g0 = 1). With a family (g1, . . . , gm) ⊂ R[x] is associated the
quadratic module Q(g) (= Q(g1, . . . , gm)) ⊂ R[x] defined by:

Q(g) :=


m∑
j=0

σj gj : σj ∈ Σ[x], j = 0, . . . ,m

 , (5)

and its degree-2n truncated version

Qn(g) :=


m∑
j=0

σj gj : σj ∈ Σ[x]n−dj , j = 0, . . . ,m

 , (6)

where dj := ddeg(gj)/2e, j = 0, . . . ,m. Observe that Qn(g) ⊂ R[x]2n because
indeed in (6), deg(σj gj) ≤ 2n, for all j = 0, . . . ,m. Obviously both Q(g) and its
truncated version Qn(g) are convex cones of R[x].

Definition 2.1. The quadratic module Q(g) is said to be Archimedean if there
exists M > 0 such that the quadratic polynomial x 7→ M − ‖x‖2 belongs to Q(g)
(i.e., belongs to Qn(g) for some n).

If Q(g) is Archimedean then necessarily, the set

S := {x ∈ Rd : gj(x) ≥ 0 , j = 1, . . . ,m } (7)

is compact but the reverse is not true. The Archimedean condition depends on the
representation of S and can be seen as an algebraic certificate that S is compact.
Dual cone. The dual cone Q∗n(g) of Qn(g) is the convex cone of Rs(2n) defined by:

Q∗n(g) = {φ ∈ Rs(2n) : Mn−dj (gj · φ) � 0 , j = 0, . . . ,m } , (8)

where Mn(gj ·φ) is the localizing matrix associated with the polynomial gj and the
sequence φ, defined in Section 2.1.

For more details on the above notions of moment and localizing matrix, quadratic
module, as well as their use in potential applications, the interested reader is referred

1A semidefinite program (SDP) is a convex and conic optimization problem which can be solved
(up to fixed arbitrary precision) in time polynomial in its input size; see e.g. [1] and also [30].
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to [27] and [12, 13]. In particular, both convex cones Qn(g) and Q∗n(g) play a crucial
role in the Moment-SOS hierarchy of lower bounds in polynomial optimization [12].

2.3. Certificate of positivity (Positivstellensatz). We next describe a partic-
ular certificate of positivity in real algebraic geometry. It is important because it
provides a theoretical justification (or rationale) behind convergence of the sequence
of semidefinite relaxations at the core of the so-called Moment-SOS hierarchy for
global polynomial optimization [12, 13, 14].

Theorem 2.2 ([32]). Let S ⊂ Rd be as in (7) and assume that Q(g) is Archimedean.
(i) If a polynomial f ∈ R[x] is (strictly) positive on S then f ∈ Q(g), that is,

f =

m∑
j=0

σj gj , (9)

for some SOS polynomials σj ∈ Σ[x], j = 0, . . . ,m (and so f ∈ Qn(g) for some
2n ≥ deg(f)).

(ii) A sequence φ = (φα)α∈Nd ⊂ R has a representing Borel measure on S if and
only if φ(f2 gj) ≥ 0 for all f ∈ R[x], and all j = 0, . . . ,m. Equivalently, if and only
if Mn(gj · φ) � 0 for all j = 0, . . . ,m, and all n ∈ N.

In fact Theorem 2.2 (Putinar’s Positivstellensatz) is a refinement of an earlier
theorem by Schmüdgen [33] two years before (where the Archimedean condition is
not needed). Notice that Theorem 2.2 has two facets (i) and (ii): The former is the
algebraic facet (certificate of positivity) while the latter with a real analysis flavor
is related to the S-moment problem [33]. Both facets are a nice illustration of the
duality between moments and positive polynomials.

3. The Christoffel function. The Christoffel Function (CF in short) is usually
defined for a measure µ with moments µ = (µα)α∈Nd whose support S ⊂ Rd
is compact and such that its moment matrix Mn(µ) (or equivalently, Mn(µ)) is
positive definite for every degree n ∈ N. However it can also be defined for a Riesz
linear functional φ ∈ R[x]∗ (with φ = (φα)α∈Nd) such that Mn(φ) � 0 for every
n ∈ N, not necessarily coming from a measure µ. For a more detailed treatment
and historical developments, the interested reader is referred to [6, 11, 23, 22, 29,
34, 35, 36] and the many references therein.

3.1. Christoffel-Darboux kernel and Christoffel Function. So let φ ∈ R[x]∗

(with φ = (φα)α∈Nd) be such that Mn(φ) � 0 for every n ∈ N. After fixing some
ordering of monomials in Nd, and since Mn(φ) � 0 for every n, let (Pα)α∈Nd be a
family of polynomials that are orthonormal w.r.t. φ, that is, such that

φ(Pα Pβ) = δα=β , ∀α,β ∈ Nd , (10)

where δ·=· is the usual Kronecker symbol (with value 1, if α = β and 0 otherwise).
For every n ∈ N, the Christoffel-Darboux (CD) kernel Kφ

n : Rd × Rd → R,
associated with φ, is then defined by:

(x,y) 7→ Kφ
n(x,y) :=

∑
α∈Ndn

Pα(x)Pα(y) , ∀x,y ∈ Rd , n ∈ N , (11)

and the Christoffel function (CF) Λφn : Rd → R+ is defined by

x 7→ Λφn(x)−1 := Kφ
n(x,x) =

∑
α∈Ndn

Pα(x)2 , ∀x ∈ Rd , n ∈ N , (12)
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i.e., the CF is the reciprocal of the “diagonal” Kφ
n(x,x) of the CD kernel. Hence

by construction 1/Λφn is an SOS polynomial of degree 2n.

3.2. Alternative formulations of the CF. Alternatively, the CF can also be
defined by:

Λφn(ξ)−1 = vn(ξ)TMn(φ)−1 vn(ξ) , ∀ξ ∈ Rd , (13)

which is the ABC theorem in [34], and it also has the variational formulation:

Λφn(ξ) = min
p∈R[x]n

{φ(p2) : p(ξ) = 1 } , ∀ξ ∈ Rd . (14)

In particular, observe that (14) can be rewritten

Λφn(ξ) = min
p∈Rs(n)

{pTMn(φ)p : 〈p,vn(ξ)〉 = 1 } , ∀ξ ∈ Rd ,

a convex quadratic optimization problem which can be solved efficiently even for
large dimension d. After some algebra, the unique optimal solution p∗ ∈ R[x]n of
(14) reads

x 7→ p∗(x) =
Kφ
n(ξ,x)

Kφ
n(ξ, ξ)

, ∀x ∈ Rd .

The reproducing property. Let p ∈ R[x]n and as (Pα)α∈Ndn in (10) form a basis

of R[x]n, write

x 7→ p(x) =
∑
α∈Ndn

pα Pα(x) ∀x ∈ Rd ,

for some vector of coefficients p = (pα)α∈Ndn in Rs(n) (with s(n) =
(
n+d
d

)
).

With x ∈ Rd fixed, y 7→ Kφ
n(x,y) ∈ R[y]n, and we have

φ(Kφ
n(x, ·) p) = φ

(
∑
α∈Ndn

Pα(x)Pα(y)) · (
∑
β∈Ndn

pβ Pβ(y))


=
∑
α∈Ndn

pα Pα(x) = p(x) , ∀p ∈ R[x]n ,

(15)

where we have used that

φ(pβPβ(y)Pα(x)Pα(y)) = pβ Pα(x)φ(Pβ Pα) = pβ Pα(x) δβ=α .

For this reason, if µ is a measure on S ⊂ Rd with Mn(µ) � 0 for all n, and L2(µ)
is the Hilbert space of square integrable functions w.r.t. µ, with scalar product

〈f, g〉 =

∫
S

f g dµ , ∀f, g ∈ L2(µ) ,

then (R[x]n, 〈·, ·〉) ⊂ L2(µ) is called a Reproducing Kernel Hilbert Space (RKHS)
with kernel Kµ

n , because∫
S

Kµ
n(x,y) p(y) dµ(y) = p(x) , ∀p ∈ R[x]n .
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3.3. Equilibrium measure. A Borel measure µ supported on a compact set S ⊂
Rd satisfies the Bernstein-Markov property if there exists a sequence of positive
numbers (Mn)n∈N such that for all n and p ∈ R[x]n,

sup
x∈S
|p(x)| ≤ Mn ·

(∫
S

p2 dµ

)1/2

, and lim
n→∞

log(Mn)/n = 0 (16)

(see e.g. [23, Section 4.3.3]). The Bernstein-Markov property allows qualitative
description for asymptotics of the Christoffel function Λµn as n grows.

The notion of equilibrium measure associated to a given set, originates from
logarithmic potential theory (working in C in the univariate case) to minimize some

energy functional. For instance, the (Chebsyshev) measure dµ := dx/π
√

1− x2 is
the equilibrium measure of the interval [−1, 1]. Some generalizations have been
obtained in the multivariate case via pluripotential theory in Cd. In particular if
S ⊂ Rd ⊂ Cd is compact then its equilibrium measure (let us denote it by λS)
is equivalent to Lebesgue measure on compact subsets of int(S). It has an even
explicit expression if S is convex and symmetric about the origin; see e.g. [2] [3,
Theorem 1.1 and Theorem 1.2].

For a brief account on equilibrium mesures see [2, 3], the discussion in [23, Section
4-5, pp. 56–60] while for more detailed expositions see some of the references therein.

3.4. Some asymptotic properties of the CF. As we next see, the CF has some
very nice asymptotic properties when n increases, and in the next section we will
see how to use some of these properties in various applications.

Support identification. A crucial property of the CFs (Λµn)n∈N associated with
a measure µ on a compact set S ⊂ Rd, is to identify the support of µ. Indeed its
decay with the degree n exhibits the following interesting dichotomy:

• ∀ξ ∈ supp(µ), Λµn(ξ)−1 grows at most as a polynomial in n.
• ∀ξ 6∈ supp(µ), Λµn(ξ)−1 grows at least as an exponential in n.

This property has been exploited in data analysis to provide a simple and easy-to-
use tool (with no tuning of parameters), e.g. to detect outliers, with similar (and
sometimes better) performance as state-of-the-art techniques; see [23, 21].

Relating the CF with the equilibrium measure. If µ is a Borel probability
measure on S and (S, µ) has the Bernstein-Markov property (16) then the sequence
of probability measures (νn)n∈N with νn = µ

s(n)Λµn(x)
for all n ∈ N, converges to λS

for the weak-? topology and therefore in particular:

lim
n→∞

∫
S

xα dνn = lim
n→∞

∫
S

xα dµ(x)

s(n)Λµn(x)
=

∫
S

xα dλS , ∀α ∈ Nd . (17)

(See e.g. [23, Theorem 4.4.4].) In addition, if the compact S ⊂ Rd is regular then
(S, λS) has the Bernstein-Markov property.

Next, if µ has a density f w.r.t. Lebesgue measure, and under some additional
regularity properties of µ and its support S, one may link f and the density of the
equilibrium measure of S. Namely:

lim
n→∞

s(n) Λµn(ξ) = f(ξ)/µE(ξ) , (18)

uniformly on compact subsets of int(S), where µE is the density of the equilibrium
measure of S, with respect to Lebesgue measure.
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Observe that (18) is quite interesting as for large degree n, the CF allows to
approximate the unknown density f but only if one already knows the density µE
of the equilibrium measure of S. Unfortunately, except for sets S ⊂ Rd with special
geometry (e.g. simplex, unit box, Euclidean unit ball), the density µE is not known.
However we will see in Section 6 that with an appropriate regularization of the CF
one may get rid of µE in its asymptotic limit.

3.5. A disintegration property of the CF. It is well-know that a probability
measure µ on a cartesian product X × Y disintegrates into

µ(A×B) =

∫
X∩A

µ̂(B |x) ν(dx) , ∀A ∈ B(X) , B ∈ B(Y ) , (19)

where

• ν is the marginal (probability) measure of µ on X, and
• for every x ∈ X, µ̂(dy |x) is the conditional probability on Y , given x ∈ X.

Below we provide a similar disintegration of the CF. So with X ⊂ Rd, and Y ⊂ R,
let S ⊂ X×Y be a compact set and µ be a probability measure on S with marginal
ν on X, such that Mn(µ) � 0 for all n.

Theorem 3.1. Let Λµn be the Christoffel function associated with µ. Then for every
x ∈ X and n ∈ N, there exists a probability measure νx,n on R such that

Λµn(x, y) = Λνn(x) · Λνx,nn (y) , ∀x ∈ Rd , y ∈ R . (20)

Observe that (20) has the flavor of the disintegration (19) of µ, as Λµn disintegrates
into the product of the Christoffel Λνn of the marginal ν with the Christoffel of a
measure νx,n on the real line. However notice that νx,n depends not only on x ∈ Rd
but also on the degree n (whereas ideally one would have liked νx,n to depend only
on x).

Asymptotics. To see what the asymptotic behavior of Λ
νx,n
n as n increases looks

like, consider the case where µ = f(x, y) dx dy so that ν = h(x)dx with x 7→
h(x) :=

∫
Y
f(x, y) dy, for some densities f(x, y) > 0 on S and h(x) > 0 on X. Let

sk(n) =
(
k+n
n

)
for all k ∈ N. Then under some regularity assumptions on S, µ and

ν, recall that by (18),

lim
n→∞

sd+1(n) Λµn(x, y) = f(x, y)/µE(x, y) , ∀(x, y) ∈ int(S) ;

lim
n→∞

sd(n) Λνn(x) = h(x)/µE(x) , ∀(x) ∈ int(X) .

Hence for every (x, y) ∈ int(S), using sd+1(n) = sd(n)(n+ d+ 1)/(d+ 1),

lim
n→∞

s1(n) Λνx,nn (y) =
f(x, y)

h(x)
· (d+ 1)µE(x)

µE(x, y)
. (21)

Observe that for every fixed x ∈ int(X), the function y 7→ f(x, y)/h(x), is the den-
sity of the conditional probability µ̂(dy|x). So, and as expected, (21) has the flavor
of (18) but not totally because the term (d+1)µE(x)/µE(x, y) is not necessarily the
equilibrium measure of the support Yx ⊂ Y of the conditional probability µ̂(dy|x).

In the simple case where S = X × [a, b], and if µE(x, y) = µE(x) · µE(y) then
(21) becomes

lim
n→∞

s1(n) Λνx,nn (y) =
f(x, y)

h(x)
· (d+ 1)µE(x)

µE(x, y)
=

f(x, y)

h(x)
· d+ 1

µE(y)
,

which also has the flavor of (18) but with a slightly different corrective term.
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4. Some applications of the Christoffel function. In addition to being an
interesting mathematical object in its own right, the above asymptotic properties
are also very useful and can be exploited in various applications, e.g. in data
analysis and mining for outlier detection and support inference, interpolation and
approximation of discontinuous functions .

4.1. Outlier detection. In data analysis and mining one is given a set of N data
points (x(i))i=1,...,N (usually a sample drawn from some unknown distribution µ
on S ⊂ Rd), with possibly some outlier points. Therefore an important issue is to
provide relatively simple tests to detect whether or not a given point of the cloud
is an outlier.

A natural object related to µ and associated with the cloud of points is the
empirical probability measure:

µN :=
1

N

N∑
i=1

δx(i) , (22)

where δx(i) is the Dirac measure at the point x(i).

Let µN := (µNα )α∈Nd2n . If S has nonempty interior and N is sufficiently large,

then Mn(µN ) � 0 and one may thus define orthonormal polynomials w.r.t. µN

and the degree-n CF ΛµNn associated with µN . As shown in [22, 23], with n fixed,
Mn(µN ) inherits the properties of Mn(µ) almost surely w.r.t. samples of µ, as N
increases.

So for instance, a naive test to detect outliers is to declare a point x(i) outlier

if
(
n+d
n

)
Λµ

N

n (x(i)) > 1, that is, one uses the CF Λµ
N

n as a score function. With
this simple naive approach, one obtains performances as good as those obtained
with more sophisticated tests (e.g. based on isolation forest) that require a fine
tuning of some parameters for practical efficiency. Notice that there is no tuning
of parameters in this approach even if other choices than the score

(
n+d
n

)
may be

tested if needed.
In particular, in [5] the CF is also used for outlier detection but with a more

sophisticated test based on the growth of Λµ
N

n with its degree n. Indeed the idea
exploited in [5] is to choose and fix in advance finitely many degrees n, n+1, . . . , n+k
(for some n and k), and to declare that a point x(i) as an outlier if the growth in

its k + 1 scores Λµ
N

n (x(i)), Λµ
N

n+1(x(i)), . . ., Λµ
N

n+k(x(i)) “looks like” exponential (as
it should be if x(i) is not in the support of µ and N is sufficiently large). In doing
so the approach gets rid of the threshold level; see [5] for more details.

4.2. Interpolation and approximation. With X ⊂ R, let µ be a measure on
S ⊂ [0, 1]×X ⊂ R2, defined by

dµ(t, x) = δ{f(t)}(dx) 1[0,1](t) dt , (23)

for some unknown measurable function f : [0, 1]→ X. That is, the support of µ is
the graph {(t, f(t)) : t ∈ [0, 1]} of f .

Problem. Recover or approximate f from the sole knowledge of moments µ =
(µij)(i,j)∈N2 where :

µij =

∫
tixj dµ(t, x) =

∫ 1

0

tif(t)j dt , (i, j) ∈ N2 . (24)
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This generic problem has a lot of applications. For instance, when one applies the
Moment-SOS hierarchy to optimal control problems and some nonlinear PDEs as
well [9], at each semidefinite relaxation of the hierarchy, one obtains an approxima-
tion of finitely moments of a measure µ supported on state and control trajectories
xi(t), uj(t), t ∈ [0, T ], i = 1, . . . , d, j = 1, . . . ,m. Then it remains to recover each
trajectory t 7→ xi(t) (or t 7→ ui(t)) from finitely moments of the (bivariate) marginal
of µ w.r.t. xi and t (or w.r.t. uj and t); see e.g. [20, Section 7.3].

In a now classical approach, one may approximate f in (24) by a degree-n poly-
nomial p∗n ∈ R[t]n that minimizes the mean squared error, i.e.,

p∗n := arg min
p∈R[t]n

∫ 1

0

(p− f)2 dt = arg min
p∈R[t]n

‖p− f‖2L2([0,1]) . (25)

This best L2-norm approximation of f is obtained via a standard application of the
CD-kernel Kν

n associated with the univariate measure ν = dt on [0, 1]. Indeed the
minimizer p∗n in (25) reads:

t 7→ p∗n(t) =

∫ 1

0

Kν
n(t, x) f(x) dx . (26)

However it is well-known that if f is discontinuous then the polynomial approximant
p∗n has some annoying drawbacks. In particular is suffers from a classical Gibbs
phenomenon at points of discontinuity; see .e.g. Figure 1 (left).

A non-standard application of the CD Kernel. We claim that a non-standard
application of the CF can provide f with a better approximant than the polynomial
p∗n in (25). Its rationale is based on the simple previous observation that the CF is
a good tool to identify the support of its associated measure. Since in the present
framework the support of µ in (23) is precisely the graph of the unknown function
f , then Λµn should provide us with an adequate tool to recover or approximate f
from the sole knowledge of the moments µ of µ in (24). (Notice that in (26) the
support [0, 1] of ν has nothing to do with f .)

Here observe that µ in (23) is a degenerate measure on [0, 1]×X, i.e. its support
has Lebesgue measure zero on [0, 1]×X. Therefore its moment matrix Mn(µ) can
be ill-conditioned and even singular if f is a polynomial (because then the vector
of coefficients of f ∈ R[t] is in the kernel of Mn(µ) when n is sufficiently large). So
one first “perturbates” (or regularizes) Mn(µ) to Mn(µ) + εI with I the identity
matrix and ε > 0 a small regularization parameter. Then define a new perturbated
Christoffel function Λ̂µn by:

(t, x) 7→ Λ̂µn(t, x)−1 := vn(t, x)T (Mn(µ) + εI)−1vn(t, x) , ∀(t, x) ∈ R2 , (27)

and introduce the following n-approximant fn : [0, 1]→ X of f by:

t 7→ fn(t) := arg min
x∈R

Λ̂µn(t, x)−1 , t ∈ [0, 1] . (28)

(In case of several minimizers in (28) then as a tie-breaker rule just take the smallest
one.) Note that for every fixed t ∈ [0, 1], fn(t) can be obtained efficiently because

x 7→ Λ̂µn(t, x)−1 is a univariate SOS polynomial in x.
As n increases, pointwise convergence (except at points of discontinuity) and

L1-norm convergence to f are proved in [25]. It is crucial that the fn approximant
(28) is semi-algebraic and not a polynomial. Indeed by its very semi-algebraic
nature, it is able approximate quite well some discontinuous functions with no
Gibbs phenomenon.
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Example 4.1. Let f : [0, 1]→ [0, 1] be the discontinuous step function t 7→ f(t) = 0
if t ∈ [0, 1/2] and f(t) = 1 if t ∈ (1/2, 1]. In Figure 1 (left) f (in red) is approximated
by p∗n ∈ R[t]n in (25) (in black) via a standard application of the CD-kernel Kν

n

associated with the univariate measure ν = dt on [0, 1]. Observe that even with
degree n = 12, the resulting polynomial approximation p∗12 is not satisfactory with
significant oscillations associated with the Gibbs phenomenon. On the other hand,
with ε > 0 very small and fn as in (28), the step function is recovered almost
exactly (in black) with no Gibbs phenomenon and with small degree n = 4. This
is what one may call a non-standard application of the CD kernel as one considers
the degenerate bivariate measure µ on [0, 1]×X instead of the univariate measure
ν = f(t)dt on [0, 1].

Similarly in Figure 2, two discontinuous Eckhoff functions from [7] in red are also
recovered (in black) with very good precision via fn in (28) with n = 10, and again
with no Gibbs phenomenon; for more details the reader is referred to [25].

Figure 1. Left: Degree-12 polynomial approximation of step func-
tion by p∗n in (25) with Gibbs phenomenon and right: step function
approximated by f4 in (28). © Reprinted from [25]

Figure 2. Two Eckhoff functions [7] approximated by f10 in (28).
© Reprinted from [25]

Remark 4.2. This recovery of the unknown f is possible if one has access to the
moment information (24). This is the case in interpolation with the moments (µNij )i,j
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of the empirical measure µN supported on the points (t(k), f(t(k)), k = 1, . . . , N ,
with (t(k))k≤N ⊂ [0, 1], that is,

µNij :=
1

N

N∑
k=1

t(k)i f(t(k))j , i, j ∈ N .

In some applications one only has access (e.g. via numerical measurements) to
partial moments

µi1 =

∫
tix dµ(t, x) =

∫ 1

0

ti f(t) dt , i ∈ N .

So to apply the above recovery procedure one has to first reconstruct the missing
moments

µij =

∫
ti xj dµ(t, x) =

∫ 1

0

ti f(t)j dt , i ∈ N , j ≥ 2 .

Fortunately, good approximations of missing moments (in principle as closely as
desired) can be obtained via solving a hierarchy of semidefinite relaxations described
in [10] (as a special application of the Moment-SOS hierarchy).

4.3. Supervised learning. In supervised classification with noiseless determin-
istic labels, the objects of interest x ∈ X belong to m classes with supports
Xj ⊂ X ⊂ Rn, j ∈ [m] (with [m] = {1, . . . ,m} =: Y ). The supports satisfy
Xi ∩Xj = ∅ for all i, j with i 6= j. The data set consists of clouds of finitely many
points (x(i)) ⊂ Xj sampled from an underlying distribution φj on Xj , j ∈ [m]. In
this situation, an exact classifier f : X → Y , selects j =: f(x) whenever x ∈ Xj .
When constructing a classifier from a sample of data points, as e.g. in machine
learning, a sensitive issue is its generalization properties when applied on a test set
different from the training set. For the reader interested in recent developments on
various techniques and issues in supervised and unsupervised classification, we refer
to e.g. the book [4] and the many references therein.

In [16] the author has introduced a simple and natural ideal classifier fn : X → Y ,
with nice asymptotic properties as n increases. It is based on the Christoffel function
Λµn associated with the joint distribution dµ(x, y) on X × Y . As µ is supported on
the graph {(x, f(x)) : x ∈ X } of the exact classifier f , recent results of [25] also
used in Section 4.2 and now transported in our context, suggest that the classifier

fn(x) := arg max
y∈Y

Λµn(x, y) , x ∈ X , (29)

should approximate f nicely. This is the case and indeed, by a slight modification
Λ̂µn of the initial definition of Λµn, we show that fn is simply expressed in terms of

the Christoffel functions Λ
φj
n of the φj ; namely,

fn(x) := arg max
y∈Y

Λ̂µn(x, y) = arg max
j

Λφjn (x) , x ∈ X . (30)

So the classifier fn simply selects the class f(x) := {j} whose value (score) of

its Christoffel function Λ
φj
n (x) at x ∈ X, is maximum over all classes. Notice

that the simple form (30) of fn mathematically justifies for (noiseless) supervised

classification, the intuitive argument that Λ
φj
n (x) > Λφkn (x), ∀k 6= j, whenever n is

sufficiently large and x ∈ Xj . Indeed from Section 3.4, as x ∈ Xj is outside the
support Xk of φk, for every k 6= j, the “score” Λφkn (x) is close to zero for sufficiently

large n, as it decreases exponentially fast to zero (while the decrease of Λ
φj
n (x) is
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at most polynomial in n). For more details and extension to the case where data
are corrupted by noise, the interested reader is referred to [16].

5. Positive polynomials and Christoffel function.

5.1. A distinguished representation of positive polynomials. From its defi-
nition (12) the CF is the reciprocal of a sum-of-squares (SOS). But in fact we next
show that the CF also appears in a certain distinguished representation of polyno-
mials that are positive on a semi-algebraic set S ⊂ Rd as in (7), extensively used in
the Moment-SOS hierarchy [12, 13]. In particular:

Every SOS polynomial p in the interior of the convex cone Σ[x]n of degree-2n SOS
polynomials, is the reciprocal of the CF of some linear functional φ in R[x]∗2n.

This result is a consequence of a duality result of Nesterov [28] which can be trans-
lated as : Among all Gram matrices of a given polynomial p ∈ int(Σ[x]n) there
is one that maximizes the “log-barrier” function of the cone Σ[x]n, and it is the
inverse of the moment matrix Mn(φ) � 0 of some φ ∈ int(Σ[x]∗n). If n = 2 then φ
has a clear interpretation in terms of a Gaussian measure but in the general case,
the link between p and φ is only partially understood and remains to be interpreted.

The above result extends to a far more general setting.

Theorem 5.1. Let Qn(g) be as in (6) with dual Q∗n(g) as in (8). If p ∈ int(Qn(g))
then there exists φ ∈ int(Q∗n(g)) such that

p(x) =

m∑
j=0

Λ
gj ·φ
n−dj (x)−1 gj(x) , ∀x ∈ Rd , (31)

or, equivalently:

int(Qn(g)) = {
m∑
j=0

(Λ
gj ·φ
n−dj )

−1gj : φ ∈ int(Q∗n(g)) } . (32)

Theorem 5.1 is an interpretation in [17] of a duality result of Nesterov [28].
Remarkably, it states that every p in the interior of Qn(g) has a distinguished

certificate of its positivity on S, with very specific SOS weights σj = (Λ
gj ·φ
n−dj )

−1

in its Putinar’s representation (9). Those specific weights are all coming from a
unique element φ ∈ int(Q∗n(g)) and its Christoffel functions associated with the
Riesz linear functionals gj · φ, j = 0, . . . ,m. It also turns out that those weights
have an extremal property: Consider the optimization problem:

ρn = inf
φ∈Rs(2n)

{
−

m∑
j=0

log det(Mn−dj (gj · φ)) : (33)

φ(p) = 1, Mn−dj (gj · φ) � 0 , ∀j = 0, . . . ,m

}
.

It is a convex optimization problem which has an explicit dual, namely

ρ∗n = sup
Qj

{ m∑
j=0

log det(Qj) : Qj � 0 ,∀j = 0, . . . ,m (34)

p(x)

m∑
j=0

s(n− dj) =

m∑
j=0

gj(x) · vn−dj (x)TQjvn−dj (x),∀x ∈ Rd
}
,
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where the supremum is taken over real symmetric matrices Qj of respective size
s(n−dj), j = 0, . . . ,m (and recall that dj = ddeg(gj)/2e). The criterion to maximize
in (33) is minus the log-barrier of the convex cone Q∗n(g). Both problems (33) and
(34) are convex and can be solved by some standard software packages like e.g. [8].

Theorem 5.2. With n ∈ N fixed, Problems (33) and (34) have the same finite
optimal value ρn = ρ∗n if and only if p ∈ int(Qn(g)). Moreover, both have a unique
optimal solution φ∗2n ∈ Rs(2n) and (Q∗j )j=0,...,m respectively, which satisfy Q∗j =

Mn−dj (gj · φ
∗
2n)−1 for all j = 0, . . . ,m. And, as a consequence,

p(x) =
1

m∑
j=0

s(n− dj)

m∑
j=0

gj(x) Λ
gj ·φ∗2n
n−dj (x)−1 , ∀x ∈ Rd . (35)

Notice that φ in (31) is just (
∑m
j=0 s(n− dj))φ

∗
2n with φ∗2n as in (35).

Of course, Theorem 5.1 immediately raises the following question: given p ∈
int(Qn(g)) what is this linear functional φ ∈ R[x]∗2n with associated moment se-
quence φ ∈ Rs(2n) in Theorem 5.1? It turns out that there is a simple and remark-
able answer for special sets S and the constant polynomial p = 1. Before turning
to this point we make a little detour and introduce the polynomial Pell’s equation.

5.2. Polynomial Pell’s equation. Let µ be the Chebyshev measure dx/π
√

1− x2

on the interval [−1, 1], and let (Tn)n∈N (resp. (Un)n∈N) be the Chebyshev polyno-
mials of first kind (resp. of second kind). Then polynomial Pell’s equation states
that

Tj(x)2 + (1− x2)Uj−1(x)2 = 1 , ∀x ∈ R , j ≥ 1 . (36)

Eq. (36) is an identity, but one also says that the triplet (Tj , (1−x2), Uj−1) solves
polynomial Pell’s equation2 (Pell’s equation originates in algebraic number theory).

When looking at (36) with glasses from real algebraic geometry, one also imme-
diately recognizes in (36) the Markov-Lukács representation of the constant polyno-
mial 1 ∈ R[x], which is positive on [−1, 1]. Even more, letting x 7→ g(x) := (1−x2)

and scaling T̂j := Tj/
√

2 (resp. Ûj := Uj/
√

2) for all j (except T̂0 = T0) to make

(T̂n)n orthonormal w.r.t. µ (resp. (Ûn)n orthonormal w.r.t. ν := g ·µ), one obtains:

(2n+ 1) =

n∑
j=0

T̂j(x)2 + (1− x2)

n∑
j=1

Ûj−1(x)2 , ∀x ∈ R .

= Λµn(x)−1 + g(x) Λg·µn−1(x)−1 , ∀x ∈ R . (37)

Hence (37) is just (31) in Theorem 5.1 for the constant polynomial p(x) = 2n + 1
for all x on S = [−1, 1] = {x : g(x) ≥ 0}. So here the mysterious linear functional
φ ∈ R[x]∗2n ∈ int(Q∗n(g)) in Theorem 5.1 is the vector of moments µ = (µj)j≤2n up

to degree 2n, of the Chebyshev measure µ = dx/π
√

1− x2, which is the equilibrium
measure of S.

2A triplet (A,B,C) solves polynomial Pell’s equation if A,B,C ∈ Z[x], and A2 − BC2 = 1.
For more details on the polynomial Pell’s equation the interested reader is referred to [3, 26, 37].
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A multivariate extension. In [18] and later in [24], we have been able to extend
this result to three cases of sets S ⊂ Rd and their equilibrium measure µ, namely:

Unit ball: S = {x ∈ Rd : 1− ‖x‖2 ≥ 0 } where µ is proportional to

dx√
1− ‖x‖2

. (38)

Unit box: S = Bd := [−1, 1]d where µ is proportional to

dx√
1− x2

1 · · ·
√

1− x2
n

. (39)

Simplex: S = {x ∈ Rd+ : 1−
∑n
j=1 xj ≥ 0 } where µ is proportional to

dx
√
x1 · · ·

√
xn
√

1−
∑n
j=1 xj

. (40)

For instance consider the simplex S, and let

x 7→ gi(x) := xi , i = 1, . . . , d ; x 7→ gd+1(x) := 1−
d∑
i=1

xi ,

so that S = {x : gj(x) ≥ 0 , j = 1, . . . , d+ 1}. Next, with ε ∈ {0, 1}d+1, define

x 7→ gε(x) := xε11 · · ·x
εd
d · (1−

d∑
i=1

xi)
εd+1 , ∀x ∈ Rd .

Theorem 5.3 ([24]). Let µ be the equilibrium measure of S in (40), re-scaled to be
a probability measure. Then for every j ∈ 2N:∑

ε∈{0,1}d+1; ε∈2N; |ε|≤2j

gε(x) K̃gε·µ
j−ε/2(x,x) =

(d+ 2)2j

2j!
, ∀x ∈ Rd , (41)

and as a consequence, for every n ∈ N:∑
ε∈{0,1}d+1; ε∈2N; |ε|≤n

gε(x) Λgε·µn−|ε|/2(x)−1 =

n∑
j=0

(d+ 2)2j

2j!
, ∀x ∈ Rd (42)

(where (a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) is the Pochhammer symbol).

As we can see in (42), again the constant polynomial 1 ∈ int(Qn(g1, . . . , gd+1))
is related to the equilibrium mesure µ of S via the CFs of µ and gε · µ in its
distinguished Putinar’s certificate of positivity (31). For an analogue of Theorem
5.3 for the unit box and the Euclidean unit box, the reader is referred to [24].

6. A regularization of the Christoffel function. Let S ⊂ Rd be compact with
nonempty interior and let µ be a Borel measure with supp(µ) = S. Recall that by
(18), if µ = f dx with f > 0 on S, then under some regularity conditions on the
couple (S, µ), one may obtain the asymptotic result

lim
n→∞

s(n) Λµn(x) = f(x)/µE(x) , ∀x ∈ int(S) , (43)

where µE is the density of the equilibrium measure of S and the above convergence
is uniform on compact subsets of int(S).

This result is quite interesting as its relates the Christoffel function with the
density f of µ and the density µE of the equilibrium measure of S. However, for
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practical purpose it does not allow to identify f(x) via Λµn(x) for x ∈ int(S) because
in general the density µE of the equilibrium measure of S is not known. In the sequel
we describe how to provide a remedy.

Let ε > 0 be fixed and define B∞(x, ε) := {y : ‖y − x‖∞ < ε/2} so that
vol(B∞(x; ε)) = εd. Then introduce the following function

(x, ε) 7→ Λ̂µn(x, ε) := inf
p∈R[x]n

{
∫
p2 dµ :

∫
B∞(x,ε)

p(y)
dy

εd
= 1 } , (44)

for all (x, ε) ∈ Rd × R+ and n ∈ N. Observe that (44) is a regularization of the
variational definition (14) of the CF Λµn. Even more, letting

v̂n(x, ε) :=

∫
B∞(x,ε)

vn(y)
dy

εd
, n ∈ N ,

we also obtain

Λ̂µn(x, ε)−1 = v̂n(x, ε)TMn(µ)−1 v̂n(x, ε) , ∀x ∈ Rd , (45)

which is also an analogue of (13). Interestingly, v̂n ∈ R[x, ε]n, i.e., v̂n is a polynomial
in the variables (x, ε), which can be obtained explicitly in closed form. As a result,

1/Λ̂µn ∈ Σ[x, ε]n, i.e., 1/Λ̂µn is an SOS polynomial in the variables (x, ε) which can
be also obtained explicitly in closed-form.

As we next see, when 1/Λ̂µn is seen as a a polynomial of x, parametrized by ε > 0
fixed, we can obtain a nice characterization of its asymptotic behavior as n grows,
in terms of the sole density f of µ without a term involving the unknown density
µE of the equilibrium measure of S (as is the case in (43)).

Theorem 6.1. Let S ⊂ Rd be compact with nonempty interior and ε > 0 be fixed.
Let µ be a measure on S with density f w.r.t. Lebesgue measure and with f > 0 on
S. Then for every ξ ∈ S such that B∞(ξ, ε) ⊂ S,

lim
n→∞

εd Λ̂µn(ξ, ε)−1 =

∫
B∞(ξ,ε)

1

f

dx

εd
(46)

and if f is continuous on S then

lim
n→∞

ε−d Λ̂µn(ξ, ε) =

(∫
B∞(ξ,ε)

1

f

dx

εd

)−1

= f(ζ) , (47)

for some ζ ∈ B∞(ξ, ε) (and limn→∞ ε−d Λ̂µn(ξ, ε) ≈ f(ξ) for ε sufficiently small).

As the reader may notice, in contrast with (18) the scaling ε−d of Λ̂µn in (47) is
fixed, and not growing with n. Moreover if f is continuous and ε > 0 is sufficiently
small, the limit in (47) provides a simple approximation of the density f(ξ) provided
that ξ ∈ int(S) is at least at ε-distance of the boundary ∂S.

7. Conclusion. We have provided a brief introduction to the Christoffel function
(CF) and some of its recent applications in data analysis and mining, interpola-
tion and approximation. We have also proposed a regularized version of the CF
parametrized by a fixed (arbitrary) scalar ε > 0, with same computational cost and
nice asymptotic property when the degree increases (and ε is small). We hope that
we have convinced the reader that in view of all its properties and its (surprising)
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links with seemingly unrelated fields, the CF should suscitate further interest and
investigations by the optimization research community.
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