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Transport Inspired Particle Filters with Poisson-Sampled Observations
in Gaussian Setting

Olga Yufereva Aneel Tanwani

Abstract— Motivated by the need for developing computa-
tionally efficient solutions to filtering problem with limited
information, this article develops particle filtering algorithms
for continuous-time stochastic processes with time-sampled ob-
servation process. The state process is modeled by a continuous-
time linear stochastic differential equation driven by Wiener
process, and the observation process is a linear mapping of
the state with additive Gaussian noise. For practical reasons,
we assume that the observations are time-sampled and the
underlying sampling process is a Poisson counter. With the
aim of developing particle filters for this system, we first
propose a mean-field type process which is an observation-
driven stochastic differential equation such that the conditional
distribution of this process given the observations coincides
with the optimal filtering distribution. This model is then
used to simulate a collection of particles which are driven
only by the sample mean and sample covariance, without
simulating the differential equation for the covariance matrix.
It is shown that the dynamics of the sample mean and the
sample covariance coincide with the optimal ones. An academic
example is included for illustration.

Index Terms— Continuous-discrete filters; Poisson-sampled
observations; Mean-field process; Particle filters.

I. INTRODUCTION

Since the pioneering work of Kalman and Bucy in [1], the
problem of filtering in dynamical systems has received con-
siderable attention among the researchers in different com-
munities. The basic idea of computing a statistical estimate
of a stochastic process conditioned upon a noisy observation
process has found relevance in several applications. The
problem has an elegant solution where the optimal filter is
characterized by the conditional distribution of the process
given the observation process. In the simplest form, with
linear dynamics and Gaussian processes, this conditional
expectation is Gaussian and one can characterize the filter
entirely by describing the evolution of the first moment of the
conditional distribution and the covariance of the estimation
error conditioned upon the observations. In the nonlinear
setting, however, one does not get a finite-dimensional filter
in general and it is of interest to study to what extent the tech-
niques developed for the linear case generalize for nonlinear
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problems. Moreover, for systems with higher dimensions,
computing covariance can be burdensome and one looks for
alternate methods to approximate the evolution of the error
covariance or compute the filtering distribution.

Several techniques have been proposed in the literature
with the motivation to provide good approximation of the
filtering distribution [2]. Among these, the use of Monte
Carlo integration methods for approximating the optimal
distribution have gained significant interest in the literature
[3], [4]. In the same spirit, particle filters provide a compu-
tationally attractive method for approximating the optimal
conditional distribution [5]. This later approach is based
on simulating the evolution of different particles through
differential equations that depend on the associated empirical
mean and the empirical error covariance. In continuous-time
linear Gaussian setting, it can be shown that, as the number
of particles tends to infinity, the empirical mean and the co-
variance converge to the optimal mean and the covariance of
the Kalman-Bucy filter [6], [7]. In fact, the limiting behavior
of these particles is described by a McKean–Vlasov type
equation, which is also referred as the mean-field process.
Put differently, and this is the viewpoint that we adopt later
in this article, the particles provide an approximation of this
mean-field process and their evolution is coupled to each
other through empirical mean and empirical covariances with
equal weights. In the literature, this limiting process is seen
to be chosen in different ways, e.g., as a modification of the
Kalman–Bucy equation [8], or as a non-diffusion equation
that is optimal in the measure transportation sense [9].

Apart from developing computationally efficient algo-
rithms, another important research direction is to study
the filtering problem with constraints on the information
available for computing the optimal distribution. In partic-
ular, motivated by the idea of implementing filters subject
to observations transmitted over networks through some
communication protocols, it is natural to stipulate that the
observations arrive at some random time instants [10]. It
is of interest to compute the conditional distribution of
the state process conditioned upon this discrete observation
process [11]. Such a setup for continuous-discrete filters is
motivated by the implementation of filters over networks
where the observation process is discretized by the presence
of a digital channel between the plant and the filter. For
certain technical reasons, and to better study the effect of
mean sampling rate, the authors stipulate in their previous
works that the sampling process is a Poisson counter. In
particular, for a system class very close to the one studied in
this paper, the authors in [12] propose a continuous-discrete



filter and analyze the boundedness of error covariance as a
function of the mean sampling rate.

Our primary objective in this article is to develop parti-
cle filters for continuous-time stochastic processes subject
to randomly time-sampled observations. In particular, the
state process is modeled by linear continuous-time Ornstein-
Uhlenbeck process and the sampling process for the ob-
servations is a Poisson counter. In the literature, we do
find some variants of particle filters in continuous-discrete
setting with different objectives. The paper [13] provides one
(and possibly the first) such example, where the authors use
mollifiers in the particle equations to smoothen the dynamics,
but no statements about the limiting process are provided.
The paper [14] develops particle filters for nonlinear systems
using the time-discretization procedure as a part of the
derivation and studies convergence as the length of the
sampling interval converges to zero. Building on the work
of [14], the authors in [15] propose a particle filter involving
resets in the estimate obtained by the filter, where the reset
value is computed by solving a differential equation on a
different time-scale.

In contrast to these aforementiond works, our focus is on
developing online particle filters which update their estimate
whenever a new measurement from the observation process
arrives. In particular, these particles are continuous-discrete:
the continuous dynamics describe the evolution between two
measurements and the discrete dynamics governed by a Pois-
son counter provides an update rule whenever the observation
is updated. We, therefore, propose a continuous-discrete lim-
iting mean-field process and show that the distribution of this
process conditioned upon the discrete observations coincides
with the optimal distribution of the Kalman-Bucy filter. We
use this process equation to describe a system of interacting
articles which are driven by empirical mean and the empirical
covariance. These particles are shown to be consistent with
the proposed limiting process. This kind of analysis sets up
the ground work for studying the performance of these filters
as a function of the mean sampling rate.

II. PROBLEM SETUP

We consider continuous-time stochastic dynamical sys-
tems described by

dxt = Axtdt+Gdωt (1)

where (xt)t≥0 is an Rn-valued diffusion process describing
the state. We let (Ω,F ,P) denote the underlying probability
space. It is assumed that, for each t ≥ 0, ωt is an Rm-valued
standard Wiener process adapted to the filtration Ft ⊂ F ,
with the property that E[dω dω⊤] = Im×mdt, for each t ≥
0. The matrix A ∈ Rn×n and the matrix G ∈ Rn×m are
assumed to be constant.

For the filtering problem, we associate a discrete obser-
vation process with system (1), which essentially provides
some noisy partial measurements of the state process at
random times. The motivation to work with randomly time-
sampled measurements comes from several applications,

such as, communication over networks which allow informa-
tion packets to be sent at some discrete randomly distributed
time instants. Thus, we consider a monotone nondecreasing
sequence (τk)k∈N taking values in R≥0 which denote the
time instants at which the measurements are available for
computing the statistical estimate of the state process. We
introduce the process (Nt)t≥0 defined as

Nt := sup
{
k ∈ N

∣∣ τk ≤ t
}

for t ∈ R, (2)

and it is assumed that (Nt)t≥0 is a Poisson counter indepen-
dent of the noise and the state processes. The discretized,
and noisy, observation process is thus defined as

yτNt
= C x(τNt) + ντNt

, t ≥ 0, (3)

where ντk ∼ N (0, Vτk), that is, ντk is a mean zero Gaussian
process with variance Vτk , which is assumed to be symmetric
positive definite for each k ∈ Z+.

Define Yt = y(max
τk≤t

{τk}), that is a stochastic process with

sample paths that are piece-wise constant right-continuous
function with probability one. In fact, all the stochastic
processes in this paper are considered to be càdlàg (continue
à droite avec limite à gauche), and hence their sample
paths are also càdlàg. Let Yt denote the natural sigma-
algebra generated by this piece-wise continuous output Y[0,t].
For the filtering problem, we are interested in the càdlàg
stochastic process x̂t, called the estimator, that minimizes
the mean-square error, i.e. argminE

[
|xt − x̂t|2 | Yt

]
. The

optimal (Bayes) solution to this minimization problem is
the conditional distribution of the process xt given the
observation process, that is,

Law(xt|Yt). (4)

Due to the linearity, and Gaussian noise, this distribution is
Gaussian and it suffices to have only its first and second mo-
ments. However, the evolution of the mean x̂t := E[xt | Yt],
depends on the evolution of the error covariance matrix
Pt := E[(xt − x̂t)(xt − x̂t)

⊤|Yt] and the computation of
Pt is often costly for higher dimensional systems.

On the other hand, using the particle approach, it is
possible to compute (an approximation) of the conditional
distribution without solving the differential equation for the
evolution of covariance matrix. This can be done by finding
a process St that satisfies

Law(St | Yt) ∼ Law(xt | Yt) (5)

and describing a system of particles whose limiting behavior
(as the number of particles tend to infinity) converges to St.
The computational advantage of this approach is that the
simulation of particles, in general, is more efficient and
potentially applicable in nonlinear systems as well (although
there are very few instances of formal analysis in nonlinear
setting). As an example of approximating a process using
the particles, one can take for instance a result from [16,
Theorem 1.4, p.172] where it is shown that if a process St

satisfies a simple version of McKean–Vlasov type equation

dSt = dBt +
(∫

b(St, S̄)µt(dS̄)
)
dt,



where µt(dS̄) is the law of St, Bt is a standard Brownian
motion, the function b is bounded and Lipschitz continuous
and initial distribution is given, then St can be approximated
by a system of M interacting particles Si

t , i = 1, . . . ,M with
the dynamics

dSi
t = dBi

t +
1

M

M∑
j=1

b(Si
t , S

j
t )dt, i = 1, . . . ,M

and with the corresponding initial distributions. In particular,
when M → ∞, each Si

t approaches a process which is
an independent copy of the process St. For the filtering
problem, with the observation process Zt given in the form
dZt = Cxtdt + V dωt, the authors in [9] show that the
property Law(St | Yt) ∼ Law(xt | Yt) holds if St satisfies
the following McKean–Vlasov type equation

dSt = AStdt+K1,t(St − Ŝt)dt

+K2,t

(
dZt −

CSt + CŜt

2
dt

)
, (6)

where Ŝt = E[St | Z[0,t]], and K1,t, K2,t are certain gain
matrices. The authors in [9] also show that this evolution rule
minimizes certain cost associated with the transportation of
probability measures. The evolution equations for the indi-
vidual particles are then obtained from (6) by replacing Ŝt

with the empirical mean.
The basic problem studied in this paper is to design

particle filters for the continuous-time system (1) with the
discrete observation process (3), and this is done in following
steps:

• Find a process st such that E(st | Yt) ∼ E(xt | Yt).
• Describe a system of particles sit, i = 1, . . . ,M coupled

to each other via empirical mean and empirical variance,
such that, each sit represents an independent copy of st
when M → ∞.

• Show that the empirical mean of the particles is consis-
tent with the optimal solution to the filtering problem.

The first step basically corresponds to describing a mean-
field filtering process for system (1), (3) which is addressed
in Section IV. The corresponding particle system, discussed
in Section V, provides an approximation of this mean field
process when the number of particles is large enough.

III. POISSON PROCESS INTEGRATION

A. Differential equation with Poisson processes

In this paper, we work under the assumption that the obser-
vation process is driven by a Poisson counter. Consequently,
we use integration with respect to this Poisson process to
define the filtering equations and it is important to develop
a chain rule to describe the derivative of functions of the
processes governed by such differential equations.

Definition 3.1: Fix λ > 0. A family of random variables
(Nt)t≥0 with values in Z+ is called a Poisson process of
intensity λ if

1) N0 = 0;

2) its increments are independent, i.e. (Nt1 −
Nt0), . . . , (Ntn − Ntn−1) are independent for all
0 = t1 < . . . < tn;

3) for all t ≥ 0 the following infinitesimal property holds

P(Nt+δ −Nt = 0) = 1− λδ + o(δ),

P(Nt+δ −Nt = 1) = λδ + o(δ),

P(Nt+δ −Nt ≥ 2) = o(δ).
For equivalent definitions, we refer to [17, Sec. 2.3] and
more properties of Nt are provided in [18, Ch. I, Sec. 3].
Note that each sample path of a Poisson process is a piece-
wise constant function and almost all of them are such that
the difference between a value Nt and its left limit Nt− =
limδ↓0Nt−δ equals either 0 or 1 for all t ≥ 0 :

∆Nt := (Nt −Nt−) ∈ {0, 1}.

Corollary 3.1: Let (Nt)t≥0 be a Poisson counter and let f
and g be Lipschitz continuous functions. A process e, which
sample paths are defined as follows

det/dt = f(et) for ∆Nt = 0 (7a)
et = et− + g(et−) ∆Nt for ∆Nt ̸= 0 (7b)

is a càdlàg process.
In our case, it is convenient to introduce the following

differential notation for such processes:

det = f(et)dt+ g(et)dNt. (8)

An Rn-valued càdlàg process (et)t≥0 is called a solution of
(8) if, for almost all sample path of Poisson process (Nt)t≥0,
it satisfies (7). Such a solution is uniquely defined when
f : Rn → Rn and g : Rn → Rn are Lipschitz continuous
functions.

To design a filter, we need the chain rule for such
processes.

Proposition 3.2 (Chain rule): Let f : Rn → Rn and g :
Rn → Rn be Lipschitz continuous, and let (et)t≥0 be a
solution of (8). If ψ : Rn → R is a differentiable function,
then

dψ(et) = (∇ψ(et))⊤ f(et)dt
+
(
ψ
(
et + g(et)

)
− ψ(et)

)
dNt. (9)

Proof: Let us consider only such sample paths of the
Poisson process N that ∆Nt ∈ {0, 1} for all t > 0. Then,
we can check (9) separately for {t > 0 | ∆Nt = 0} and for
{t > 0 | ∆Nt = 1}.

In the first case, we have that det/dt = f(et) by definition.
Plugging this and (9) in (7a) for the process ψ(et) we get
the equality and so the case ∆Nt = 0 is checked.

In the second case, we should notice that each finite
interval [0, t′] contains only a finite set of the discontinuity
points of Nt, say {τi}i=1,...,k = {t ∈]0, t′] | ∆Nt ̸= 0}.
Consider an arbitrary i ∈ {1, . . . , k}. For the process et we
have eτi = eτ−

i
+ g(eτ−

i
)∆Nτi by definition. Using this and

(9) to check (7b) for the process ψ(et) we get that its right-
hand side is

ψ(eτ−
i
) +

(
ψ
((
eτ−

i
+ g(eτ−

i
)∆Nτi

))
− ψ(eτ−

i
)
)
∆Nτi



which equals ψ(eτi), the left-hand side of (7b), as ∆Nτi = 1.
This completes the proof.

B. Filters with discrete observations

Coming to the question of optimal filter for continuous
system (1) with discrete observations (3), we first recall
the filter design based on computing the covariance matrix
exactly via the differential equations. For an arbitrary strictly
increasing real-valued sequence (τk)k∈Z+ , an optimal filter is
designed in [11, Th. 7.1]. If we specify a sequence (τk)k∈Z+

so that it corresponds to the arrival times of a Poisson
process, we can reformulate the result from [11, Th. 7.1]
as follows.

Theorem 3.3: Suppose that the process (Nt)t≥0 in (2) is
a Poisson counter. The optimal filter for the system (1), (3)
is a Gaussian process for which the mean x̂t satisfies

dx̂t = Ax̂tdt+Kt(yt − Cx̂t)dNt, (10)

and the covariance matrix Pt satisfies

dPt = (APt + PtA
⊤ +GG⊤)dt−KtCPtdNt (11)

where Kt = PtC
⊤(CPtC

⊤ + Vt)
−1.

In the above result, one makes the observation that the op-
timal conditional distribution is Gaussian for each realization
of (Nt)t≥0 despite the fact that the mean and covariance are
discontinuous along each sample path.

IV. CONTINUOUS-DISCRETE MEAN-FIELD PROCESS

In contrast to the filter proposed in Theorem 3.3, we now
turn our attention to the main topic of the paper, that is,
compute the (approximate) filtering distribution using the
particle approach which would alleviate the burden of solving
the covariance equation explicitly.

On the first glance, one may try the “continuous-discrete
version” of the process (6) for Poisson-sampled observation
case, and define the process St as follows:

dSt = AStdt+K1,t(St − Ŝt)dt

+K2,t

(
yt −

CSt + CŜt

2

)
dNt (12)

for some gain matrices K1,t and K2,t. It turns out that, for
such processes, Law(St | Yt) is not necessarily equivalent
to Law(xt | Yt). Retaining the structure of the continuous
part of the transport inspired equation (12), we allow for the
update term to be a linear combination of the process itself
and the conditional mean. Thus, we propose the following
continuous-discrete model for the mean-field process:

dst := Astdt+
1

2
GG⊤Q−1

t (st − ŝt)dt

+
(
Lt(yt − Cŝt)− Ξt(st − ŝt)

)
dNt,

ŝt := E[st | Yt],

Qt := E[(st − ŝt)(st − ŝt)
⊤ | Yt],

(13)

with initial conditions s0 ∼ x0. Here, for each t ≥ 0,
Lt is a gain matrix, and the matrix Ξt ∈ Rn×n will be

specified shortly. The special case of Ξt =
1
2LtC brings us

in the form (12), but this particular choice does not provide
a consistent posterior distribution.

To show that a different choice of the matrix valued pro-
cess Ξt provides a posterior distribution consistent with the
optimal filter, we first derive the differential equations for the
conditional mean ŝt and the conditional error covariance Qt.

Proposition 4.1: Let Lt and Ξt be càdlàg Yt-measurable
processes. The system (13) then yields

dŝt = Aŝtdt+ Lt(yt − Cŝt)dNt, (14)

dQt =
(
AQt +QtA

⊤ +GG⊤) dt
+
(
ΞtQtΞ

⊤
t − ΞtQt −QtΞ

⊤
t

)
dNt. (15)

Proof: Employing Yt-measurability of Lt and Ξt, we
immediately obtain that

dŝt = Aŝtdt+ Lt(yt − Cŝt)dNt.

Next, we consider the error variable et := st−ŝt, and observe
that

det := d(st − ŝt) = Aetdt+
1

2
GG⊤Q−1

t etdt− ΞetdNt.

Using the chain rule from Proposition 3.2, we get

dete
⊤
t =

(
Aete

⊤
t +

1

2
GG⊤Q−1

t ete
⊤
t

+ ete
⊤
t A

⊤ +
1

2
ete

⊤
t (GG

⊤Q−1
t )⊤

)
dt

+
(
(et − Ξtet)(et − Ξtet)

⊤ − ete
⊤
t

)
dNt.

It follows that

dQt =
(
AQt +QtA

⊤ +GG⊤) dt
+
(
ΞtQtΞ

⊤
t − ΞtQt −QtΞ

⊤
t

)
dNt,

and hence (15) holds.
We now use the result of Proposition 4.1 to show that an

appropriate choice of Lt and Ξt indeed yields a conditional
distribution that is consistent with optimal filtering distribu-
tion.

Theorem 4.2: Consider system (13) with initial condi-
tion s0 ∼ x0. Suppose that Lt = QtC

⊤(CQtC
⊤ + Vt)

−1

and Ξt satisfies

(Ξt − I)Qt(Ξ
⊤
t − I)

= Qt −QtC
⊤(CQtC

⊤ + Vt)
−1CQt (16)

then Law(st | Yt) ∼ Law(xt | Yt).
Proof: We first claim that the conditional distribution

described by Law(st | Yt) is Gaussian. Indeed, it follows
from Corollary 3.1, that the evolution of the process st
is described by multiplying the initial normal distribution
with certain matrices. It therefore suffices to show that the
conditional mean and conditional variance of the process st
coincides with the solution of (10) and (11), respectively.

The proposed Lt and Ξt are such that

ΞtQtΞ
⊤
t − ΞtQt −QtΞ

⊤
t = −LtCQt

so the dynamics of (14) and (15) coincide with the dynamics
of (10) and (11), respectively. Moreover, for the initial



distribution s0 ∼ x0, it holds that ŝ0 = x̂0 = E[x0], and
similarly, Q0 = P0. The desired solution therefore follows
from the uniqueness of solutions to the differential equations
(14) and (15).

So, to compute st, one needs to solve the quadratic
equation (16) only countably many times almost surely, at the
renewal times of the Poisson process, that is, whenever the
observation process updates. We will provide some remarks
about the solvability of the quadratic equation (16) in the
next section.

V. PARTICLE FILTER

We now use the process equations (13) to define a system
of particles. The inconvenient aspect of (13) is that the
differential equation depends on the conditional mean and
conditional covariance of the process. The use of particles
allows us to replace these two terms with empirical mean
and empirical covariance respectively.

For M ≥ n and t ≥ 0, let M -particle system be defined
as

dsit = Asitdt+
1

2
GG⊤(Qe

t)
−1(sit − ŝ e

t)dt

+
(
Le
t(yt − Cŝet)− Ξe

t(s
i
t − ŝet)

)
dNt, (17a)

for i = 1, . . . ,M , where ŝet denotes the empirical mean

ŝet =
1

M

M∑
i=1

sit, (17b)

and Qe
t describes the empirical covariance

Qe
t =

1

M

M∑
i=1

(sit − ŝet)(s
i
t − ŝet)

⊤. (17c)

The gain Le
t is defined as a function of the empirical mean

and covariance as

Le
t = Qe

tC
⊤(CQe

tC
⊤ + Vt)

−1, (17d)

and, similar to (16), the matrix Ξe
t satisfies

(Ξe
t − I)Qe

t((Ξ
e
t)

⊤ − I) =

Qe
t −Qe

tC
⊤(CQe

tC
⊤ + Vt)

−1CQe
t . (17e)

One readily observes that, for each particle, the only differ-
ential equation to be simulated is (17a), and the terms ŝet and
Qe

t appearing in this equation are defined via static coupling
with other particles.

A. Consisteny of the particle filter

We now show that the particle filter (17) is indeed consis-
tent with the optimal filter of Theorem 3.3.

Proposition 5.1: The evolution of the sample mean ŝet and
the sample covariance Qe

t satisfies the following equations

dŝet = Aŝet + Le
t(yt − Cŝet)dNt, (18a)

dQe
t =

(
AQe

t +Qe
tA

⊤ +GG⊤)dt− Le
tCQ

e
tdNt. (18b)

where Le
t satisfies (17d).

Proof: The differential equation for ŝet can be obtained

by taking the time derivative of the equation ŝet =
1
M

M∑
i=1

sit.

Repeating the arguments of the proof of Proposition 4.1 and
using Qe

t =
1
M

∑M
i=1(s

i
t − ŝet)(s

i
t − ŝet)

⊤, we obtain that

dQe
t =

(
AQe

t +Qe
tA

⊤ +GG⊤) dt
+
(
Ξe
tQ

e
t(Ξ

e
t)

⊤ − Ξe
tQ

e
t −Qe

t(Ξ
e
t)

⊤) dNt.

Then we notice that (17e) is equivalent to

Ξe
tQ

e
t(Ξ

e
t)

⊤ − Ξe
tQ

e
t −Qe

t(Ξ
e
t)

⊤ = Le
tCQ

e
t

which leads to (18b).
The result of Proposition 5.1 therefore shows that the

differential equations for empirical mean ŝet and covariance
Qe

t are the same as those given in Theorem 3.3. To build
on this result and show that set and Qe

t are indeed consistent
with x̂t and Pt, we also need consistency of initial con-
ditions. Assuming that s0 ∼ x0, we see that a realization
of se0 approximates E[x0] if the number of particles M is
large enough. In the same way, for large enough M , a
realization of Q0 approximates P0. Formal analysis of this
approximation and studying the effect of sampling rate on
the asymptotic behavior of the resulting error is a topic of
further research.

B. Solvability of the design parameters

The injection gains Le
t and Ξe

t in our particle system (17a)
only apply at times of observation updates and are obtained
from (17d) and (17e), resepctively. In these equations, we
note that Qe

t gets updated due to reset in st and ŝet with
the arrival of new observations. Thus, the key step for the
simulation of the particles is to solve the algebraic equation
(17e) at renewal times of the Poisson process. Solvability of
this equation can be guaranteed and carried out in following
steps:
Step 1: We can find an invertible matrix Et such that

EtE
⊤
t = Qe

t . This is always possible because, for
the number of particles M large enough, Qe

t is sym-
metric and positive definite. Using the eigenvalue
decomposition, we can choose Et to be the matrix
of orthonormal eigenvectors multiplied by a diagonal
matrix with square root of the eigenvalues.

Step 2: We then observe that (Qe
t − Le

tCQ
e
t) is positive

semi-definite. This follows from the fact that, we
can write:

(Qe
t−Le

tCQ
e
t) = (I−Le

tC)Q
e
t(I−Le

tC)
⊤+Le

tVtL
e⊤
t

Step 3: Next, we compute the matrix Ft such that FtF
⊤
t =

(Qe
t −Le

tCQ
e
t). Due to the fact that (Qe

t −Le
tCQ

e
t)

is symmetric positive semi-definite, such a matrix
Ft always exists.

Thus, using eigenvalue decomposition of the matrices Qe
t

and (Qe
t − Le

tCQ
e
t), we have an analytic solution. That is,

for each renewal time t ≥ 0, we let Xt = Ξt − I , then the
quadratic equation becomes

XtEtE
⊤
t X

⊤
t = FtF

⊤
t



for which the solution is Xt = FtE
−1
t , that is, Ξt = I+Xt.

VI. SIMULATIONS

We will demonstrate the results of Section IV and Sec-
tion V through an academic example. Consider the linear
stochastic system

dxt = Axtdt+Gdωt (19a)
yτk = Cxτk + ντk , (19b)

where A =
[

0 3 1
2 −2 1
−2 1 −3

]
, C =

[
1 −1 2
1 0 1

]
, G = [ 0.5 0.5 0.5 ]

⊤,

and νt is normally distributed with mean (0, 0)⊤ and the
constant variance V = [ 0.5 0.1

0.1 0.5 ].
To measure the effectiveness of the particle system, we

compare it with the optimal estimator. For a simulated and
fixed path of the state xt and the observation noise νt, we
compare x̂t and ŝet . For the first moment, we consider the
time plot of ∥x̂t− ŝet∥. While x̂t is defined by the differential
equation (10), to compute ŝet we simulate particles sit and
take their empirical mean. Figure 1a shows a realization of
this first moment process with observation updates at discrete
times. We fix Poisson intensity λ = 10. To get a more
general picture we simulate 200 sample paths of the Poisson
process, look at the time evolution of ∥x̂t − ŝet∥, and take
their pointwise (in time) average, denoted as E∥x̂t − ŝet∥
in Figure 1b. Thus, Figure 1b presents the evolution of the
expectation (with respect to the sampling process) of the first
moment of the difference between x̂t and ŝet .
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(a) One realization behavior.
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Fig. 1: Evolution of the first moment of the continuous-
discrete optimal filter and particle filter.
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Fig. 2: Evolution of the second moment of the continuous-
discrete optimal filter and particle filter.

In a similar way, we compare the evolution of second
moments as well. To compute Pt, we need to solve the
matrix differential equation (11) and Qe

t is computed as
in (17c). The corresponding simulations are reported in

Figure 2, where we compare trace(Pt) with trace(Qe
t) for

a single realization in Fig. 2a, and over multiple realizations
of sampling process in Fig. 2b.

VII. CONCLUSIONS

We considered the problem of designing particle filters
for continuous-time linear stochastic systems with discrete
observation process. The proposed mean-field type process
is a continuous-discrete differential equation whose posterior
distribution coincides with optimal conditional distribution.
We then sample this process to design a system of interacting
particles which are coupled through empirical mean and
covariance. This system of particles is shown to be consistent
with the optimal Kalman–Bucy filter in the sense that the
mean and covariance satisfy the same differential equation.

As a topic of further investigation, we are analyzing
quantitatively the approximation error between the empirical
mean and the optimal mean, as well as the difference
between empirical covariance and the optimal covariance. It
remains to be seen how the approximation error varies with
the number of particles. It is also interesting to see how this
approximation is affected by the mean sampling rate of the
underlying observation process.
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